SlideShare a Scribd company logo
1 of 22
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 17
08-Nov-2017
2
FOUNDATION TYPES
1. Shallow Foundations
a. D/B ≤ 1 (Terzaghi, 1943); later researchers said D/B
can be up to 3-4.
b. Depth generally less than 3m
2. Deep Foundations
Focus of this course
3
TYPES OF SHALLOW FOUNDATIONS
1. Square Footings
2. Combined Footings
a. Rectangular Footings
b. Trapezoidal Footings
3. Strip Footings
4. Mat/Raft Footings
5. Floating Foundations
Spread Foundations
 The structural load is literally
spread over a broad area
under the building.
 Load is spread through a
wider bottom part than the
load-bearing foundation walls
it supports.
 Most commonly used
foundation type.
4
TYPES OF SHALLOW FOUNDATIONS
Square Footings
 Square in plan
 Used to support individual columns
5
TYPES OF SHALLOW FOUNDATIONS
Strip Footings
 L/B ≥ 5
 To support wall loads
6
TYPES OF SHALLOW FOUNDATIONS
Combined Footings
 Rectangular/Trapezoidal
 To support two columns or
machine base
Rectangular
Footing
Trapezoidal
Footing
7
TYPES OF SHALLOW FOUNDATIONS
Raft/Mat Footings
 To support a very heavy structure by spreading the contact
pressure over a large area.
 For weak soil conditions
 To reduce settlements
8
TYPES OF SHALLOW FOUNDATIONS
Floating Foundations
 Weight of the structure is
equal to the weight of the
soil displaced by foundations
 Net increase of load over the
soil is (nearly) zero
 Where deep deposits of weak
soil stratum exists
9
TYPES OF FOUNDATION FAILURE
1. Due to excessive settlement
Maximum tolerable settlement
– 25.4mm (1”) for square/strip footings
– 50.8mm (2”) for mat footings
2. Due to shear failure in soil Focus of this chapter
10
TYPES OF SHEAR FAILURE
General Shear Failure
 Fully developed failure plane
 Sudden or catastrophic failure
 Bulging on ground surface adjacent to the foundation
 Most common type of shear failure
 Occur in relatively strong soils (Dense sand)
Local Shear Failure
 Failure plane not completely defined
 Sudden jerks at failure
 Small amount of bulging might be observed
 Occur in sand or clay with medium compaction
Punching Shear Failure
 Foundation sinks into soil like a punch
 Failure surface do not extend up to the ground surface
 Occurs in very loose sands weak clays
11
SHEAR BASED DESIGN
– GENERAL COMMENTS –
 Usually only necessary to
analyze general shear
failure.
 Local and punching shear
failure can usually be
anticipated by settlement
analysis.
Punching
Shear Failure
Local Shear
Failure
General
Shear Failure
12
Bearing pressure/ contact pressure is the contact force per unit
area along the bottom of the foundation.
BEARING CAPACITY
– Basic Definitions –
Bearing pressure/ contact pressure
NSL
Foundation Level
P1
P2
P1 = Structural/Net load on soil
P2 = Weight of overburden soil
P = P1 + P2 = Total/Gross load supported by soil
13
Ultimate Bearing Capacity (qu or qult)
The ultimate bearing capacity is the gross pressure at the base
of the foundation at which soil fails in shear.
NSL
Foundation Level
P1
P2
P1 = Structural/Net load on soil
P2 = Weight of overburden soil
P = P1 + P2 = Total/Gross load supported by soil
BEARING CAPACITY
– Basic Definitions –
14
Net Ultimate Bearing Capacity (qnu)
It is the net increase in pressure at the base of foundation that cause shear
failure of the soil. OR
It is the structural load that can be carried by soil without undergoing shear
failure.
NSL
Foundation Level
P1
P2
P1 = Structural/Net load on soil
P2 = Weight of overburden soil
P = P1 + P2 = Total/Gross load
supported by soil
qnu = qu – γ.Df
γ.Df = Overburden pressure
BEARING CAPACITY
– Basic Definitions –
15
Net Safe Bearing Capacity (qns)
It is the net pressure which can ‘safely’ be applied to the soil
considering only shear failure.
qns = qnu /FOS
NSL
Foundation Level
P1
FOS - Factor of safety
usually taken as 2.00 -3.00
BEARING CAPACITY
– Basic Definitions –
16
Gross Safe Bearing Capacity (qs)
It is the maximum gross pressure which the soil can carry
safely without shear failure.
qs = qnu / FOS + γ.Df
NSL
Foundation Level
P1
P2
BEARING CAPACITY
– Basic Definitions –
17
Net Allowable Bearing Capacity (qa or ABC)
It is the maximum pressure which the soil can carry safely
without undergoing shear failure and excessive settlement.
 qa is used for the design of foundation.
BEARING CAPACITY
– Basic Definitions –
18
TERZAGHI’S BEARING CAPACITY THEORY
Terzaghi (1943) developed the theory for continuous/strip
foundations (simplest, 2D problem).
 BNNDNcq qfcult '5.0'' 
Contribution of:
Shear
strength
Surcharge
Soil self-
weight
Nc, Nq and Nγ → Terzaghi’s Bearing Capacity Factors
→ Depend upon friction angle (Φ) of soil.
19
 BNNDNcq qfcult '5.0'' 
TERZAGHI’S BEARING CAPACITY THEORY
20
Terzaghi (1943) developed the theory for continuous/strip
foundations (simplest, 2D problem).
 BNNDNcq qfcult '5.0'' 
Contribution of:
Shear
strength
Surcharge
Soil self-
weight
 sBNNDsNcq qfccult '5.0'' 
General form of Terzaghi’s Bearing Capacity Theory
sc and sγ → shape factors
TERZAGHI’S BEARING CAPACITY THEORY
21
Practice Problem #1
23
CONCLUDED
REFERENCE MATERIAL
Foundation Analysis and Design (5th Edition)
Joseph E. Bowles
Chapter #4
Principles of Geotechnical Engineering (7th Edition)
Braja M. Das
Chapter #16

More Related Content

What's hot

Consolidation of Soil
Consolidation of SoilConsolidation of Soil
Consolidation of SoilArbaz Kazi
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Muhammad Irfan
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYSANJEEV Wazir
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soilrajini24
 
Stress distribution of the soil
Stress distribution of the soilStress distribution of the soil
Stress distribution of the soilDharmik Navadiya
 
7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)Saurabh Kumar
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soilAditya Mistry
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soilsAmardeep Singh
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of SoilPirpasha Ujede
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Muhammad Irfan
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibilityDr.Abdulmannan Orabi
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilSAMRAT CHODHURY
 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationArbaz Kazi
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 

What's hot (20)

Consolidation of Soil
Consolidation of SoilConsolidation of Soil
Consolidation of Soil
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Soil slope stability
Soil slope stabilitySoil slope stability
Soil slope stability
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
Stresses in soil
Stresses in soilStresses in soil
Stresses in soil
 
Stress distribution of the soil
Stress distribution of the soilStress distribution of the soil
Stress distribution of the soil
 
7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soils
 
Bearing capacity of Soil
Bearing capacity of SoilBearing capacity of Soil
Bearing capacity of Soil
 
Consolidation
ConsolidationConsolidation
Consolidation
 
Foundation Engineering
Foundation EngineeringFoundation Engineering
Foundation Engineering
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibility
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soil
 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow Foundation
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
SHEAR STRENGTH THEORY
SHEAR STRENGTH THEORYSHEAR STRENGTH THEORY
SHEAR STRENGTH THEORY
 

Similar to Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]

Bearing Capacity of Shallow Foundation.
Bearing Capacity of Shallow Foundation.Bearing Capacity of Shallow Foundation.
Bearing Capacity of Shallow Foundation.faizanNoor8
 
BEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptxBEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptxAnuragDavesar
 
Geotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacityGeotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacityIrfan Malik
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Irfan Malik
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf2cd
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptSamuelGetiye
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptsjshukla
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptjamvantsolanki
 
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.pptUnit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.pptsatheeshkumarcivil
 
Lecture 1 introduction & types of foundation
Lecture 1  introduction & types of foundationLecture 1  introduction & types of foundation
Lecture 1 introduction & types of foundationDr.Abdulmannan Orabi
 
Lecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soilLecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soilhusseinhadi2
 
pilefoundation_16th aug.ppt
pilefoundation_16th aug.pptpilefoundation_16th aug.ppt
pilefoundation_16th aug.pptFREELANCER
 
Shallow foundation(by indrajit mitra)01
Shallow   foundation(by indrajit mitra)01Shallow   foundation(by indrajit mitra)01
Shallow foundation(by indrajit mitra)01Indrajit Ind
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 
BEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptxBEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptxJoshuaSteven11
 
Foundation (2)
Foundation (2)Foundation (2)
Foundation (2)topukuet
 

Similar to Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil] (20)

Bearing Capacity of Shallow Foundation.
Bearing Capacity of Shallow Foundation.Bearing Capacity of Shallow Foundation.
Bearing Capacity of Shallow Foundation.
 
BEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptxBEARING CAPASITY OFSOIL.pptx
BEARING CAPASITY OFSOIL.pptx
 
Bearing capasity of soil
Bearing capasity of soilBearing capasity of soil
Bearing capasity of soil
 
Geotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacityGeotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacity
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.pptUnit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
 
Lecture 1 introduction & types of foundation
Lecture 1  introduction & types of foundationLecture 1  introduction & types of foundation
Lecture 1 introduction & types of foundation
 
Lecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soilLecture 1. bearing capacity of soil
Lecture 1. bearing capacity of soil
 
pilefoundation_16th aug.ppt
pilefoundation_16th aug.pptpilefoundation_16th aug.ppt
pilefoundation_16th aug.ppt
 
SHALLOW FOUNDATION
SHALLOW FOUNDATIONSHALLOW FOUNDATION
SHALLOW FOUNDATION
 
Shallow foundation(by indrajit mitra)01
Shallow   foundation(by indrajit mitra)01Shallow   foundation(by indrajit mitra)01
Shallow foundation(by indrajit mitra)01
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
BEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptxBEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptx
 
Civil pile
Civil pileCivil pile
Civil pile
 
Foundation (2)
Foundation (2)Foundation (2)
Foundation (2)
 
Settlement of soil/foundation
Settlement of soil/foundationSettlement of soil/foundation
Settlement of soil/foundation
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
 

Recently uploaded

A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 

Recently uploaded (20)

Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 

Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 17 08-Nov-2017
  • 2. 2 FOUNDATION TYPES 1. Shallow Foundations a. D/B ≤ 1 (Terzaghi, 1943); later researchers said D/B can be up to 3-4. b. Depth generally less than 3m 2. Deep Foundations Focus of this course
  • 3. 3 TYPES OF SHALLOW FOUNDATIONS 1. Square Footings 2. Combined Footings a. Rectangular Footings b. Trapezoidal Footings 3. Strip Footings 4. Mat/Raft Footings 5. Floating Foundations Spread Foundations  The structural load is literally spread over a broad area under the building.  Load is spread through a wider bottom part than the load-bearing foundation walls it supports.  Most commonly used foundation type.
  • 4. 4 TYPES OF SHALLOW FOUNDATIONS Square Footings  Square in plan  Used to support individual columns
  • 5. 5 TYPES OF SHALLOW FOUNDATIONS Strip Footings  L/B ≥ 5  To support wall loads
  • 6. 6 TYPES OF SHALLOW FOUNDATIONS Combined Footings  Rectangular/Trapezoidal  To support two columns or machine base Rectangular Footing Trapezoidal Footing
  • 7. 7 TYPES OF SHALLOW FOUNDATIONS Raft/Mat Footings  To support a very heavy structure by spreading the contact pressure over a large area.  For weak soil conditions  To reduce settlements
  • 8. 8 TYPES OF SHALLOW FOUNDATIONS Floating Foundations  Weight of the structure is equal to the weight of the soil displaced by foundations  Net increase of load over the soil is (nearly) zero  Where deep deposits of weak soil stratum exists
  • 9. 9 TYPES OF FOUNDATION FAILURE 1. Due to excessive settlement Maximum tolerable settlement – 25.4mm (1”) for square/strip footings – 50.8mm (2”) for mat footings 2. Due to shear failure in soil Focus of this chapter
  • 10. 10 TYPES OF SHEAR FAILURE General Shear Failure  Fully developed failure plane  Sudden or catastrophic failure  Bulging on ground surface adjacent to the foundation  Most common type of shear failure  Occur in relatively strong soils (Dense sand) Local Shear Failure  Failure plane not completely defined  Sudden jerks at failure  Small amount of bulging might be observed  Occur in sand or clay with medium compaction Punching Shear Failure  Foundation sinks into soil like a punch  Failure surface do not extend up to the ground surface  Occurs in very loose sands weak clays
  • 11. 11 SHEAR BASED DESIGN – GENERAL COMMENTS –  Usually only necessary to analyze general shear failure.  Local and punching shear failure can usually be anticipated by settlement analysis. Punching Shear Failure Local Shear Failure General Shear Failure
  • 12. 12 Bearing pressure/ contact pressure is the contact force per unit area along the bottom of the foundation. BEARING CAPACITY – Basic Definitions – Bearing pressure/ contact pressure NSL Foundation Level P1 P2 P1 = Structural/Net load on soil P2 = Weight of overburden soil P = P1 + P2 = Total/Gross load supported by soil
  • 13. 13 Ultimate Bearing Capacity (qu or qult) The ultimate bearing capacity is the gross pressure at the base of the foundation at which soil fails in shear. NSL Foundation Level P1 P2 P1 = Structural/Net load on soil P2 = Weight of overburden soil P = P1 + P2 = Total/Gross load supported by soil BEARING CAPACITY – Basic Definitions –
  • 14. 14 Net Ultimate Bearing Capacity (qnu) It is the net increase in pressure at the base of foundation that cause shear failure of the soil. OR It is the structural load that can be carried by soil without undergoing shear failure. NSL Foundation Level P1 P2 P1 = Structural/Net load on soil P2 = Weight of overburden soil P = P1 + P2 = Total/Gross load supported by soil qnu = qu – γ.Df γ.Df = Overburden pressure BEARING CAPACITY – Basic Definitions –
  • 15. 15 Net Safe Bearing Capacity (qns) It is the net pressure which can ‘safely’ be applied to the soil considering only shear failure. qns = qnu /FOS NSL Foundation Level P1 FOS - Factor of safety usually taken as 2.00 -3.00 BEARING CAPACITY – Basic Definitions –
  • 16. 16 Gross Safe Bearing Capacity (qs) It is the maximum gross pressure which the soil can carry safely without shear failure. qs = qnu / FOS + γ.Df NSL Foundation Level P1 P2 BEARING CAPACITY – Basic Definitions –
  • 17. 17 Net Allowable Bearing Capacity (qa or ABC) It is the maximum pressure which the soil can carry safely without undergoing shear failure and excessive settlement.  qa is used for the design of foundation. BEARING CAPACITY – Basic Definitions –
  • 18. 18 TERZAGHI’S BEARING CAPACITY THEORY Terzaghi (1943) developed the theory for continuous/strip foundations (simplest, 2D problem).  BNNDNcq qfcult '5.0''  Contribution of: Shear strength Surcharge Soil self- weight Nc, Nq and Nγ → Terzaghi’s Bearing Capacity Factors → Depend upon friction angle (Φ) of soil.
  • 19. 19  BNNDNcq qfcult '5.0''  TERZAGHI’S BEARING CAPACITY THEORY
  • 20. 20 Terzaghi (1943) developed the theory for continuous/strip foundations (simplest, 2D problem).  BNNDNcq qfcult '5.0''  Contribution of: Shear strength Surcharge Soil self- weight  sBNNDsNcq qfccult '5.0''  General form of Terzaghi’s Bearing Capacity Theory sc and sγ → shape factors TERZAGHI’S BEARING CAPACITY THEORY
  • 22. 23 CONCLUDED REFERENCE MATERIAL Foundation Analysis and Design (5th Edition) Joseph E. Bowles Chapter #4 Principles of Geotechnical Engineering (7th Edition) Braja M. Das Chapter #16