Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Esfuerzo, deformación, flexión, fatiga, torsión y pandeo

28,625 views

Published on

Trabajo elementos de maquinas

Published in: Education
  • Login to see the comments

Esfuerzo, deformación, flexión, fatiga, torsión y pandeo

  1. 1. ESFUERZO, DEFORMACIÓN, FLEXIÓN, FATIGA, TORSIÓN Y PANDEO Realizado por: Luis Miguel Requena C.I 22,996,600
  2. 2. INTRODUCCIÓN El uso de los materiales en las obras de ingeniería hace necesario el conocimiento de las propiedades físicas de aquellos, y para conocer estas propiedades es necesario llevar a cabo pruebas que permitan determinarlas. Todos los materiales metálicos tienen una combinación de comportamiento elástico y plástico en mayor o menor proporción. Todo cuerpo al soportar una fuerza aplicada trata de deformarse en el sentido de aplicación de la fuerza. En el caso del ensayo de tracción, la fuerza se aplica en dirección del eje de ella y por eso se denomina axial, la probeta se alargara en dirección de su longitud y se encogerá en el sentido o plano perpendicular. Aunque el esfuerzo y la deformación ocurren simultáneamente en el ensayo, los dos conceptos son completamente distintos. A escala atómica, la deformación elástica macroscópica se manifiesta como pequeños cambios en el espaciado interatómico y los enlaces interatómicos son estirados. Por consiguiente, la magnitud del módulo de elasticidad representa la resistencia a la separación de los átomos contiguos, es decir, a las fuerzas de enlace interatómicas. A escala atómica, la deformación plástica corresponde a la rotura de los enlaces entre átomos vecinos más próximos y a la reformación de éstos con nuevos vecinos, ya que un gran número de átomos o moléculas se mueven unos con respecto a otros; al eliminar la tensión no vuelven a sus posiciones originales.
  3. 3. ESFUERZO Las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por unidad de área, la cual se denota con la letra griega sigma (σ) y es un parámetro que permite comparar la resistencia de dos materiales, ya que establece una base común de referencia.
  4. 4. TIPOS DE ESFUERZO • Tracción. Hace que se separen entre sí las distintas partículas que componen una pieza, tendiendo a alargarla. Por ejemplo, cuando se cuelga de una cadena una lámpara, la cadena queda sometida a un esfuerzo de tracción, tendiendo a aumentar su longitud.
  5. 5. COMPRESIÓN Hace que se aproximen las diferentes partículas de un material, tendiendo a producir acortamientos o aplastamientos. Cuando nos sentamos en una silla, sometemos a las patas a un esfuerzo de compresión, con lo que tiende a disminuir su altura.
  6. 6. CIZALLAMIENTO Se produce cuando se aplican fuerzas perpendiculares a la pieza, haciendo que las partículas del material tiendan a resbalar o desplazarse las unas sobre las otras. Al cortar con unas tijeras un papel estamos provocando que unas partículas tiendan a deslizarse sobre otras. Los puntos sobre los que apoyan las vigas están sometidos a cizallamiento.
  7. 7. FLEXIÓN Es una combinación de compresión y de tracción. Mientras que las fibras superiores de la pieza sometida a un esfuerzo de flexión se alargan, las inferiores se acortan, o viceversa. Al saltar en la tabla del trampolín de una piscina, la tabla se flexiona. También se flexiona un panel de una estantería cuando se carga de libros o la barra donde se cuelgan las perchas en los armarios.
  8. 8. TORSIÓN Las fuerzas de torsión son las que hacen que una pieza tienda a retorcerse sobre su eje central. Están sometidos a esfuerzos de torsión los ejes, las manivelas y los cigüeñales.
  9. 9. EJERCICIOS DE ESFUERZO
  10. 10. DEFORMACIÓN • La deformación es el cambio en el tamaño o forma de un cuerpo debido a esfuerzos internos producidos por una o más fuerzas aplicadas sobre el mismo o la ocurrencia de dilatación térmica.
  11. 11. LEY DE ELASTICIDAD DE HOOKE En física, la ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos del estiramiento longitudinal, establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada F: epsilon = frac{delta}{L} = frac{F}{AE} siendo delta el alargamiento, L la longitud original, E: módulo de Young, A la sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite elástico. Esta ley recibe su nombre de Robert Hooke, físico británico contemporáneo de Isaac Newton, y contribuyente prolífico de la arquitectura. Esta ley comprende numerosas disciplinas, siendo utilizada en ingeniería y construcción, así como en la ciencia de los materiales. Ante el temor de que alguien se apoderara de su descubrimiento, Hooke lo publicó en forma de un famoso anagrama, ceiiinosssttuv, revelando su contenido un par de años más tarde.
  12. 12. TIPOS DE DEFORMACIÓN • Deformación elástica: Para más detalles sobre este tema, consulte la elasticidad. Este tipo de deformación es reversible. Una vez que ya no se aplican las fuerzas, el objeto vuelve a su forma original. Elastómeros y metales con memoria de forma tales como Nitinol exhiben grandes rangos de deformación elástica, como el caucho. Sin embargo elasticidad es no lineal en estos materiales. Metales normales, cerámica y la mayoría de los cristales muestran elasticidad lineal y una zona elástica pequeña.
  13. 13. DEFORMACIÓN PLÁSTICA • Este tipo de deformación es irreversible. Sin embargo, un objeto en el rango de deformación plástica primero se han sometido a deformación elástica, que es reversible, por lo que el objeto volverá forma parte a su forma original. Termoplásticos blandos tienen una gama bastante grande deformación plástica como hacer metales dúctiles tales como el cobre, la plata, y oro. Acero también lo hace, pero no es de hierro fundido. Plásticos duros termoestables, caucho, cristales, y cerámicas tienen rangos de deformación plástica mínimos. Un material con un amplio rango de deformación plástica es la goma de mascar en húmedo, que puede ser estirados decenas de veces su longitud original.
  14. 14. FRACTURA • Este tipo de deformación también es irreversible. Una ruptura se produce después de que el material ha alcanzado el extremo de la goma, de plástico y, a continuación, los rangos de deformación. En este punto, las fuerzas se acumulan hasta que son suficientes para causar una fractura. Todos los materiales eventualmente fractura, si se aplican fuerzas suficientes.
  15. 15. EJERCICIO DE DEFORMACIÓN
  16. 16. FLEXIÓN • la flexión es la acción y efecto de doblar el cuerpo o alguno de sus miembros. Se trata de un movimiento de aproximación entre partes del cuerpo mediante la acción de los músculos.
  17. 17. FATIGA la fatiga de materiales se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas. Aunque es un fenómeno que, sin definición formal, era reconocido desde la antigüedad, este comportamiento no fue de interés real hasta la Revolución Industrial, cuando, a mediados del siglo XIX comenzaron a producir las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy inferiores a las necesarias en el caso estático; y a desarrollar métodos de cálculo para el diseño de piezas confiables. Este no es el caso de materiales de aparición reciente, para los que es necesaria la fabricación y el ensayo de prototipos.
  18. 18. DIAGRAMA S-N • Gráfico de esfuerzo (S) frente al número de ciclos (N) necesarios para causar la rotura de probetas similares en un ensayo de fatiga. Los datos para cada curva de un diagrama S-N se obtiene determinando la vida a la fatiga de una serie de probetas sujetas a diversas cantidades de esfuerzo fluctuante. El eje de esfuerzo puede representar la amplitud de esfuerzo, el esfuerzo máximo o el esfuerzo mínimo. Casi siempre se usa una escala de registro para la escala N y a veces para la escala S. Módulo relativo.
  19. 19. PANDEO El pandeo es un fenómeno de inestabilidad elástica que puede darse en elementos comprimidos esbeltos, y que se manifiesta por la aparición de desplazamientos importantes transversales a la dirección principal de compresión. En ingeniería estructural el fenómeno aparece principalmente en pilares y columnas, y se traduce en la aparición de una flexión adicional en el pilar cuando se halla sometido a la acción de esfuerzos axiales de cierta importancia.
  20. 20. GRACIAS

×