SlideShare a Scribd company logo
1 of 17
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 24
6-Dec-2017
2
Practice Problem #4











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 0
’ = 35°
 = 18 kN/m3
c’ = 0
’ = 30°
WT
 = 19 kN/m3
sat = 21 kN/m3
c’ = 0
’ = 32°
sat = 20 kN/m3
4m
4m
2m
4m
Determine the total active force per meter acting on the wall
along with its point of application.
q = 50 kPa
3
Practice Problem #5











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 10 kPa
’ = 35°
 = 18 kN/m3
WT
c’ = 50
’ = 0°
sat = 20 kN/m3
4m
4m
4m
Determine the total active force per meter acting on the wall
along with its point of application.
q = 50 kPa
c’ = 20 kPa
’ = 19.5°
sat = 21 kN/m3
4
Practice Problem #6











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 50 kPa
’ = 10°
 = 18 kN/m3
10 m
A retaining wall of 10 m height retains a cohesive soil.
Determine the active force with respect to various possibilities
of tension crack.
a
c
K
c
z



2
5
RANKINE THEORY
ACTIVE PRESSURE -- SUMMARY --











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
a
c
K
c
z



2
6
COULOMB’S EARTH PRESSURE
THEORY
ASSUMPTIONS
1. The soil is homogeneous and isotropic.
2. Soil has both cohesion and friction (c- soil).
3. Rupture surface as well as backfill surface is planar.
4. There is friction between wall and soil.
5. Failure wedge is a rigid body undergoing translation.
Coulomb (1776)
7
BENEFITS OF ASSUMPTIONS
-- DIFFERENCE BETWEEN THEORY AND REALITY --
8
BENEFITS OF ASSUMPTIONS
-- DIFFERENCE BETWEEN THEORY AND REALITY --
Theoretical Earth Pressure Actual Earth Pressure
9
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶
sin(𝛼 + 𝛽)
=
𝐴𝐵
sin(𝜃 − 𝛽)
∆𝑨𝑩𝑪
Using law of sines
𝐴𝐶 =
𝐴𝐵
sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
H
10
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
∆𝑨𝑩𝑫
𝐵𝐷
sin(180 − (𝛼 + 𝜃))
=
𝐴𝐵
sin 90
∵ sin(180 − 𝛼 + 𝜃 ) = sin(𝛼 + 𝜃)
𝐵𝐷
sin(𝛼 + 𝜃)
=
𝐴𝐵
sin 90
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐴𝐵
1
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐻
sin 𝛼
H
11
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐻
sin 𝛼
𝑊 = 1
2 ∙
𝛾𝐻2
𝑠𝑖𝑛2 𝛼
∙
sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃)
sin(𝜃 − 𝛽)
Eq. 1 →
H
12
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R = Resultant of shear and normal forces
acting on failure plane
R
(q)
(ad)180(adq)
d
Pa
𝛿 = 2
3 𝜙
Our Goal:
Determine active force (Pa) on the wall.
 Draw force polygon of the system.
Pa
d = angle of wall friction
(𝑅𝑒𝑠𝑜𝑛𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
13
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R
(q)
(ad)180(adq)
d
Pa
𝑃𝑎
sin(𝜃 − 𝜙)
=
𝑊
sin[180 − 𝛼 − 𝛿 + 𝜃 − 𝜙 ]
Applying sine law on force polygon
Pa
𝑃𝑎
sin(𝜃 − 𝜙)
=
𝑊
sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
Replacing value of ‘W’
𝑃𝑎 =
1
2
∙
𝛾𝐻2
𝑠𝑖𝑛2 𝛼
∙
sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) ∙ sin(𝜃 − 𝜙)
sin(𝜃 − 𝛽) ∙ sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
14
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R
(q)
(ad)180(adq)
d
Pa
As designers, we want to determine max.
value of Pa
Pa
𝑃𝑎 =
1
2
𝛾𝐻2 ∙
𝑠𝑖𝑛2(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
To determine critical value of b for max. Pa,
we have 𝑑𝑃𝑎
𝑑𝛽
= 0
15
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
R
d
Pa
𝐾 𝑎 =
𝑠𝑖𝑛2(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
Since,
𝑃𝑎 =
1
2
∙ 𝛾𝐻2
∙ 𝐾 𝑎
𝑃𝑎 =
1
2
𝛾𝐻2
∙
𝑠𝑖𝑛2
(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
16
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
R
d
Pa
𝑃𝑎 =
1
2
𝛾𝐻2
∙
𝑠𝑖𝑛2
(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
For a vertical wall face and horizontal
levelled ground
𝛼 = 90° , 𝑎𝑛𝑑 𝛽 = 0°
𝑃𝑎 =
1
2
𝛾𝐻2 ∙
1 − sin 𝜙
1 + sin 𝜙
Above equation is reduced to
i.e. same as Renkine’s Solution
17
CONCLUDED
REFERENCE MATERIAL
Principles of Geotechnical Engineering – (7th Edition)
Braja M. Das
Chapter #13
Essentials of Soil Mechanics and Foundations (7th Edition)
David F. McCarthy
Chapter #17
Geotechnical Engineering – Principles and Practices – (2nd Edition)
Coduto, Yueng, and Kitch
Chapter #17

More Related Content

What's hot

Stone columns - an overview(Ground improvement)
Stone columns -  an overview(Ground improvement)Stone columns -  an overview(Ground improvement)
Stone columns - an overview(Ground improvement)
Tarachand Veeragattapu
 

What's hot (20)

Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sir
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soils
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )
 
Stress distribution of the soil
Stress distribution of the soilStress distribution of the soil
Stress distribution of the soil
 
Stone column
Stone columnStone column
Stone column
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
SHEAR STRENGTH THEORY
SHEAR STRENGTH THEORYSHEAR STRENGTH THEORY
SHEAR STRENGTH THEORY
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Stone columns - an overview(Ground improvement)
Stone columns -  an overview(Ground improvement)Stone columns -  an overview(Ground improvement)
Stone columns - an overview(Ground improvement)
 
Standard penetration test (spt)
Standard penetration test (spt)Standard penetration test (spt)
Standard penetration test (spt)
 
7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)
 
Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]Geotechnical Engineering-I [Lec #2: Introduction-2]
Geotechnical Engineering-I [Lec #2: Introduction-2]
 
Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240
 
Consolidation
ConsolidationConsolidation
Consolidation
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 

Similar to Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]

Similar to Geotechnical Engineering-II [Lec #24: Coulomb EP Theory] (20)

Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdf9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdf
 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project daniel
 
high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!
 
Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptx
 
coulomb's theory of earth pressure
 coulomb's theory of earth pressure coulomb's theory of earth pressure
coulomb's theory of earth pressure
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
 
Chap5 sec5.2
Chap5 sec5.2Chap5 sec5.2
Chap5 sec5.2
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 

More from Muhammad Irfan

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
 

Recently uploaded

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 

Recently uploaded (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 

Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 24 6-Dec-2017
  • 2. 2 Practice Problem #4                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 0 ’ = 35°  = 18 kN/m3 c’ = 0 ’ = 30° WT  = 19 kN/m3 sat = 21 kN/m3 c’ = 0 ’ = 32° sat = 20 kN/m3 4m 4m 2m 4m Determine the total active force per meter acting on the wall along with its point of application. q = 50 kPa
  • 3. 3 Practice Problem #5                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 10 kPa ’ = 35°  = 18 kN/m3 WT c’ = 50 ’ = 0° sat = 20 kN/m3 4m 4m 4m Determine the total active force per meter acting on the wall along with its point of application. q = 50 kPa c’ = 20 kPa ’ = 19.5° sat = 21 kN/m3
  • 4. 4 Practice Problem #6                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 50 kPa ’ = 10°  = 18 kN/m3 10 m A retaining wall of 10 m height retains a cohesive soil. Determine the active force with respect to various possibilities of tension crack. a c K c z    2
  • 5. 5 RANKINE THEORY ACTIVE PRESSURE -- SUMMARY --                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 a c K c z    2
  • 6. 6 COULOMB’S EARTH PRESSURE THEORY ASSUMPTIONS 1. The soil is homogeneous and isotropic. 2. Soil has both cohesion and friction (c- soil). 3. Rupture surface as well as backfill surface is planar. 4. There is friction between wall and soil. 5. Failure wedge is a rigid body undergoing translation. Coulomb (1776)
  • 7. 7 BENEFITS OF ASSUMPTIONS -- DIFFERENCE BETWEEN THEORY AND REALITY --
  • 8. 8 BENEFITS OF ASSUMPTIONS -- DIFFERENCE BETWEEN THEORY AND REALITY -- Theoretical Earth Pressure Actual Earth Pressure
  • 9. 9 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 sin(𝛼 + 𝛽) = 𝐴𝐵 sin(𝜃 − 𝛽) ∆𝑨𝑩𝑪 Using law of sines 𝐴𝐶 = 𝐴𝐵 sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) H
  • 10. 10 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) ∆𝑨𝑩𝑫 𝐵𝐷 sin(180 − (𝛼 + 𝜃)) = 𝐴𝐵 sin 90 ∵ sin(180 − 𝛼 + 𝜃 ) = sin(𝛼 + 𝜃) 𝐵𝐷 sin(𝛼 + 𝜃) = 𝐴𝐵 sin 90 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐴𝐵 1 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐻 sin 𝛼 H
  • 11. 11 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐻 sin 𝛼 𝑊 = 1 2 ∙ 𝛾𝐻2 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) sin(𝜃 − 𝛽) Eq. 1 → H
  • 12. 12 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R = Resultant of shear and normal forces acting on failure plane R (q) (ad)180(adq) d Pa 𝛿 = 2 3 𝜙 Our Goal: Determine active force (Pa) on the wall.  Draw force polygon of the system. Pa d = angle of wall friction (𝑅𝑒𝑠𝑜𝑛𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
  • 13. 13 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R (q) (ad)180(adq) d Pa 𝑃𝑎 sin(𝜃 − 𝜙) = 𝑊 sin[180 − 𝛼 − 𝛿 + 𝜃 − 𝜙 ] Applying sine law on force polygon Pa 𝑃𝑎 sin(𝜃 − 𝜙) = 𝑊 sin(𝛼 − 𝛿 + 𝜃 − 𝜙) Replacing value of ‘W’ 𝑃𝑎 = 1 2 ∙ 𝛾𝐻2 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) ∙ sin(𝜃 − 𝜙) sin(𝜃 − 𝛽) ∙ sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
  • 14. 14 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R (q) (ad)180(adq) d Pa As designers, we want to determine max. value of Pa Pa 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2(𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 To determine critical value of b for max. Pa, we have 𝑑𝑃𝑎 𝑑𝛽 = 0
  • 15. 15 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W R d Pa 𝐾 𝑎 = 𝑠𝑖𝑛2(𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 Since, 𝑃𝑎 = 1 2 ∙ 𝛾𝐻2 ∙ 𝐾 𝑎 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2 (𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2
  • 16. 16 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W R d Pa 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2 (𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 For a vertical wall face and horizontal levelled ground 𝛼 = 90° , 𝑎𝑛𝑑 𝛽 = 0° 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 1 − sin 𝜙 1 + sin 𝜙 Above equation is reduced to i.e. same as Renkine’s Solution
  • 17. 17 CONCLUDED REFERENCE MATERIAL Principles of Geotechnical Engineering – (7th Edition) Braja M. Das Chapter #13 Essentials of Soil Mechanics and Foundations (7th Edition) David F. McCarthy Chapter #17 Geotechnical Engineering – Principles and Practices – (2nd Edition) Coduto, Yueng, and Kitch Chapter #17