SlideShare a Scribd company logo
1 of 22
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 11
11-Oct-2017
2
FOUNDATION TYPES
1. Shallow Foundations
a. D/B ≤ 1 (Terzaghi, 1943); later researchers said D/B
can be up to 3-4.
b. Depth generally less than 3m
2. Deep Foundations
Focus of this course
3
TYPES OF FOUNDATION FAILURE
1. Due to excessive settlement
2. Due to shear failure in soil
Focus of this chapter
Shall be discussed in Chapter titled
“Bearing Capacity of Soil”
4
SOIL SETTLEMENT
Pisa Tower, Italy
The total vertical downward deformation at the surface resulting from the
applied load is called settlement.
5
TYPES OF SOIL SETTLEMENT
(A) Types w.r.t. Permanence
(i) Permanent/Irreversible Settlement
• Caused by sliding/rolling of soil
particles under applied stress
• Reduction of void ratio
• Crushing of soil particles
• Consolidation settlement
(ii) Temporary Settlement
• Settlement due to elastic
compression of soil
• Generally very small in soils
TYPES OF SOIL SETTLEMENT
6
TYPES OF SOIL SETTLEMENT
(B) Types w.r.t. Uniformity
(i) Uniform Settlement
• All the points settle by equal
amount
• Generally occur under rigid
foundations loaded with uniform
pressure and resting over uniform
soil
• Minimal risk to structural stability
• Risk to serviceability (eg. utility
lines, etc.)
(ii) Differential Settlement
• Different parts of the structure settle
by different magnitude
7
(C) Types w.r.t. Mode of Occurrence
(i) Immediate/Elastic Settlement:
• Caused by elastic deformation of dry/moist/saturated soil
• No change in moisture content
• Occurs immediately after construction
• Computed using elasticity theory
• Important for Granular soils
(ii) Primary Consolidation Settlement:
• Due to expulsion of water from the soil mass
• Dissipation of pore pressure => Increase in effective stresses
• Important for Inorganic clays
(iii) Secondary Consolidation Settlement:
• Volume change due to rearrangement of particles
• Occurs at constant effective stress (i.e. no drainage)
• Important for Organic soils
• Similar to creep in concrete
TYPES OF SOIL SETTLEMENT
9
MAGNITUDE OF SETTLEMENT
CALCULATION
Consolidation Settlement
11
SETTLEMENT TYPES
Si  Granular Soils
Time
Settlement
Sc, Sc(s)  Cohesive Soils
Elasticity Theory
Consolidation Theory Empirical Correlations
12
MAGNITUDE OF SETTLEMENT
CALCULATION
Consolidation Settlement
Already covered in Geotech-I
Quick Revision in Geotech-II
13
Before Consolidation
Solids
Water
After Consolidation
Soil volume reduction due to expulsion of water upon
application of external load/stress.
fully saturated soil, so all voids filled with water only (no air)
Solids
Water
CONSOLIDATION OF SOIL
Saturated Fine-grained Soil
14
CONSOLIDATION PARAMETERS
Magnitude of consolidation settlement
dependent on compressibility of soil (i.e. the stiffness of the spring)
 expressed in term of compression index (Cc)
Rate of consolidation/settlement
dependent on
i. permeability, &
ii. compressibility of soil.
 expressed in term of co-efficient of consolidation (Cv)
Quick Revision in Geotech-II
15
CONSOLIDATION TEST
Interpretation of Test Results





 

VC
HT
t
2
Magnitude of settlement → compression index (Cc)
Rate of consolidation → co-efficient of consolidation (Cv)
Time required for consolidation (Consolidation Time) →
1. Time ~ Deformation curve
i. Cv (Coefficient of consolidation)
2. Pressure ~ Deformation curve
i. Cc (Compression index)
ii. Cr (Recompression index)
iii. aV (Coefficient of compressibility)
iv. mV (Coefficient of volume change)
SOIL
Porous
Stones
16
CONSOLIDATION TEST
Pressure ~ Deformation Curve
p
e
aV



e ~ p plot
e
p
Δe
Δp
aV = coefficient of compressibility
Cc = compression index
mV = coefficient of volume change
Δe
log (p2/p1)
e
log p
1
2log
p
p
e
CC


e ~ log p
plot
e
a
m V
V


1
Strain
p
Δe
Δp
p
mV



e
e ~ p plot
17
CLAY
100,000 years ago
80,000 years ago
30,000 years ago
10,000 years ago
5,000 years ago
1,000 years ago
Today
STRESS HISTORY
Normally Consolidated Soil
If the present effective stress (σv0’) in the clay
is the greatest stress it has ever experienced in
its history.
i.e., pre-consolidation pressure (σp’) ≈ present
effective stress (σv0’)
(σp’) ≈  10% of (σv0’)
≈ σVO’
18
STRESS HISTORY
Over Consolidated Soil
If the present effective stress (σv0’) in the
clay is smaller than the effective stress
experienced in the past.
i.e., present effective stress (σv0’) < re-
consolidation pressure (σp’)
σVO’
CLAY
100,000 years ago
80,000 years ago
30,000 years ago
ICE AGE
20,000 years ago
18,000 years ago
15,000 years ago
5,000 years ago
Today
19
STRESS HISTORY
Over Consolidation Ratio (OCR)
v0
p
σ'
σ'
OCR 
σv0’= present effective overburden pressure
σp’= pre-consolidation pressure
(maximum pressure in past)
Normally consolidated soils
Over-consolidated soils
Under-consolidated soils
→ OCR = 1
→ OCR < 1
→ OCR > 1
- Under-consolidated soils are the ones which are undergoing consolidation settlement, i.e.
the consolidation is not yet complete and the equilibrium has not yet been reached under
the overburden load.
- Pore water pressure are in excess of hydrostatic pressure.
20
SETTLEMENT COMPUTATIONS
'
''
log
vo
vo
cCe

 

If the clay is normally consolidated, the entire loading path is along the VCL.
initial
vo’
eo
vf’= vo’+ ’
e
final
1
Cc
H
e
e
S
o
c



1
VCL





 








'
''
log
1 vo
vo
o
c
c
e
C
HS


’vf
'
)'(
log
vo
vo
C
e
C

 


CASE I: ’p ≈ ’vo < ’vf
p’
21
SETTLEMENT COMPUTATIONS
If the clay is over-consolidated, and remained so by the end of consolidation.
CASE II: ’vo < ’vf < ’p
initial
vo’
eo
vf’= vo’+ 
e final
1
Cc
VCL
1
Cr
p’
'
''
log
vo
vo
rCe

 

H
e
e
S
o
c



1





 








'
''
log
1 vo
vo
o
r
c
e
C
HS


’vf
'
)'(
log
vo
vo
e
Cr

 


22
SETTLEMENT COMPUTATIONS
If the over-consolidated, soil becomes normally consolidated by the end of
consolidation.
CASE III: ’vo < ’p < ’vf
initial
vo’
eo
vf’= vo’+ 
e
final
1
Cc
VCL
1
Cr
p’
'
''
log
'
'
log
p
vo
c
vo
p
r CCe



 

H
e
e
S
o
c



1







 






















'
''
log
1
'
'
log
1
p
vo
o
c
vo
p
o
r
c
e
C
H
e
C
HS




’vf
23
CONSOLIDATION – SUMMARY
H
e
e
Ssettlement
o
c



1
 = ’ + u





 

VC
HT
t
2
%60;
1004
2






 ufor
u
T

%60
);100(log933.0781.1 10


ufor
uT
AG
W
H
wS
S
S


 S
SwS
W
WAGH
e


)(
0

1
2log
p
p
e
CC


 





HHVV
mV





 








'
''
log
1 vo
vo
o
c
c
e
C
HS







 








'
''
log
1 vo
vo
o
r
c
e
C
HS

 






 





















'
''
log
1'
'
log
1 p
vo
o
c
vo
p
o
r
c
e
C
H
e
C
HS




For NCC
For OCC
If OCC is loaded beyond σp’
)10(009.0  LLCC Cr CC  1.0
Terzaghi & Peck (1948)
25
CONCLUDED
REFERENCE MATERIAL
An Introduction to Geotechnical Engineering (2nd Ed.)
Robert D. Holtz & William D. Kovacs
Chapter #8 & 9

More Related Content

What's hot

TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYSANJEEV Wazir
 
Geotechnical Engineering-I [Lec #23: Soil Permeability]
Geotechnical Engineering-I [Lec #23: Soil Permeability]Geotechnical Engineering-I [Lec #23: Soil Permeability]
Geotechnical Engineering-I [Lec #23: Soil Permeability]Muhammad Irfan
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of SoilPirpasha Ujede
 
Case study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityCase study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityAbhishek Mangukiya
 
8 compressibility and consolidation
8 compressibility and consolidation8 compressibility and consolidation
8 compressibility and consolidationSaurabh Kumar
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test pptsayan sarkar
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma ABHISHEK SHARMA
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soilrajini24
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Muhammad Irfan
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )Hossam Shafiq I
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soilrajini24
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlementParth Joshi
 
Class 5 Permeability Test ( Geotechnical Engineering )
Class 5   Permeability Test ( Geotechnical Engineering )Class 5   Permeability Test ( Geotechnical Engineering )
Class 5 Permeability Test ( Geotechnical Engineering )Hossam Shafiq I
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundationLatif Hyder Wadho
 
Lateral Earth Pressure
Lateral Earth PressureLateral Earth Pressure
Lateral Earth PressureFast-NU Lahore
 
Determination of co efficient of consolidation method
Determination of co efficient of consolidation methodDetermination of co efficient of consolidation method
Determination of co efficient of consolidation methodParth Joshi
 

What's hot (20)

TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
Geotechnical Engineering-I [Lec #23: Soil Permeability]
Geotechnical Engineering-I [Lec #23: Soil Permeability]Geotechnical Engineering-I [Lec #23: Soil Permeability]
Geotechnical Engineering-I [Lec #23: Soil Permeability]
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
 
Case study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacityCase study on effect of water table on bearing capacity
Case study on effect of water table on bearing capacity
 
8 compressibility and consolidation
8 compressibility and consolidation8 compressibility and consolidation
8 compressibility and consolidation
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test ppt
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soil
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlement
 
Class 5 Permeability Test ( Geotechnical Engineering )
Class 5   Permeability Test ( Geotechnical Engineering )Class 5   Permeability Test ( Geotechnical Engineering )
Class 5 Permeability Test ( Geotechnical Engineering )
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
 
Lateral Earth Pressure
Lateral Earth PressureLateral Earth Pressure
Lateral Earth Pressure
 
Determination of co efficient of consolidation method
Determination of co efficient of consolidation methodDetermination of co efficient of consolidation method
Determination of co efficient of consolidation method
 

Similar to Geotechnical Engineering-II [Lec #11: Settlement Computation]

Goetech. engg. Ch# 03 settlement analysis signed
Goetech. engg. Ch# 03 settlement analysis signedGoetech. engg. Ch# 03 settlement analysis signed
Goetech. engg. Ch# 03 settlement analysis signedIrfan Malik
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilSAMRAT CHODHURY
 
Lecture 6 compaction &amp; consolidation
Lecture 6  compaction &amp; consolidationLecture 6  compaction &amp; consolidation
Lecture 6 compaction &amp; consolidationELIASASSEFA3
 
rk Effect of water table on soil During construction
rk Effect of water table on soil During constructionrk Effect of water table on soil During construction
rk Effect of water table on soil During constructionRoop Kishor
 
Lecture 6 compaction &amp; consolidation
Lecture 6  compaction &amp; consolidationLecture 6  compaction &amp; consolidation
Lecture 6 compaction &amp; consolidationELIASASSEFA3
 
Consolidationandc ompressibility
Consolidationandc ompressibilityConsolidationandc ompressibility
Consolidationandc ompressibilityAbdulRehman511482
 
Shallow foundation(by indrajit mitra)01
Shallow   foundation(by indrajit mitra)01Shallow   foundation(by indrajit mitra)01
Shallow foundation(by indrajit mitra)01Indrajit Ind
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Irfan Malik
 
sand drain for consolidation settlement
sand drain for consolidation settlementsand drain for consolidation settlement
sand drain for consolidation settlementsubhamkabu123
 
Consolidation
ConsolidationConsolidation
ConsolidationShan Khan
 
UNIT-III Consolidation.ppt
UNIT-III Consolidation.pptUNIT-III Consolidation.ppt
UNIT-III Consolidation.pptmythili spd
 
Bearing capacity
Bearing capacityBearing capacity
Bearing capacityBhanu Ojha
 
Consolidation
ConsolidationConsolidation
ConsolidationAmr Assr
 

Similar to Geotechnical Engineering-II [Lec #11: Settlement Computation] (20)

Goetech. engg. Ch# 03 settlement analysis signed
Goetech. engg. Ch# 03 settlement analysis signedGoetech. engg. Ch# 03 settlement analysis signed
Goetech. engg. Ch# 03 settlement analysis signed
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soil
 
CONSOLIDATION.pptx
CONSOLIDATION.pptxCONSOLIDATION.pptx
CONSOLIDATION.pptx
 
Lecture 6 compaction &amp; consolidation
Lecture 6  compaction &amp; consolidationLecture 6  compaction &amp; consolidation
Lecture 6 compaction &amp; consolidation
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
rk Effect of water table on soil During construction
rk Effect of water table on soil During constructionrk Effect of water table on soil During construction
rk Effect of water table on soil During construction
 
Lecture 6 compaction &amp; consolidation
Lecture 6  compaction &amp; consolidationLecture 6  compaction &amp; consolidation
Lecture 6 compaction &amp; consolidation
 
Foundation Engineering
Foundation EngineeringFoundation Engineering
Foundation Engineering
 
Consolidationandc ompressibility
Consolidationandc ompressibilityConsolidationandc ompressibility
Consolidationandc ompressibility
 
Shallow foundation(by indrajit mitra)01
Shallow   foundation(by indrajit mitra)01Shallow   foundation(by indrajit mitra)01
Shallow foundation(by indrajit mitra)01
 
Settlement of soil/foundation
Settlement of soil/foundationSettlement of soil/foundation
Settlement of soil/foundation
 
Liquefaction of Soil
Liquefaction of SoilLiquefaction of Soil
Liquefaction of Soil
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
 
sand drain for consolidation settlement
sand drain for consolidation settlementsand drain for consolidation settlement
sand drain for consolidation settlement
 
UNIT-III.ppt
UNIT-III.pptUNIT-III.ppt
UNIT-III.ppt
 
Consolidation
ConsolidationConsolidation
Consolidation
 
UNIT-III Consolidation.ppt
UNIT-III Consolidation.pptUNIT-III Consolidation.ppt
UNIT-III Consolidation.ppt
 
Soil liquefaction
Soil liquefactionSoil liquefaction
Soil liquefaction
 
Bearing capacity
Bearing capacityBearing capacity
Bearing capacity
 
Consolidation
ConsolidationConsolidation
Consolidation
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 

Recently uploaded

TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptxNikhil Raut
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESNarmatha D
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 

Recently uploaded (20)

TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Steel Structures - Building technology.pptx
Steel Structures - Building technology.pptxSteel Structures - Building technology.pptx
Steel Structures - Building technology.pptx
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIES
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 

Geotechnical Engineering-II [Lec #11: Settlement Computation]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 11 11-Oct-2017
  • 2. 2 FOUNDATION TYPES 1. Shallow Foundations a. D/B ≤ 1 (Terzaghi, 1943); later researchers said D/B can be up to 3-4. b. Depth generally less than 3m 2. Deep Foundations Focus of this course
  • 3. 3 TYPES OF FOUNDATION FAILURE 1. Due to excessive settlement 2. Due to shear failure in soil Focus of this chapter Shall be discussed in Chapter titled “Bearing Capacity of Soil”
  • 4. 4 SOIL SETTLEMENT Pisa Tower, Italy The total vertical downward deformation at the surface resulting from the applied load is called settlement.
  • 5. 5 TYPES OF SOIL SETTLEMENT (A) Types w.r.t. Permanence (i) Permanent/Irreversible Settlement • Caused by sliding/rolling of soil particles under applied stress • Reduction of void ratio • Crushing of soil particles • Consolidation settlement (ii) Temporary Settlement • Settlement due to elastic compression of soil • Generally very small in soils TYPES OF SOIL SETTLEMENT
  • 6. 6 TYPES OF SOIL SETTLEMENT (B) Types w.r.t. Uniformity (i) Uniform Settlement • All the points settle by equal amount • Generally occur under rigid foundations loaded with uniform pressure and resting over uniform soil • Minimal risk to structural stability • Risk to serviceability (eg. utility lines, etc.) (ii) Differential Settlement • Different parts of the structure settle by different magnitude
  • 7. 7 (C) Types w.r.t. Mode of Occurrence (i) Immediate/Elastic Settlement: • Caused by elastic deformation of dry/moist/saturated soil • No change in moisture content • Occurs immediately after construction • Computed using elasticity theory • Important for Granular soils (ii) Primary Consolidation Settlement: • Due to expulsion of water from the soil mass • Dissipation of pore pressure => Increase in effective stresses • Important for Inorganic clays (iii) Secondary Consolidation Settlement: • Volume change due to rearrangement of particles • Occurs at constant effective stress (i.e. no drainage) • Important for Organic soils • Similar to creep in concrete TYPES OF SOIL SETTLEMENT
  • 9. 11 SETTLEMENT TYPES Si  Granular Soils Time Settlement Sc, Sc(s)  Cohesive Soils Elasticity Theory Consolidation Theory Empirical Correlations
  • 10. 12 MAGNITUDE OF SETTLEMENT CALCULATION Consolidation Settlement Already covered in Geotech-I Quick Revision in Geotech-II
  • 11. 13 Before Consolidation Solids Water After Consolidation Soil volume reduction due to expulsion of water upon application of external load/stress. fully saturated soil, so all voids filled with water only (no air) Solids Water CONSOLIDATION OF SOIL Saturated Fine-grained Soil
  • 12. 14 CONSOLIDATION PARAMETERS Magnitude of consolidation settlement dependent on compressibility of soil (i.e. the stiffness of the spring)  expressed in term of compression index (Cc) Rate of consolidation/settlement dependent on i. permeability, & ii. compressibility of soil.  expressed in term of co-efficient of consolidation (Cv) Quick Revision in Geotech-II
  • 13. 15 CONSOLIDATION TEST Interpretation of Test Results         VC HT t 2 Magnitude of settlement → compression index (Cc) Rate of consolidation → co-efficient of consolidation (Cv) Time required for consolidation (Consolidation Time) → 1. Time ~ Deformation curve i. Cv (Coefficient of consolidation) 2. Pressure ~ Deformation curve i. Cc (Compression index) ii. Cr (Recompression index) iii. aV (Coefficient of compressibility) iv. mV (Coefficient of volume change) SOIL Porous Stones
  • 14. 16 CONSOLIDATION TEST Pressure ~ Deformation Curve p e aV    e ~ p plot e p Δe Δp aV = coefficient of compressibility Cc = compression index mV = coefficient of volume change Δe log (p2/p1) e log p 1 2log p p e CC   e ~ log p plot e a m V V   1 Strain p Δe Δp p mV    e e ~ p plot
  • 15. 17 CLAY 100,000 years ago 80,000 years ago 30,000 years ago 10,000 years ago 5,000 years ago 1,000 years ago Today STRESS HISTORY Normally Consolidated Soil If the present effective stress (σv0’) in the clay is the greatest stress it has ever experienced in its history. i.e., pre-consolidation pressure (σp’) ≈ present effective stress (σv0’) (σp’) ≈  10% of (σv0’) ≈ σVO’
  • 16. 18 STRESS HISTORY Over Consolidated Soil If the present effective stress (σv0’) in the clay is smaller than the effective stress experienced in the past. i.e., present effective stress (σv0’) < re- consolidation pressure (σp’) σVO’ CLAY 100,000 years ago 80,000 years ago 30,000 years ago ICE AGE 20,000 years ago 18,000 years ago 15,000 years ago 5,000 years ago Today
  • 17. 19 STRESS HISTORY Over Consolidation Ratio (OCR) v0 p σ' σ' OCR  σv0’= present effective overburden pressure σp’= pre-consolidation pressure (maximum pressure in past) Normally consolidated soils Over-consolidated soils Under-consolidated soils → OCR = 1 → OCR < 1 → OCR > 1 - Under-consolidated soils are the ones which are undergoing consolidation settlement, i.e. the consolidation is not yet complete and the equilibrium has not yet been reached under the overburden load. - Pore water pressure are in excess of hydrostatic pressure.
  • 18. 20 SETTLEMENT COMPUTATIONS ' '' log vo vo cCe     If the clay is normally consolidated, the entire loading path is along the VCL. initial vo’ eo vf’= vo’+ ’ e final 1 Cc H e e S o c    1 VCL                ' '' log 1 vo vo o c c e C HS   ’vf ' )'( log vo vo C e C      CASE I: ’p ≈ ’vo < ’vf p’
  • 19. 21 SETTLEMENT COMPUTATIONS If the clay is over-consolidated, and remained so by the end of consolidation. CASE II: ’vo < ’vf < ’p initial vo’ eo vf’= vo’+  e final 1 Cc VCL 1 Cr p’ ' '' log vo vo rCe     H e e S o c    1                ' '' log 1 vo vo o r c e C HS   ’vf ' )'( log vo vo e Cr     
  • 20. 22 SETTLEMENT COMPUTATIONS If the over-consolidated, soil becomes normally consolidated by the end of consolidation. CASE III: ’vo < ’p < ’vf initial vo’ eo vf’= vo’+  e final 1 Cc VCL 1 Cr p’ ' '' log ' ' log p vo c vo p r CCe       H e e S o c    1                                ' '' log 1 ' ' log 1 p vo o c vo p o r c e C H e C HS     ’vf
  • 21. 23 CONSOLIDATION – SUMMARY H e e Ssettlement o c    1  = ’ + u         VC HT t 2 %60; 1004 2        ufor u T  %60 );100(log933.0781.1 10   ufor uT AG W H wS S S    S SwS W WAGH e   )( 0  1 2log p p e CC          HHVV mV                ' '' log 1 vo vo o c c e C HS                  ' '' log 1 vo vo o r c e C HS                                 ' '' log 1' ' log 1 p vo o c vo p o r c e C H e C HS     For NCC For OCC If OCC is loaded beyond σp’ )10(009.0  LLCC Cr CC  1.0 Terzaghi & Peck (1948)
  • 22. 25 CONCLUDED REFERENCE MATERIAL An Introduction to Geotechnical Engineering (2nd Ed.) Robert D. Holtz & William D. Kovacs Chapter #8 & 9