SlideShare a Scribd company logo
1 of 4
Download to read offline
8.4 Seepage Calculation from a Flow Net 205
definition of flow and equipotential lines for flow in the permeable soil layer around the
row of sheet piles shown in Figure 8.1 (for kx ϭ kz ϭ k).
A combination of a number of flow lines and equipotential lines is called a flow net.
As mentioned in the introduction, flow nets are constructed for the calculation of ground-
water flow and the evaluation of heads in the media. To complete the graphic construc-
tion of a flow net, one must draw the flow and equipotential lines in such a way that
1. The equipotential lines intersect the flow lines at right angles.
2. The flow elements formed are approximate squares.
Figure 8.3b shows an example of a completed flow net. One more example of flow net
in isotropic permeable layer are given in Figure 8.4. In these figures, Nf is the number of flow
channels in the flow net, and Nd is the number of potential drops (defined later in this chapter).
Drawing a flow net takes several trials. While constructing the flow net, keep the
boundary conditions in mind. For the flow net shown in Figure 8.3b, the following four
boundary conditions apply:
Condition 1: The upstream and downstream surfaces of the permeable layer (lines
ab and de) are equipotential lines.
Condition 2: Because ab and de are equipotential lines, all the flow lines intersect
them at right angles.
Condition 3: The boundary of the impervious layer—that is, line fg—is a flow line,
and so is the surface of the impervious sheet pile, line acd.
Condition 4: The equipotential lines intersect acd and fg at right angles.
Toe filter
kx ϭ kz ϭ k
Nf ϭ 5
Nd ϭ 9
H1
H2
H
Figure 8.4 Flow net under a dam with toe filter
8.4 Seepage Calculation from a Flow Net
In any flow net, the strip between any two adjacent flow lines is called a flow channel.
Figure 8.5 shows a flow channel with the equipotential lines forming square elements. Let
h1, h2, h3, h4, . . ., hn be the piezometric levels corresponding to the equipotential lines. The
rate of seepage through the flow channel per unit length (perpendicular to the vertical sec-
tion through the permeable layer) can be calculated as follows. Because there is no flow
across the flow lines,
(8.17)¢q1 ϭ ¢q2 ϭ ¢q3 ϭ p ϭ ¢q
206 Chapter 8: Seepage
From Darcy’s law, the flow rate is equal to kiA. Thus, Eq. (8.17) can be written as
(8.18)
Eq. (8.18) shows that if the flow elements are drawn as approximate squares, the drop in
the piezometric level between any two adjacent equipotential lines is the same. This is
called the potential drop. Thus,
(8.19)
and
(8.20)
In Figure 8.3b, for any flow channel, H ϭ H1 Ϫ H2 and Nd ϭ 6.
If the number of flow channels in a flow net is equal to Nf , the total rate of flow
through all the channels per unit length can be given by
(8.21)
Although drawing square elements for a flow net is convenient, it is not always nec-
essary. Alternatively, one can draw a rectangular mesh for a flow channel, as shown in
Figure 8.6, provided that the width-to-length ratios for all the rectangular elements in the
flow net are the same. In this case, Eq. (8.18) for rate of flow through the channel can be
modified to
(8.22)
If b1/l1 ϭ b2/l2 ϭ b3/l3 n (i.e., the elements are not square), Eqs. (8.20) and
(8.21) can be modified to
(8.23)¢q ϭ kHa
n
Nd
b
ϭ p ϭ
¢q ϭ ka
h1 Ϫ h2
l1
bb1 ϭ ka
h2 Ϫ h3
l2
bb2 ϭ ka
h3 Ϫ h4
l3
bb3 ϭ p
q ϭ k
HNf
Nd
Nd ϭ number of potential drops
where H ϭ head difference between the upstream and downstream sides
¢q ϭ k
H
Nd
h1 Ϫ h2 ϭ h2 Ϫ h3 ϭ h3 Ϫ h4 ϭ p ϭ
H
Nd
¢q ϭ ka
h1 Ϫ h2
l1
bl1 ϭ ka
h2 Ϫ h3
l2
bl2 ϭ ka
h3 Ϫ h4
l3
bl3 ϭ p
h1
h2
h3 h4
⌬q
l3
l2
l1
⌬q
⌬q2
⌬q3
⌬q1
l3
l2
l1
Figure 8.5 Seepage through a flow
channel with square elements
8.4 Seepage Calculation from a Flow Net 207
h1
h2
h3 h4
⌬q
l3
l2
l1
⌬q
⌬q2
⌬q3
⌬q1
b3
b2
b1
Figure 8.6 Seepage through a flow
channel with rectangular elements
and
(8.24)
Figure 8.7 shows a flow net for seepage around a single row of sheet piles. Note that
flow channels 1 and 2 have square elements. Hence, the rate of flow through these two
channels can be obtained from Eq. (8.20):
However, flow channel 3 has rectangular elements. These elements have a width-to-length
ratio of about 0.38; hence, from Eq. (8.23)
¢q3 ϭ
k
Nd
H10.382
¢q1 ϩ ¢q2 ϭ
k
Nd
H ϩ
k
Nd
H ϭ
2kH
Nd
q ϭ kHa
Nf
Nd
bn
Impervious layer
Water level
Water table
5 m
Flow channel 1 ϭ 1
l
b
Flow channel 2 ϭ 1
l
b
Ground surface
Scale
Flow channel 3
l
b
1
0.38
Ϸ
5.6 m
2.2 m
a 4.1 m
d c
H
e
b
Figure 8.7 Flow net for seepage around a single row of sheet piles
So, the total rate of seepage can be given as
(8.25)q ϭ ¢q1 ϩ ¢q2 ϩ ¢q3 ϭ 2.38
kH
Nd
Example 8.2
A flow net for flow around a single row of sheet piles in a permeable soil layer is shown
in Figure 8.7. Given that kx ϭ kz ϭ k ϭ 5 ϫ 10Ϫ3
cm/sec, determine
a. How high (above the ground surface) the water will rise if piezometers are
placed at points a and b.
b. The total rate of seepage through the permeable layer per unit length
c. The approximate average hydraulic gradient at c.
Solution
Part a
From Figure 8.7, we have Nd ϭ 6, H1 ϭ 5.6 m, and H2 ϭ 2.2 m. So the head loss of
each potential drop is
At point a, we have gone through one potential drop. So the water in the piezome-
ter will rise to an elevation of
(5.6 Ϫ 0.567) ϭ 5.033 m above the ground surface
At point b, we have five potential drops. So the water in the piezometer will rise
to an elevation of
[5.6 Ϫ (5)(0.567)] ϭ 2.765 m above the ground surface
Part b
From Eq. (8.25),
Part c
The average hydraulic gradient at c can be given as
(Note: The average length of flow has been scaled.) ■
i ϭ
head loss
average length of flow between d and e
ϭ
¢H
¢L
ϭ
0.567m
4.1m
ϭ 0.138
ϭ 6.74 ϫ 10Ϫ5
m3
/sec/m
q ϭ 2.38
k1H1 Ϫ H2 2
Nd
ϭ
12.38215 ϫ 10Ϫ5
m/sec215.6 Ϫ 2.22
6
¢H ϭ
H1 Ϫ H2
Nd
ϭ
5.6 Ϫ 2.2
6
ϭ 0.567m
208 Chapter 8: Seepage

More Related Content

What's hot

What's hot (20)

Proctor compaction test
Proctor compaction testProctor compaction test
Proctor compaction test
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
 
Ch02intro
Ch02introCh02intro
Ch02intro
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
 
Consolidation & Drainage properties
Consolidation & Drainage properties Consolidation & Drainage properties
Consolidation & Drainage properties
 
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
Geotechnical Engineering-I [Lec #24: Soil Permeability - II]
 
Permeability test
Permeability testPermeability test
Permeability test
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
8 soil description and classification
8  soil description and classification8  soil description and classification
8 soil description and classification
 
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
Unconsolidated Undrained Test
Unconsolidated Undrained TestUnconsolidated Undrained Test
Unconsolidated Undrained Test
 
Plate load test
Plate load testPlate load test
Plate load test
 
05 chapter 6 mat foundations
05 chapter 6 mat foundations05 chapter 6 mat foundations
05 chapter 6 mat foundations
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 
Unconfined compression test
Unconfined compression testUnconfined compression test
Unconfined compression test
 
Index properties
Index propertiesIndex properties
Index properties
 
Geotechnical investigation for road work
Geotechnical investigation for road workGeotechnical investigation for road work
Geotechnical investigation for road work
 
Geotechnical vertical stress
Geotechnical vertical stressGeotechnical vertical stress
Geotechnical vertical stress
 

Similar to Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]

CH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptxCH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptx
Dawit Girma
 
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
eugeniadean34240
 
Flow around a bent duct theory
Flow around a bent duct theoryFlow around a bent duct theory
Flow around a bent duct theory
Gaurav Vaibhav
 
Experiment10
Experiment10Experiment10
Experiment10
john
 

Similar to Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets] (20)

Flow nets
Flow netsFlow nets
Flow nets
 
SoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdfSoilMech_Ch10_Flow_Nets-1.pdf
SoilMech_Ch10_Flow_Nets-1.pdf
 
17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)17. seepage through anisotropic soil (1)
17. seepage through anisotropic soil (1)
 
17. seepage through anisotropic soil
17. seepage through anisotropic soil17. seepage through anisotropic soil
17. seepage through anisotropic soil
 
CH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptxCH2 Hydraulics and hydrology of HP.pptx
CH2 Hydraulics and hydrology of HP.pptx
 
Unit4 kvv
Unit4 kvvUnit4 kvv
Unit4 kvv
 
Flow in pipes
Flow in pipesFlow in pipes
Flow in pipes
 
Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)
 
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete WallsCalculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
Calculation of Fluid Dynamic for Wind Flow around Reinforced Concrete Walls
 
Seepage through an earth dam
Seepage through an earth damSeepage through an earth dam
Seepage through an earth dam
 
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
23Network FlowsAuthor Arthur M. Hobbs, Department of .docx
 
M4l02
M4l02M4l02
M4l02
 
Flow around a bent duct theory
Flow around a bent duct theoryFlow around a bent duct theory
Flow around a bent duct theory
 
Ch5_Flow.pdf
Ch5_Flow.pdfCh5_Flow.pdf
Ch5_Flow.pdf
 
Cofferdam design-optimization
Cofferdam design-optimizationCofferdam design-optimization
Cofferdam design-optimization
 
soil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil Layerssoil mechanics and its behaviour andPermeability in Stratified Soil Layers
soil mechanics and its behaviour andPermeability in Stratified Soil Layers
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]
 
Flow net in anisotropic soils
Flow net in anisotropic soilsFlow net in anisotropic soils
Flow net in anisotropic soils
 
Ch 3.pdf
Ch 3.pdfCh 3.pdf
Ch 3.pdf
 
Experiment10
Experiment10Experiment10
Experiment10
 

More from Muhammad Irfan

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 

Recently uploaded

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Recently uploaded (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 

Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]

  • 1. 8.4 Seepage Calculation from a Flow Net 205 definition of flow and equipotential lines for flow in the permeable soil layer around the row of sheet piles shown in Figure 8.1 (for kx ϭ kz ϭ k). A combination of a number of flow lines and equipotential lines is called a flow net. As mentioned in the introduction, flow nets are constructed for the calculation of ground- water flow and the evaluation of heads in the media. To complete the graphic construc- tion of a flow net, one must draw the flow and equipotential lines in such a way that 1. The equipotential lines intersect the flow lines at right angles. 2. The flow elements formed are approximate squares. Figure 8.3b shows an example of a completed flow net. One more example of flow net in isotropic permeable layer are given in Figure 8.4. In these figures, Nf is the number of flow channels in the flow net, and Nd is the number of potential drops (defined later in this chapter). Drawing a flow net takes several trials. While constructing the flow net, keep the boundary conditions in mind. For the flow net shown in Figure 8.3b, the following four boundary conditions apply: Condition 1: The upstream and downstream surfaces of the permeable layer (lines ab and de) are equipotential lines. Condition 2: Because ab and de are equipotential lines, all the flow lines intersect them at right angles. Condition 3: The boundary of the impervious layer—that is, line fg—is a flow line, and so is the surface of the impervious sheet pile, line acd. Condition 4: The equipotential lines intersect acd and fg at right angles. Toe filter kx ϭ kz ϭ k Nf ϭ 5 Nd ϭ 9 H1 H2 H Figure 8.4 Flow net under a dam with toe filter 8.4 Seepage Calculation from a Flow Net In any flow net, the strip between any two adjacent flow lines is called a flow channel. Figure 8.5 shows a flow channel with the equipotential lines forming square elements. Let h1, h2, h3, h4, . . ., hn be the piezometric levels corresponding to the equipotential lines. The rate of seepage through the flow channel per unit length (perpendicular to the vertical sec- tion through the permeable layer) can be calculated as follows. Because there is no flow across the flow lines, (8.17)¢q1 ϭ ¢q2 ϭ ¢q3 ϭ p ϭ ¢q
  • 2. 206 Chapter 8: Seepage From Darcy’s law, the flow rate is equal to kiA. Thus, Eq. (8.17) can be written as (8.18) Eq. (8.18) shows that if the flow elements are drawn as approximate squares, the drop in the piezometric level between any two adjacent equipotential lines is the same. This is called the potential drop. Thus, (8.19) and (8.20) In Figure 8.3b, for any flow channel, H ϭ H1 Ϫ H2 and Nd ϭ 6. If the number of flow channels in a flow net is equal to Nf , the total rate of flow through all the channels per unit length can be given by (8.21) Although drawing square elements for a flow net is convenient, it is not always nec- essary. Alternatively, one can draw a rectangular mesh for a flow channel, as shown in Figure 8.6, provided that the width-to-length ratios for all the rectangular elements in the flow net are the same. In this case, Eq. (8.18) for rate of flow through the channel can be modified to (8.22) If b1/l1 ϭ b2/l2 ϭ b3/l3 n (i.e., the elements are not square), Eqs. (8.20) and (8.21) can be modified to (8.23)¢q ϭ kHa n Nd b ϭ p ϭ ¢q ϭ ka h1 Ϫ h2 l1 bb1 ϭ ka h2 Ϫ h3 l2 bb2 ϭ ka h3 Ϫ h4 l3 bb3 ϭ p q ϭ k HNf Nd Nd ϭ number of potential drops where H ϭ head difference between the upstream and downstream sides ¢q ϭ k H Nd h1 Ϫ h2 ϭ h2 Ϫ h3 ϭ h3 Ϫ h4 ϭ p ϭ H Nd ¢q ϭ ka h1 Ϫ h2 l1 bl1 ϭ ka h2 Ϫ h3 l2 bl2 ϭ ka h3 Ϫ h4 l3 bl3 ϭ p h1 h2 h3 h4 ⌬q l3 l2 l1 ⌬q ⌬q2 ⌬q3 ⌬q1 l3 l2 l1 Figure 8.5 Seepage through a flow channel with square elements
  • 3. 8.4 Seepage Calculation from a Flow Net 207 h1 h2 h3 h4 ⌬q l3 l2 l1 ⌬q ⌬q2 ⌬q3 ⌬q1 b3 b2 b1 Figure 8.6 Seepage through a flow channel with rectangular elements and (8.24) Figure 8.7 shows a flow net for seepage around a single row of sheet piles. Note that flow channels 1 and 2 have square elements. Hence, the rate of flow through these two channels can be obtained from Eq. (8.20): However, flow channel 3 has rectangular elements. These elements have a width-to-length ratio of about 0.38; hence, from Eq. (8.23) ¢q3 ϭ k Nd H10.382 ¢q1 ϩ ¢q2 ϭ k Nd H ϩ k Nd H ϭ 2kH Nd q ϭ kHa Nf Nd bn Impervious layer Water level Water table 5 m Flow channel 1 ϭ 1 l b Flow channel 2 ϭ 1 l b Ground surface Scale Flow channel 3 l b 1 0.38 Ϸ 5.6 m 2.2 m a 4.1 m d c H e b Figure 8.7 Flow net for seepage around a single row of sheet piles
  • 4. So, the total rate of seepage can be given as (8.25)q ϭ ¢q1 ϩ ¢q2 ϩ ¢q3 ϭ 2.38 kH Nd Example 8.2 A flow net for flow around a single row of sheet piles in a permeable soil layer is shown in Figure 8.7. Given that kx ϭ kz ϭ k ϭ 5 ϫ 10Ϫ3 cm/sec, determine a. How high (above the ground surface) the water will rise if piezometers are placed at points a and b. b. The total rate of seepage through the permeable layer per unit length c. The approximate average hydraulic gradient at c. Solution Part a From Figure 8.7, we have Nd ϭ 6, H1 ϭ 5.6 m, and H2 ϭ 2.2 m. So the head loss of each potential drop is At point a, we have gone through one potential drop. So the water in the piezome- ter will rise to an elevation of (5.6 Ϫ 0.567) ϭ 5.033 m above the ground surface At point b, we have five potential drops. So the water in the piezometer will rise to an elevation of [5.6 Ϫ (5)(0.567)] ϭ 2.765 m above the ground surface Part b From Eq. (8.25), Part c The average hydraulic gradient at c can be given as (Note: The average length of flow has been scaled.) ■ i ϭ head loss average length of flow between d and e ϭ ¢H ¢L ϭ 0.567m 4.1m ϭ 0.138 ϭ 6.74 ϫ 10Ϫ5 m3 /sec/m q ϭ 2.38 k1H1 Ϫ H2 2 Nd ϭ 12.38215 ϫ 10Ϫ5 m/sec215.6 Ϫ 2.22 6 ¢H ϭ H1 Ϫ H2 Nd ϭ 5.6 Ϫ 2.2 6 ϭ 0.567m 208 Chapter 8: Seepage