SlideShare a Scribd company logo
1 of 9
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 14
20-Oct-2017
2
PRACTICE PROBLEM #3
Estimate the elastic settlement at the center of the raft (or mat)
foundation for a building with the given data;
qo = 134 kPa; B x L = 33.5 x 39.5 m
The strata comprises of a 6.0 m thick dense sand deposit (ES =
42.5 MPa) overlying a hard clay stratum (ES = 60 MPa)
extending to a depth of 14.0 m below NSL. A sandstone deposit
(ES ≥ 750 MPa) exists below 14.0 m depth. The foundation is
placed at a depth of 3.0 m below NSL.
3
IF
Square foundation; L/B = 1
Strip foundation; L/B ≥ 5
4
IF
Square foundation; L/B = 1
Strip foundation; L/B ≥ 5
5
6
PRACTICE PROBLEM #4
Resolve Practice Problem #2 and determine the total
settlement at the center of concrete raft foundation with the
following additional information given;
Es for Top Soil = 15 MPa
Es for Sand = 18.5 MPa above WT and 11 MPa below WT
Es for Clay = 23.04 MPa
Consider the raft to be rigid.
7
IF
Square foundation; L/B = 1
Strip foundation; L/B ≥ 5
8
13
CONCLUDED
REFERENCE MATERIAL
Foundation Analysis and Design (5th Ed.)
Joseph E. Bowles
Chapter #5
Principles of Geotechnical Engineering (7th Ed.)
Braja M. Das
Chapter #11
Essentials of Soil Mechanics and Foundations (7th Ed.)
David F. McCarthy
Chapter #10
(Schmertmann Method)
(Timoshenko & Goodier Method)
(Modified Mayerhof Method)

More Related Content

What's hot

Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #3: Phase Relationships]
Geotechnical Engineering-I [Lec #3: Phase Relationships]Geotechnical Engineering-I [Lec #3: Phase Relationships]
Geotechnical Engineering-I [Lec #3: Phase Relationships]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #18: Consolidation-II]
Geotechnical Engineering-I [Lec #18: Consolidation-II]Geotechnical Engineering-I [Lec #18: Consolidation-II]
Geotechnical Engineering-I [Lec #18: Consolidation-II]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #1: Introduction]
Geotechnical Engineering-I [Lec #1: Introduction]Geotechnical Engineering-I [Lec #1: Introduction]
Geotechnical Engineering-I [Lec #1: Introduction]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Muhammad Irfan
 
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)BahadarKhan8
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Make Mannan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Make Mannan
 
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Muhammad Irfan
 
ultimate bearing capacity of shallow foundations: special cases
ultimate bearing capacity of shallow foundations: special casesultimate bearing capacity of shallow foundations: special cases
ultimate bearing capacity of shallow foundations: special casesMehmet Akin
 
Geotechnical Engineering-I [Lec #10: USCS]
Geotechnical Engineering-I [Lec #10: USCS]Geotechnical Engineering-I [Lec #10: USCS]
Geotechnical Engineering-I [Lec #10: USCS]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Muhammad Irfan
 

What's hot (20)

Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-I [Lec #3: Phase Relationships]
Geotechnical Engineering-I [Lec #3: Phase Relationships]Geotechnical Engineering-I [Lec #3: Phase Relationships]
Geotechnical Engineering-I [Lec #3: Phase Relationships]
 
Geotechnical Engineering-I [Lec #18: Consolidation-II]
Geotechnical Engineering-I [Lec #18: Consolidation-II]Geotechnical Engineering-I [Lec #18: Consolidation-II]
Geotechnical Engineering-I [Lec #18: Consolidation-II]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 
Geotechnical Engineering-I [Lec #1: Introduction]
Geotechnical Engineering-I [Lec #1: Introduction]Geotechnical Engineering-I [Lec #1: Introduction]
Geotechnical Engineering-I [Lec #1: Introduction]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]
 
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)
Methods to Determine the Immediate or Elastic Settlement (الهبوط الفورى)
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]
Geotechnical Engineering-I [Lec #20: Consolidation Settlement Computation]
 
Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]
 
ultimate bearing capacity of shallow foundations: special cases
ultimate bearing capacity of shallow foundations: special casesultimate bearing capacity of shallow foundations: special cases
ultimate bearing capacity of shallow foundations: special cases
 
7 compressibilty of soils
7  compressibilty of soils7  compressibilty of soils
7 compressibilty of soils
 
Geotechnical Engineering-I [Lec #10: USCS]
Geotechnical Engineering-I [Lec #10: USCS]Geotechnical Engineering-I [Lec #10: USCS]
Geotechnical Engineering-I [Lec #10: USCS]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
Geotech2.pptx
Geotech2.pptxGeotech2.pptx
Geotech2.pptx
 

Similar to Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]

IRJET- Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...
IRJET-  	  Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...IRJET-  	  Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...
IRJET- Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...IRJET Journal
 
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...IRJET Journal
 
Effect of underground tunnelling by (TBM) on foundations of existing structures
Effect of underground tunnelling by (TBM) on foundations of existing structuresEffect of underground tunnelling by (TBM) on foundations of existing structures
Effect of underground tunnelling by (TBM) on foundations of existing structuresKishor Ade
 
Designing and construction of piles under various field conditions
Designing and construction of piles under various field conditions Designing and construction of piles under various field conditions
Designing and construction of piles under various field conditions Dr. Naveen BP
 
Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Marco Peters
 
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...Thuon Ranysakol
 

Similar to Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method] (6)

IRJET- Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...
IRJET-  	  Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...IRJET-  	  Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...
IRJET- Seismic Analysis of RCC Building Resting on Sloping Ground Adjacen...
 
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...
PERFORMANCE EVALUATION OF DEEP EXCAVATION UNDER STATIC AND SEISMIC LOAD CONDI...
 
Effect of underground tunnelling by (TBM) on foundations of existing structures
Effect of underground tunnelling by (TBM) on foundations of existing structuresEffect of underground tunnelling by (TBM) on foundations of existing structures
Effect of underground tunnelling by (TBM) on foundations of existing structures
 
Designing and construction of piles under various field conditions
Designing and construction of piles under various field conditions Designing and construction of piles under various field conditions
Designing and construction of piles under various field conditions
 
Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005
 
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...
The Study of Bearing Capacity of Deep Foundation for 43 stories Condominium, ...
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Muhammad Irfan
 

More from Muhammad Irfan (18)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
 
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
 

Recently uploaded

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 

Recently uploaded (20)

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 

Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 14 20-Oct-2017
  • 2. 2 PRACTICE PROBLEM #3 Estimate the elastic settlement at the center of the raft (or mat) foundation for a building with the given data; qo = 134 kPa; B x L = 33.5 x 39.5 m The strata comprises of a 6.0 m thick dense sand deposit (ES = 42.5 MPa) overlying a hard clay stratum (ES = 60 MPa) extending to a depth of 14.0 m below NSL. A sandstone deposit (ES ≥ 750 MPa) exists below 14.0 m depth. The foundation is placed at a depth of 3.0 m below NSL.
  • 3. 3 IF Square foundation; L/B = 1 Strip foundation; L/B ≥ 5
  • 4. 4 IF Square foundation; L/B = 1 Strip foundation; L/B ≥ 5
  • 5. 5
  • 6. 6 PRACTICE PROBLEM #4 Resolve Practice Problem #2 and determine the total settlement at the center of concrete raft foundation with the following additional information given; Es for Top Soil = 15 MPa Es for Sand = 18.5 MPa above WT and 11 MPa below WT Es for Clay = 23.04 MPa Consider the raft to be rigid.
  • 7. 7 IF Square foundation; L/B = 1 Strip foundation; L/B ≥ 5
  • 8. 8
  • 9. 13 CONCLUDED REFERENCE MATERIAL Foundation Analysis and Design (5th Ed.) Joseph E. Bowles Chapter #5 Principles of Geotechnical Engineering (7th Ed.) Braja M. Das Chapter #11 Essentials of Soil Mechanics and Foundations (7th Ed.) David F. McCarthy Chapter #10 (Schmertmann Method) (Timoshenko & Goodier Method) (Modified Mayerhof Method)