SlideShare a Scribd company logo
1 of 18
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 9
4-Oct-2017
2
STRESS UNDER UNIFORMLY LOADED
IRREGULAR SHAPED AREA
How to determine stress in soil caused by irregularly shaped
loaded areas?
Newmark (1942) influence charts
Determination of stresses at given depth and location (both
within and outside the loaded area)
Vertical stress
Horizontal stress
Shear stress
3
• Based on Bousinesq theory
• Similar charts available for
Westergaard theory (to be
discussed later)
STRESS UNDER UNIFORMLY LOADED IRREGULAR
SHAPED AREA
– Newmark Influence Charts –
4
• Contours of a cone
• Each ‘area’ or ‘block’ has the
same surface area in cross-
section
• Projection on paper distorts the
block area, i.e. areas look
smaller close to the center and
vice versa
– NEWMARK
INFLUENCE CHARTS –
5
• Drawing to be made on scale
• Distance A-B equal to depth of
interest
• Scale of loaded area to be
selected accordingly
• Center of influence chart to
coincide with point of interest
• Count number of blocks under
loaded area
– NEWMARK
INFLUENCE CHARTS –
∆𝜎𝑧= 𝑞 𝑜. 𝐼. (𝑁𝑜. 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠)
qo = contact stress
I = influence factor
6
Practice Problem #8
What is the additional
vertical stress at a depth of 10
m under point A?
No of elements = 76 (say)
∆𝜎𝑧= 𝑞 𝑜. 𝐼. (𝑁𝑜. 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠)
A B
I = 1/200
20mm
7
STRESS
DISTRIBUTION
CHARTS
Pressure isobars (also called pressure
bulbs) based on the Boussinesq
equation for square and strip footings.
Applicable only along line ab from the
center to edge of the base.
Ref: Bowles pp #292
Fig. 5-4
9
STRESS INCREASE (∆q) DUE TO
EXTERNAL LOAD
Determination of stress due to external load at any
point in soil
1. Approximate Method
2. Boussinesq’s Theory
3. Westergaard’s Theory
10
Westergaard’s Theory
• Boussinesq theory derived for homogeneous, isotropic, linearly
elastic half-space.
• Many natural soils sedimentary (layered) in nature; e.g. varved
clays.
• Westergaard theory considers infinitely thin elastic layers of soil.
11
Westergaard’s Theory for Point Load
Westergaard, proposed (1938) a formula for the computation of vertical
stress sz by a point load, P, at the surface as;
   
       2322
221
2221
2 zrz
P
z






s
   2322
21
1
zrz
P
z



s
If poisson’s ratio, , is taken as zero, the above equation simplifies to
Where,
   232
21
11
zr
IW



WI
z
P
2

Independent of all
material properties.
12
Westergaard vs Boussinesq Coefficient
   252
1
1
2
3
zr
IB



   232
21
11
zr
IW



The value of IW at r/z = 0 is
0.32 which is less than that of
IB by 33%.
Boussinesq’s solution gives
conservative results at shallow
depth.
13
Westergaard
Charts for
Rectangular
Loads
Influence values for vertical
stress under corners of a
uniformly loaded rectangular
area for Westergaard theory
(after Duncan & Buchignani,
1976)
Ref: Holtz & Kovacs (2nd Ed.)
Fig. 10.9 (pp #480)
14
Influence values for vertical stress under
center of a square uniformly loaded area
(Poisson’s Ratio, ν = 0.0)
(after Duncan & Buchignani, 1976)
Ref: Holtz & Kovacs (2nd Ed.)
Table 10.1 (pp #481)
15
Influence values for vertical stress under
center of infinitely long strip load.
(after Duncan & Buchignani, 1976)
Ref: Holtz & Kovacs (2nd Ed.)
Table 10.2 (pp #481)
16
Influence values for vertical stress
under corner of a uniformly loaded
rectangular area.
(after Duncan & Buchignani, 1976)
Ref: Holtz & Kovacs
(2nd Ed.)
Table 10.2 (pp #481)
17
SUMMARY
WESTERGAARD METHODBOUSSINESQ METHOD
APPROXIMATE METHOD
Use of 2:1 (V:H) stress distribution
𝜎 𝑧 =
𝑄
(𝐵 + 𝑧) ∙ (𝐿 + 𝑧)
Bz I
z
P
2
s
   252
1
1
2
3


zr
IB

Wz I
z
P
2
s
Where,
   232
21
11
zr
IW



Where,
18
Practice Problem #9
22
CONCLUDED
REFERENCE MATERIAL
An Introduction to Geotechnical Engineering (2nd Ed.)
Robert D. Holtz & William D. Kovacs
Chapter #10

More Related Content

What's hot

What's hot (20)

Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sir
 
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
 
Stress distribution of the soil
Stress distribution of the soilStress distribution of the soil
Stress distribution of the soil
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Class 7 Consolidation Test ( Geotechnical Engineering )
Class 7    Consolidation Test ( Geotechnical Engineering )Class 7    Consolidation Test ( Geotechnical Engineering )
Class 7 Consolidation Test ( Geotechnical Engineering )
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Consolidation
ConsolidationConsolidation
Consolidation
 
Quick sand condation
Quick sand condationQuick sand condation
Quick sand condation
 
_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)_lateral_earth_pressure_(foundation engineering)
_lateral_earth_pressure_(foundation engineering)
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlement
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibility
 
TERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORYTERZAGHI’S BEARING CAPACITY THEORY
TERZAGHI’S BEARING CAPACITY THEORY
 
7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)7 vertical stresses below applied loads (1)
7 vertical stresses below applied loads (1)
 

Similar to Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]

ASM-1 stress & displacement.pptx.PDF
ASM-1 stress & displacement.pptx.PDFASM-1 stress & displacement.pptx.PDF
ASM-1 stress & displacement.pptx.PDF
AdityaPatel210981
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
jamvantsolanki
 
earthpressuresoilmechanics-190317154507.pdf
earthpressuresoilmechanics-190317154507.pdfearthpressuresoilmechanics-190317154507.pdf
earthpressuresoilmechanics-190317154507.pdf
sunilghosh11
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
SHAMJITH KM
 

Similar to Geotechnical Engineering-II [Lec #9+10: Westergaard Theory] (20)

ASM-1 stress & displacement.pptx.PDF
ASM-1 stress & displacement.pptx.PDFASM-1 stress & displacement.pptx.PDF
ASM-1 stress & displacement.pptx.PDF
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
stress distribution in soils
stress distribution in soilsstress distribution in soils
stress distribution in soils
 
Vertical Stresses Below Applied Load.pdf
Vertical Stresses Below Applied Load.pdfVertical Stresses Below Applied Load.pdf
Vertical Stresses Below Applied Load.pdf
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
326027186-Stresses-in-Soil.pdf
326027186-Stresses-in-Soil.pdf326027186-Stresses-in-Soil.pdf
326027186-Stresses-in-Soil.pdf
 
Geotechnical vertical stress
Geotechnical vertical stressGeotechnical vertical stress
Geotechnical vertical stress
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.pptUnit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
Unit 5 BEARING CAPACITY AND SLOPE STABILITY.ppt
 
Stress distribution in soil
Stress distribution in soil Stress distribution in soil
Stress distribution in soil
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
BEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.pptBEARING CAPASITY OFSOIL.ppt
BEARING CAPASITY OFSOIL.ppt
 
earthpressuresoilmechanics-190317154507.pdf
earthpressuresoilmechanics-190317154507.pdfearthpressuresoilmechanics-190317154507.pdf
earthpressuresoilmechanics-190317154507.pdf
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)
 
Bearing capasity of soil
Bearing capasity of soilBearing capasity of soil
Bearing capasity of soil
 
SHALLOW FOUNDATION
SHALLOW FOUNDATIONSHALLOW FOUNDATION
SHALLOW FOUNDATION
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
.BOUSSINESQ’S THEORY FOR VERTICAL STRESSES UNDER A CIRCULAR AREA.pdf
.BOUSSINESQ’S THEORY FOR VERTICAL STRESSES UNDER A CIRCULAR AREA.pdf.BOUSSINESQ’S THEORY FOR VERTICAL STRESSES UNDER A CIRCULAR AREA.pdf
.BOUSSINESQ’S THEORY FOR VERTICAL STRESSES UNDER A CIRCULAR AREA.pdf
 

More from Muhammad Irfan

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 

Recently uploaded

Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Recently uploaded (20)

Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 9 4-Oct-2017
  • 2. 2 STRESS UNDER UNIFORMLY LOADED IRREGULAR SHAPED AREA How to determine stress in soil caused by irregularly shaped loaded areas? Newmark (1942) influence charts Determination of stresses at given depth and location (both within and outside the loaded area) Vertical stress Horizontal stress Shear stress
  • 3. 3 • Based on Bousinesq theory • Similar charts available for Westergaard theory (to be discussed later) STRESS UNDER UNIFORMLY LOADED IRREGULAR SHAPED AREA – Newmark Influence Charts –
  • 4. 4 • Contours of a cone • Each ‘area’ or ‘block’ has the same surface area in cross- section • Projection on paper distorts the block area, i.e. areas look smaller close to the center and vice versa – NEWMARK INFLUENCE CHARTS –
  • 5. 5 • Drawing to be made on scale • Distance A-B equal to depth of interest • Scale of loaded area to be selected accordingly • Center of influence chart to coincide with point of interest • Count number of blocks under loaded area – NEWMARK INFLUENCE CHARTS – ∆𝜎𝑧= 𝑞 𝑜. 𝐼. (𝑁𝑜. 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠) qo = contact stress I = influence factor
  • 6. 6 Practice Problem #8 What is the additional vertical stress at a depth of 10 m under point A? No of elements = 76 (say) ∆𝜎𝑧= 𝑞 𝑜. 𝐼. (𝑁𝑜. 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠) A B I = 1/200 20mm
  • 7. 7 STRESS DISTRIBUTION CHARTS Pressure isobars (also called pressure bulbs) based on the Boussinesq equation for square and strip footings. Applicable only along line ab from the center to edge of the base. Ref: Bowles pp #292 Fig. 5-4
  • 8. 9 STRESS INCREASE (∆q) DUE TO EXTERNAL LOAD Determination of stress due to external load at any point in soil 1. Approximate Method 2. Boussinesq’s Theory 3. Westergaard’s Theory
  • 9. 10 Westergaard’s Theory • Boussinesq theory derived for homogeneous, isotropic, linearly elastic half-space. • Many natural soils sedimentary (layered) in nature; e.g. varved clays. • Westergaard theory considers infinitely thin elastic layers of soil.
  • 10. 11 Westergaard’s Theory for Point Load Westergaard, proposed (1938) a formula for the computation of vertical stress sz by a point load, P, at the surface as;            2322 221 2221 2 zrz P z       s    2322 21 1 zrz P z    s If poisson’s ratio, , is taken as zero, the above equation simplifies to Where,    232 21 11 zr IW    WI z P 2  Independent of all material properties.
  • 11. 12 Westergaard vs Boussinesq Coefficient    252 1 1 2 3 zr IB       232 21 11 zr IW    The value of IW at r/z = 0 is 0.32 which is less than that of IB by 33%. Boussinesq’s solution gives conservative results at shallow depth.
  • 12. 13 Westergaard Charts for Rectangular Loads Influence values for vertical stress under corners of a uniformly loaded rectangular area for Westergaard theory (after Duncan & Buchignani, 1976) Ref: Holtz & Kovacs (2nd Ed.) Fig. 10.9 (pp #480)
  • 13. 14 Influence values for vertical stress under center of a square uniformly loaded area (Poisson’s Ratio, ν = 0.0) (after Duncan & Buchignani, 1976) Ref: Holtz & Kovacs (2nd Ed.) Table 10.1 (pp #481)
  • 14. 15 Influence values for vertical stress under center of infinitely long strip load. (after Duncan & Buchignani, 1976) Ref: Holtz & Kovacs (2nd Ed.) Table 10.2 (pp #481)
  • 15. 16 Influence values for vertical stress under corner of a uniformly loaded rectangular area. (after Duncan & Buchignani, 1976) Ref: Holtz & Kovacs (2nd Ed.) Table 10.2 (pp #481)
  • 16. 17 SUMMARY WESTERGAARD METHODBOUSSINESQ METHOD APPROXIMATE METHOD Use of 2:1 (V:H) stress distribution 𝜎 𝑧 = 𝑄 (𝐵 + 𝑧) ∙ (𝐿 + 𝑧) Bz I z P 2 s    252 1 1 2 3   zr IB  Wz I z P 2 s Where,    232 21 11 zr IW    Where,
  • 18. 22 CONCLUDED REFERENCE MATERIAL An Introduction to Geotechnical Engineering (2nd Ed.) Robert D. Holtz & William D. Kovacs Chapter #10