Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Suggestions:
1) For best quality, download the PDF before viewing.
2) Open at least two windows: One for the Youtube video, one for the screencast (link below), and optionally one for the slides themselves.
3) The Youtube video is shown on the first page of the slide deck, for slides, just skip to page 2.
Screencast: http://youtu.be/VoL7JKJmr2I
Video recording: http://youtu.be/CJRvb8zxRdE (Thanks to Al Friedrich!)
In this talk, we take Deep Learning to task with real world data puzzles to solve.
Data:
- Higgs binary classification dataset (10M rows, 29 cols)
- MNIST 10-class dataset
- Weather categorical dataset
- eBay text classification dataset (8500 cols, 500k rows, 467 classes)
- ECG heartbeat anomaly detection
- Powered by the open source machine learning software H2O.ai. Contributors welcome at: https://github.com/h2oai
- To view videos on H2O open source machine learning software, go to: https://www.youtube.com/user/0xdata
Login to see the comments