SlideShare a Scribd company logo
1 of 11
Download to read offline
Science, technology and the K-12 education
program
Philippine education in general has historically been problematic with science and mathematics
education even more weak. In view of this, the Aquino administration pushed for a complete
overhaul of the education system by adding two years in basic education, apparently as a
solution to its recurring troubles.
Agham Advocates of Science and Technology for the People in its advocacy for a scientific and
mass-oriented form of education, produced this paper as a critique of the K-12 program. This
paper will enumerate the flaws of the K-12 program with focus on its impacts on the quality of
the science and mathematics education in the country.
Background on the K-12 Program
In 2013, Republic Act No. 10533 or the Enhanced Basic Education Act (EBEA) was signed into
law by President Benigno Aquino III. Its guiding principle is to make Filipino graduates “globally
competitive” to serve the needs of a “globalized environment.” EBEA provided the basis for
lengthening the basic education program from 10 years to 12 years. This encompasses a year
of compulsory kindergarten, six years of elementary education and another six years of
secondary education (which is subdivided into four years of junior high school plus 2 years of
senior high school). The entrant age for kindergarten is five. Students are thus expected to
graduate at age of 18.
In pursuit of a strengthened curriculum, several reforms were provided in the EBEA, which
include: (1) the spiral progression approach, (2) putting up career tracks as part of the senior
high school including Science, Technology, Engineering and Mathematics (STEM) Strand of the
Academic Track, and Technical-Vocational Track, (3) the Mother Tongue Based – Multilingual
Education (MTB-MLE).
The spiral progression approach’s objective is to impart knowledge in a less compact and more
temporally distributed way. Basic knowledge will be taught in the early years of education and
will be used as building blocks to add more complex concepts in the succeeding years. For
example, in the old education program, biology is taught in 2nd
year high school, chemistry in 3rd
and physics in the 4th
year. Under the K-12 program, Physics, Chemistry, Biology and Earth
Sciences will be taught at all grade levels in elementary and junior high school with the topics
changing every quarter and the complexity increasing as the student moves up to the higher
grades.
Career tracks in senior high school (SHS; grades 11 and 12) will define the subjects students
will have to master. Each student may choose among three tracks: Academic, Technical-
AGHAMAdvocates of Science and Technology for the People
127B Scout Fuentebella St. Brgy. Sacred Heart, Quezon City
Telephone: +632 998 4226 E-mail: secretariat@agham.org URL: www.agham.org
Page 2 of 11
Vocational-Livelihood, and Sports and Arts. The Academic Track has three strands under it:
Business, Accountancy and Management (BAM); Humanities, Education, Social Science
(HESS); and Science, Technology, Engineering, Mathematics (STEM). Aside from the track
subjects, subject content under a core curriculum will have to be undergone by all senior high
school students.
Under the MTB-MLE scheme, the primary language of instruction from kindergarten to Grade 3
would be the students’ native/regional language. Filipino and English will subsequently be
introduced and will replace the native language as primary language of instruction at secondary
school.
According to the Philippine government, K-12 was designed to improve the competency of
Filipino graduates. While on the surface this could be laudable, a critical assessment of the
components of the K-12 program, especially with regards to the Vocational Course Track,
reveals a malevolent drive to produce “exportable” Filipino workers.
A quick look at the government’s K-12 website reveals that the word “learning” appears 11
times. Meanwhile “employ” (including employment and employee) appears 14 times.
Representative Rosenda Ocampo of Manila and sponsor of the K-12 House bill frankly states
that, “...ang pagtukoy sa mga kurso sa ilalim ng programang K to 12 ay idinidikta ng
pangangailangan, at ng job market...ang mga bansang industriyalisado at mas mayayaman ay
may paparaming bilang ng matatanda na nangangailangan ng pag-aalaga, at ito ang dahilan
kaya tayo may caregiving courses.” (the choice of courses in the K-12 program is dictated by
the job market...the industrialized and developed nations have a growing senile population
needing care, which is why we have caregiving courses).
K-12 kicked off on school year 2012-2013, with the compulsory kindergarten program starting a
year earlier.
K-12 would not solve the systematic maladies of science and math
education
The “quality” of our science and math education as perceived by corporate interests jumped
from rank of 96th (out of 144 countries) for the year 2013 to a rank of 70th for the year 2014, as
the data from the World Economic Forum’s Global Competitive Index suggests. The jump
coincides with the first year of the K-12 implementation. Before the implementation of the K-12
program, changes in the country’s rank were minimal.
However, even if the Philippines ranks 70th in the world, science and Technology education in
the Philippines has been historically weak, which persists until now.
According to the 2003 Trends in Mathematics and Science Survey, we are 34th
out of 38
countries in high school math; 43rd
out 46 countries in high school science; and 23rd
out of 25
countries in both grade school math and science. Nine years later this poor performance hasn’t
improved at all, based on the results of the 2012 National Achievement Test. In the science part
of the exam 41.58% of examinees scored below average (the other large chunk, at 49.95% of
examinees scored average), which is a sad reflection of the overall state of the country’s basic
education program.
This wobbly foundation in basic science and math education translates to low number of
enrollees in these disciplines. According to the data of the Commission on Higher Education
(CHED), only 0.49% of the total enrollees from 2001-2012 entered mathematics-related
programs while only 0.97% were enticed to pursue courses in natural science.
The government claims that the K-12 program will remedy our education system’s deteriorating
situation, especially in the field of science and technology. An investigation of the past
educational system however reveals that the problem is deeper, symptomatic of institutional
maladies and involving many sectors of society. By not directly addressing these root causes,
K-12 will only aggravate rather solve the deterioration of our educational system.
The poor state of our science and math education can be attributed to the following causes: a)
inadequate science curriculum which does not promote a strong science culture; b)
shortcomings in teachers’ capacity-building and c) shortages in basic education facilities,
particularly science laboratories and equipment.
a) inadequate science curriculum and weak promotion of a strong science culture
One of the fundamental objectives of ensuring scientific literacy (and thus science education) in
a country is to produce citizens capable of adapting to a variety of situations and solving
problems through scientific thinking. Basic science education comes down to instilling into
students the ability to think and view the universe objectively and systematically. Even at the
early stages of education, curiosity and systematic exploration of the environment should be
encouraged.
If you ask any grade-schooler what he was taught at school during science classes, he’ll
probably recite with enthusiasm the facts and data he learned, content with “learning” from the
pages of a textbook rather than directly from nature.
Before the implementation of the K-12 program, the Philippines used the 2002 Basic Education
Curriculum and the 2010 Secondary Education Curriculum (SEC). Our student’s lackluster
performance in past international science and math tests shows that there is a problem with our
education system. A number of studies document that the BEC and SEC are partly to blame.
A report prepared by Carlo Magno (2011) for AUSAID concludes that the SEC, “lacks
opportunities to use science skills to support learners to solve problems, question, critique,
analyze, and evaluate scientific claims.” It noted several instances in the secondary level
science curriculum where certain topics were given unnecessary attention, in particular the
general history of chemistry and the origins of the atomic theory. It’s implied that such time
would have been better used in teaching the students how to use the concept (rather than how
the concept came to be). Several topics are covered in the curricula of other countries but not in
the BEC. In Philippine physics, topics like “circular motion, transistors and integrated circuits,
mass-energy equivalence, the wave equation and wave-particle duality” were not discussed. In
biology, students are not taught about, “disease, immunology, homeostasis, cell chemistry,
Page 4 of 11
gene expression, and human evolution.” The report adds that in secondary school biology, the
only bio-related technology that students are exposed to is a simple light microscope.
A discussion paper published by the Philippine Institute for Development Studies (2005)
remarks that the BEC is overcrowded in subjects and insensitive to the varied ethnic
backgrounds of the students. This leads many students to lose focus and resort to memorization
in order to pass.
In a relatively backward country like ours, where superstitious belief and metaphysical thinking
are still very prevalent, students will find it harder to reconcile scientific objectivity and the
metaphysical culture he grew up with.
Clearly an overhaul of the BEC and SEC is needed, but the spiral curriculum system spread
over multiple years that the government is proposing might do more harm than good.
The rationale behind this is that students can be taught a simple concept at the beginning, with
the complexity of the topics increasing year after year. A short review or revisit of previous
topics helps student recall and prepares them for the more complex lessons to come.
But as noted by one academic, the spiral curriculum’s “implementation needs to be more
compressed. It can be and is much more powerful when scaled down to fit the individual
classroom or grade level.” Extending and spreading scientific topics across such a long period
prevents students from engaging in the intense, focused praxis needed to achieve a mastery in
science.
This practical component is what is severely lacking in both our old curriculum and the new one.
The practical work aspect allows, “learners to deal with the contents in depth in the classroom or
mostly in science laboratories.” A 2005 study comparing the (old) Philippine and Japanese
educational systems commented that “the use of science practical works is highly emphasized
in the Japan science curriculum while the Philippine science curriculum emphasizes health
education and Filipino values.”
The topic and concepts of K-12’s spiral curriculum have also not been divided in order of
increasing complexity. Many of the topics are related to each to other horizontally. For example,
in the subject Parts and functions of animal and plants, the different organ systems, the
Digestive, Respiratory, Excretory Systems are studied in Grade 8 while the circulatory, nervous,
and endocrine systems are studied in the higher years when knowledge on one organ system is
not a prerequisite for learning other organ systems.
The table below is a summary of K-12’s science subjects for Grade 7 to 10.
Grade 7 Grade 8 Grade 9 Grade 10
Properties and
Structure of
Matter
Properties of Solutions,
Distinguishing different
solutions
Particulate nature of
matter (Atomic
Theory), Periodic
Table of Elements
Chemical reactions
and bonds : Ionic,
covalent, metallic,
The Mole
Kinetic Molecular
Theory (Gas Laws),
Organic Molecules
Changes that
Matter
Undergo
Elements, Compounds,
metals, non-metals,
acids, and bases
Phase Changes,
Conservation of
Mass
Compounds
Chemical Reactions,
Conservation of Mass
Parts and
Function:
Animal and
Plants
Cell as Unit of Life and
Levels of Organization
Digestive,
Respiratory,
Excretory Systems
Digestive,
Respiratory, and
Circulatory systems
Nervous and Endocrine
System
Heredity:
Inheritance
and Variation
Asexual Reproduction Mitosis and Meiosis
Genes and
Chromosomes
DNA and Inheritance
Biodiversity
and Evolution
Animal and Plant Cells Species Extinction Natural Selection
Ecosystem Populations
Energy and Material
cycles
Photosynthesis and
Cellular Respiration
Human impacts on the
environment
Force and
Motion and
Distance, Speed,
Acceleration, One
Dimensional motion
graph
Newton’s Law of
Motion,
Conservation of
Energy (in terms of
Work)
Conservation of
Momentum, Projectile
Motion
Static and Dynamic
equilibrium of bodies
Energy Different forms of energy
Energy transfer,
temperature,
current, speed of
sound
Conservation of
Mechanical Energy,
Heat and Work,
Optics, Electric and
Magnetic Fields
b. Shortcomings in teachers' competency on science and math
A CHED research on the competence of pre-service science teachers (PT) from four Teacher
Education Institution (TEI) showed worrying results.
Chemistry pre-service teachers scored low in their understanding of the foundational concepts
of chemistry, especially with regards to the atomic and molecular nature of matter.
Biology PT’s fared a little better, with more than half of test subjects showing an understanding
of biological processes (e.g. how the food we eat is transformed into muscular energy).
However, many do not have a grasp of the concept of randomness with regards to biological
system (e.g. how random mutations affect the evolution of a certain species). As the paper
noted, this is an essential view for comprehending the subtleties of biology.
For physics PT’s the assessment revealed a lack of analytical skills, showing an inability to
apply, synthesize, and evaluate different physics concepts together.
Page 6 of 11
The results of the Licensure Exam for Teachers (LET) confirms the CHED study, revealing that
the problem persists throughout the country and across other teacher specializations and
subjects. From the August 2014 LET, only 35.74% of elementary school teacher examinees
passed. Performance for secondary school teacher examinees is almost the same, with only
34.4% passing.
It would be wrong to place the blame on the teacher’s themselves. The quality of training and
preparation that they received from their respective TEI should also be taken into account. This
is confirmed by CHED Memorandum Order No. 32 (2010) which placed a nationwide
moratorium on the opening of teacher education courses for the school year 2011-2012. The
memorandum cited the proliferation of substandard teacher schools which, “if allowed to
continue unabated would result to the deterioration of the quality of graduates.”
In 2012, the administration of the Test of English Proficiency for Teachers (TEPT) and Process
Skills Test (PST) in Science and Mathematics to all permanent Grade I and II public school
teachers was issued through DepED Memorandum No. 12, S. 2012.
The Process Skills Test (PST) in Science and Mathematics is a 40-item multiple choice test to
be taken for an hour. It is comprised of processing skills such as observing; classifying;
inferring; predicting; measuring/quantifying; communicating; interpreting data; analyzing data;
evaluating; experimenting; making conclusions; making models; and defining operationally.
The Teachers’ Mean Performance in the PST in all regions, is low with only 26% - 50%
proficiency level. The results of the 117,728 examinees show that 62% of the teachers have
poor process skills which they used predominantly in teaching science and mathematics.
Even if the problem of math and science education has already been identified, there has not
been a substantial government intervention through trainings and programs that addressed the
problem.
c.) shortages in science laboratories and other facilities
Although the DepED claims that the K-12 curriculum is centered on an inquiry-based approach,
present material realities could render any reform ineffective. Data from the Department of
Education reveals a serious lack of science laboratories. Only 4.8% of all public elementary
schools have their own science lab. Regional variations reflect the uneven development
between city and province. In NCR, roughly 42% of elementary schools have a science lab
compared to a measly 2.3% for ARMM. Secondary schools fare better, with around 50% of
secondary public schools nationwide having their own science lab.
A separate statistic from DOST-SEI director Ester Ogena reveals an even more appalling
perspective: on average, a science lab in the Philippines is shared by 1,325 students! Students
don’t need an expensive science lab to learn and understand the basics.
However in order for them to keep pace with today’s lightning advances in science and
technology, they must have access to quality equipment and facilities. Take Biology as an
example: plant growth and morphology can be taught outdoors but for students to understand
the processes that enable plants to grow, they must be acquainted with cells and for that they
need a microscope.
The shortage in science laboratories and other facilities are a result of lack of adequate national
budget for education.
The 2015 National Expenditure Program increased the DepEd budget by 12.5% to P339.3
billion. Budgetary increments can be traced to the a much higher budget for operations, with
significant increments going to the following expenditure items: (1) operations of schools, P15.4
billion; (2) provision of learning resources (e.g., textbooks, science and math equipment, DepEd
computerization program), P7.7 billion; and (3) provision and maintenance of basic education
facilities, P8.2 billion. Despite the budget increase, the predicted share of education to GDP is
only 2.5% for 2015, way below the UN’s recommended share of 6% of the GDP.
Following UN standards would require us to allocate about Php 800 billion or 30% of the
national budget.1
This is not entirely impossible. In fact compared to other developing countries,
the Philippines has a low tax-GDP ratio (at around 15.6% of the GDP as of 2013). This means
that there are potential domestic resources to further fund education. UNESCO estimates that a
modest increase in tax collection would result in enough funds to push education spending to
4.5% of the GDP (UNESCO, 2014). In comparison, Vietnam spends 6.6% of its GDP to
education thanks to its 28% tax-GDP ratio.
1The IMF predicts the Philippine GDP for 2015 at $ 330.259 billion in current prices.
Page 8 of 11
Towards a Nationalist, Scientific and Mass-oriented Educational
Program
To reverse the many crises in our education, dropping NAT scores, low enrollment in science
and engineering, poor understanding of science, what is now required is a drastic overhaul of
our educational system.
Instead of a K-12 program that aims to produce a nation of employees for export, what is
needed is a nation with highly developed scientific culture that embraces the quest for
knowledge through systematic means and methodologies to promote the welfare of the majority.
We need an education system that is vigorous in the development of its citizens’ capacity to
shape their lives and propel their country towards holistic economic and social development.
The country needs to develop and deploy an educational system that is nationalist, scientific
and mass-oriented.
A nationalist education program strives, in the words of the late Renato Constantino, for the
country’s “economic emancipation, political independence and cultural renaissance.” The goal
of such educational system would be to produce critical, empowered, and proactive citizens
rather than exportable docile labourers. Such an educational program would instill in our
students values that are being eroded in this era of globalization: respect for the dignity of
labour and rights of indigenous people, reverence for the environment, love for one’s culture, an
appreciation of the commons, and ultimately a predisposition for solidarity over individualism.
A nationalist education system in particular would push for the use of our native languages, both
in the vernacular and academic setting.
The adoption of the English language as the primary mode of instruction has curtailed the
nationalistic essence of the Philippines educational system. It served as the mode through
which the United States conveyed its domination over the whole cultural superstructure of our
country. This form of colonization is being propagated in the Philippines through the K-12
system. Ignoring several researches identifying the acceptability and appropriateness of using
Filipino, English still remain as the medium of instruction in the new educational system.
The mother-tongue based multi-lingual scheme under the K-12 does not necessarily uphold
nationalism and cultural preservation since it is promoted only in the early years of education
and will be eased by the introduction and subsequent domination of English and Filipino
(Filipino will be the medium of instruction for only a selected number of subjects). The child’s
formative years (Grade 1-2) will be focused on the development of oral and communication
skills. Science would be taught much later at Grade 3. This set-up is strangely convenient for
the country’s foreign dominated Business Processing Outsource and service industries.
If the government was serious about the promotion of native languages, there should be support
and opportunity to use the local tongue in more advanced and technical subjects. Such an effort
would advance and further intellectualize the dynamics of our local languages. This is not
entirely impossible as developed (and technology oriented) countries like Japan and Russia
regularly publish scientific papers in their native tongue.
A Mass-oriented educational program aims to cultivate a populace with high regards for
domestic and indigenous knowledge-generation. It puts forth the needs of its own people and is
sensitive to their experiences. Students of a mass-oriented educational program do not only
strive to help the most vulnerable but to empathize with the weakest as well, appreciating the
wisdom that the masses have accumulated in their practice of living and struggle. It is fighting
not for the poor but with the poor. In this way, we can concretize the lessons taught in school,
reversing the abstractions that science and math are notorious for. We can thus motivate
students by showing them how exactly they can engage and contribute to Filipino society.
A scientific educational program strives to develop knowledge and its use for the definite
purpose of serving the needs of the country through the promotion of national industries. Thus it
aims to generate the highest possible number of quality scientists, technologists and engineers.
Every conceivable way to achieve this must be pursued. This means just wage for teachers, the
use of required facilities and the promotion of higher education in the fields of agriculture,
science and engineering through affordable and state supported infrastructures. Building such a
system is possible, even with a “developing” nation budget. Cuba, a small Caribbean nation,
that leads Latin America in Primary Math and Science performance, by investing as much as
10% of its GDP to education despite having an economy that is ten times smaller than ours has
shown that political and economic shortages are no hindrance to a committed government.
Strengthening the science and math education goes hand and hand with
national industrialization
The problems of science and math education in the country is not detached from the overall
problem of basic education and the Philippine society as a whole. Unless these fundamental
problems, including the lack of teachers and facilities, commercialization, and state neglect are
addressed, science and math competencies of the Filipino children would never have the
chance to flourish.
An exceptional basic science and math education would be useless if it is not used for the
benefit of the people through its application to basic industries. At present any development (or
maldevelopment) in the quality and quantity of our science graduates would only benefit
developed countries, as many of our scientists and engineers opt to work abroad or for the local
subsidiary of a multinational company.
There is a need for national domestic industries to create a demand for scientists, technologists
and engineers within the country. Such a demand would spur further improvements in our
science education programs. Advanced industries generally require scientists and technologists
with greater skills and expertise.
Unless there is a genuine program for national industrialization to be served by the country's
educational system, programs such as K-12 are just extensions and variations of the existing
rotten system. In the immediate, the inadequate science curriculum, lack of strong science
culture; teachers' competencies, shortages in basic education facilities such as science
laboratories and low educational budget could be addressed by government interventions which
genuinely seeks to improve the country's educational program.
Page 10 of 11
References
Bernardo, A. (1999), Overcoming Obstacles to Understanding and Solving Word Problems in
Mathematics [Abstract]. Educational Psychology, 19(2). Retrieved on January 22, 2015 from
http://www.tandfonline.com/doi/abs/10.1080/0144341990190203?journalCode=cedp20#.VMBuFGSU
dK8
Commission on Higher Education (2010). CHED Memorandum Order No. 32. Retrieved January 8, 2014,
from: http://www.ched.gov.ph/wp-content/uploads/2013/07/CMO-No.32-s2010.pdf
Commission on Higher Education (2010). Higher Education Indicator as of July 24, 2012. Retrieved on
January 22, 2015 from http://www.ched.gov.ph/wp-content/uploads/2013/07/Higher-Education-
Indicator-as-of-July-24-2012.pdf
Constantino, R. (1970). The Miseducation of the Filipino. Journal of Contemporary Asia 1(1). Retrieved
on January 20, 2015 from
http://eaop.ucsd.edu/198/groupidentity/THE%20MISEDUCATION%20OF%20THE%20FILIPINO.pdf
de Dios, Angelo C. (2015, January 10). Did We Totally Misunderstand What A Spiral Curriculum Should
Be? [Web log]. Retrieved on January 22, 2015 from
http://philbasiceducation.blogspot.com/2015/01/did-we-totally-misunderstand-what.html
Department of Education (2013). K-12 Curriculum Guide Science. Retreieved on January 22, 2015 from
lrmds.deped.gov.ph/download/3289
Freire, Paulo (1978). Pedagogy in Process: The Letters to Guinea Bissau.
Gibbs, B.C. (2014) Reconfiguring Bruner: Compressing the Spiral Curriculum. Phi Delta Kappan, 95(7).
Retrieved January 19, 2015, from http://pdk.sagepub.com/content/95/7/41.full
Lee-Chua, Q. (2010, October 17). Science laboratory on wheels. Inquirer. Retrieved on January 20, 2015
from http://newsinfo.inquirer.net/inquirerheadlines/learning/view/20101017-298240/Science-
laboratory-on-wheels
Magno, C. (2011) Analysis of the Basic Education of the Philippines: Implications for the K to 12
Education Program. Retrieved January 20, 2015 from
http://www.academia.edu/3814475/Analysis_of_the_Basic_Education_of_the_Philippines_
Maligalig, D. S., Albert J. G. (2005) Measures for Assessing Basic Education in the Philippines, PIDS
Discussion Paper Series. Retrieved on January 19, 2015 from
http://saber.eaber.org/sites/default/files/documents/PIDS_Maligalig_2008.pdf
Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings From IEA’s Trends in
International Mathematics and Science Study at the Fourth and Eighth Grades. Retrieved on January
22, 2015 from http://timssandpirls.bc.edu/PDF/t03_download/T03_S_Chap1.pdf
Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings From IEA’s Trends in
International Mathematics and Science Study at the Fourth and Eighth Grades. Retrieved on January
22, 2015 from http://timssandpirls.bc.edu/PDF/t03_download/T03_M_Chap2.pdf
Padama, E., Gallardo, A., Lacuata, F., Lamorena, M., Navaza, D., Nueva Espana, R., ... Prudente, M.
(2014). Practices of Teacher Education Institutions in Science Education. International Journal of
Education and Research, 2(11). Retrieved January 8, 2015, from
http://www.ijern.com/journal/2014/November-2014/29.pdf
Pawilen, G. (2005). A Comparative Study of the Elementary Science Curriculum of Philippines and
Japan. Ehime University Faculty of Education Bulletin 1(52). Retrieved on January 20, 2015 from
http://www.ed.ehime-u.ac.jp/~kiyou/2005/pdf/19.pdf
San Juan, D.M. (2013). Kaisipang Nasyonalista at Teoryang Dependensiya sa Edukasyon: Ideolohikal na
Kritik ng Programang K to 12 ng Pilipinas. MALAY, 26(1)

More Related Content

What's hot

Journey in the Basic Education Curricular reforms
Journey in the Basic Education Curricular reformsJourney in the Basic Education Curricular reforms
Journey in the Basic Education Curricular reformsPaul Christian
 
Review of related literature and studies
Review of related literature and studiesReview of related literature and studies
Review of related literature and studiesbantigui
 
History of Philippine Education
History of Philippine EducationHistory of Philippine Education
History of Philippine EducationJbTrongco777
 
GRASP PERFORMANCE ASSESSMENT
GRASP PERFORMANCE ASSESSMENTGRASP PERFORMANCE ASSESSMENT
GRASP PERFORMANCE ASSESSMENTMarvin Broñoso
 
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...ASU-CHARRM
 
Curriculum models (Philippines' Curriculum Models)
Curriculum models (Philippines' Curriculum Models)Curriculum models (Philippines' Curriculum Models)
Curriculum models (Philippines' Curriculum Models)TeacherAdora
 
Indigenous Science Technology in the Philippines.pptx
Indigenous Science Technology in the Philippines.pptxIndigenous Science Technology in the Philippines.pptx
Indigenous Science Technology in the Philippines.pptxJASONBIGATA4
 
Action research 2019pdf
Action research 2019pdfAction research 2019pdf
Action research 2019pdfRamir Torreces
 
Research instrument
Research instrumentResearch instrument
Research instrumentMhaye Barile
 
Related Literature and Related Studies
Related Literature and Related StudiesRelated Literature and Related Studies
Related Literature and Related StudiesJenny Reyes
 
Historical foundation of philippine education
Historical foundation of philippine education Historical foundation of philippine education
Historical foundation of philippine education Michael John Labog
 
Problem-Based vs. Project Based Learning
Problem-Based vs. Project Based LearningProblem-Based vs. Project Based Learning
Problem-Based vs. Project Based Learningjessicatark
 
Education System of the Philippines
Education System of the PhilippinesEducation System of the Philippines
Education System of the PhilippinesCarms Celis
 

What's hot (20)

Journey in the Basic Education Curricular reforms
Journey in the Basic Education Curricular reformsJourney in the Basic Education Curricular reforms
Journey in the Basic Education Curricular reforms
 
Review of related literature and studies
Review of related literature and studiesReview of related literature and studies
Review of related literature and studies
 
History of Philippine Education
History of Philippine EducationHistory of Philippine Education
History of Philippine Education
 
Final na final thesis
Final na final thesisFinal na final thesis
Final na final thesis
 
Republic Act 9155
Republic Act 9155Republic Act 9155
Republic Act 9155
 
Lesson 1 values of research to man
Lesson 1   values of research to manLesson 1   values of research to man
Lesson 1 values of research to man
 
Basic education curriculum
Basic education curriculumBasic education curriculum
Basic education curriculum
 
GRASP PERFORMANCE ASSESSMENT
GRASP PERFORMANCE ASSESSMENTGRASP PERFORMANCE ASSESSMENT
GRASP PERFORMANCE ASSESSMENT
 
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
 
Curriculum models (Philippines' Curriculum Models)
Curriculum models (Philippines' Curriculum Models)Curriculum models (Philippines' Curriculum Models)
Curriculum models (Philippines' Curriculum Models)
 
Legal Foundation of Education
Legal Foundation of EducationLegal Foundation of Education
Legal Foundation of Education
 
Indigenous Science Technology in the Philippines.pptx
Indigenous Science Technology in the Philippines.pptxIndigenous Science Technology in the Philippines.pptx
Indigenous Science Technology in the Philippines.pptx
 
Action research 2019pdf
Action research 2019pdfAction research 2019pdf
Action research 2019pdf
 
Philippine folkdance
Philippine folkdance Philippine folkdance
Philippine folkdance
 
Research instrument
Research instrumentResearch instrument
Research instrument
 
Related Literature and Related Studies
Related Literature and Related StudiesRelated Literature and Related Studies
Related Literature and Related Studies
 
Historical foundation of philippine education
Historical foundation of philippine education Historical foundation of philippine education
Historical foundation of philippine education
 
Problem-Based vs. Project Based Learning
Problem-Based vs. Project Based LearningProblem-Based vs. Project Based Learning
Problem-Based vs. Project Based Learning
 
Education System of the Philippines
Education System of the PhilippinesEducation System of the Philippines
Education System of the Philippines
 
Thesis
ThesisThesis
Thesis
 

Similar to Science, Technology and the K-12 Education Program

K to 12 enhanced basic ed by mi villenes (proj in ed m514)
K to 12 enhanced basic ed by mi villenes (proj in ed m514)K to 12 enhanced basic ed by mi villenes (proj in ed m514)
K to 12 enhanced basic ed by mi villenes (proj in ed m514)Rejulios Villenes
 
Sir ando k12
Sir ando k12Sir ando k12
Sir ando k12krisvhert
 
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAM
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAMPERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAM
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAMJoshuaSumalinog1
 
GORDO-POSITION PAPER_MAED 302.docx
GORDO-POSITION PAPER_MAED 302.docxGORDO-POSITION PAPER_MAED 302.docx
GORDO-POSITION PAPER_MAED 302.docxEDGARDOJRGORDO
 
The K-12 Curriculum
The K-12 CurriculumThe K-12 Curriculum
The K-12 CurriculumJerilyn
 
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdfjpt27068
 
A glimpse on k to 12 program in the philippines
A glimpse on k to 12 program in the philippinesA glimpse on k to 12 program in the philippines
A glimpse on k to 12 program in the philippinesErnieCerado1
 
Understanding the k 12 basic education program updated 042312
Understanding the k 12 basic education program updated 042312Understanding the k 12 basic education program updated 042312
Understanding the k 12 basic education program updated 042312Hans Mallen
 
K to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONK to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONNie99
 
K-12 CURRICULUM FOR BASIC EDUCATION
K-12 CURRICULUM FOR BASIC EDUCATIONK-12 CURRICULUM FOR BASIC EDUCATION
K-12 CURRICULUM FOR BASIC EDUCATIONjoirey sumimba
 
Basic education (k to 12 program)
Basic education (k to 12 program)Basic education (k to 12 program)
Basic education (k to 12 program)RenalynRoseMandique
 
Gearing Up for the FUTURE.pptx
Gearing Up for the FUTURE.pptxGearing Up for the FUTURE.pptx
Gearing Up for the FUTURE.pptxjeffautor15
 
AN INTRODUCTION TO THE 2013 CURRICULUM
AN INTRODUCTION TO THE 2013 CURRICULUMAN INTRODUCTION TO THE 2013 CURRICULUM
AN INTRODUCTION TO THE 2013 CURRICULUMKate Campbell
 
119065129-DepEd-K12-Basic-Education-Program.pdf
119065129-DepEd-K12-Basic-Education-Program.pdf119065129-DepEd-K12-Basic-Education-Program.pdf
119065129-DepEd-K12-Basic-Education-Program.pdfriamagdosa18
 
The value of economic and cultural capital to college readiness.pdf
The value of economic and cultural capital to college readiness.pdfThe value of economic and cultural capital to college readiness.pdf
The value of economic and cultural capital to college readiness.pdfJenneferInocencio
 
Present Problem of Philippines Educational System.pdf
Present Problem of Philippines Educational System.pdfPresent Problem of Philippines Educational System.pdf
Present Problem of Philippines Educational System.pdfBorbeAnaliza
 
Education in the Philippines
Education in the PhilippinesEducation in the Philippines
Education in the PhilippinesBenj Vallejos
 

Similar to Science, Technology and the K-12 Education Program (20)

K to 12 enhanced basic ed by mi villenes (proj in ed m514)
K to 12 enhanced basic ed by mi villenes (proj in ed m514)K to 12 enhanced basic ed by mi villenes (proj in ed m514)
K to 12 enhanced basic ed by mi villenes (proj in ed m514)
 
Sir ando k12
Sir ando k12Sir ando k12
Sir ando k12
 
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAM
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAMPERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAM
PERCEPTION TOWARDS THE IMPLEMENTATION OF SENIOR HIGH SCHOOL PROGRAM
 
GORDO-POSITION PAPER_MAED 302.docx
GORDO-POSITION PAPER_MAED 302.docxGORDO-POSITION PAPER_MAED 302.docx
GORDO-POSITION PAPER_MAED 302.docx
 
The K-12 Curriculum
The K-12 CurriculumThe K-12 Curriculum
The K-12 Curriculum
 
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf
446230277-Chapter-5-Curriculum-Devt-Reforms-and-Enhancement.pdf
 
UJER24-19515592.pdf
UJER24-19515592.pdfUJER24-19515592.pdf
UJER24-19515592.pdf
 
A glimpse on k to 12 program in the philippines
A glimpse on k to 12 program in the philippinesA glimpse on k to 12 program in the philippines
A glimpse on k to 12 program in the philippines
 
Understanding the k 12 basic education program updated 042312
Understanding the k 12 basic education program updated 042312Understanding the k 12 basic education program updated 042312
Understanding the k 12 basic education program updated 042312
 
K to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONK to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATION
 
K-12 CURRICULUM FOR BASIC EDUCATION
K-12 CURRICULUM FOR BASIC EDUCATIONK-12 CURRICULUM FOR BASIC EDUCATION
K-12 CURRICULUM FOR BASIC EDUCATION
 
Basic education (k to 12 program)
Basic education (k to 12 program)Basic education (k to 12 program)
Basic education (k to 12 program)
 
Gearing Up for the FUTURE.pptx
Gearing Up for the FUTURE.pptxGearing Up for the FUTURE.pptx
Gearing Up for the FUTURE.pptx
 
AN INTRODUCTION TO THE 2013 CURRICULUM
AN INTRODUCTION TO THE 2013 CURRICULUMAN INTRODUCTION TO THE 2013 CURRICULUM
AN INTRODUCTION TO THE 2013 CURRICULUM
 
119065129-DepEd-K12-Basic-Education-Program.pdf
119065129-DepEd-K12-Basic-Education-Program.pdf119065129-DepEd-K12-Basic-Education-Program.pdf
119065129-DepEd-K12-Basic-Education-Program.pdf
 
The value of economic and cultural capital to college readiness among Filipin...
The value of economic and cultural capital to college readiness among Filipin...The value of economic and cultural capital to college readiness among Filipin...
The value of economic and cultural capital to college readiness among Filipin...
 
The value of economic and cultural capital to college readiness.pdf
The value of economic and cultural capital to college readiness.pdfThe value of economic and cultural capital to college readiness.pdf
The value of economic and cultural capital to college readiness.pdf
 
Present Problem of Philippines Educational System.pdf
Present Problem of Philippines Educational System.pdfPresent Problem of Philippines Educational System.pdf
Present Problem of Philippines Educational System.pdf
 
Education in the Philippines
Education in the PhilippinesEducation in the Philippines
Education in the Philippines
 
Educ115 Assignment
Educ115 AssignmentEduc115 Assignment
Educ115 Assignment
 

More from AGHAM - Advocates of Science and Technology for the People

More from AGHAM - Advocates of Science and Technology for the People (20)

Technical paper on ulysses flooding
Technical paper on ulysses floodingTechnical paper on ulysses flooding
Technical paper on ulysses flooding
 
Primer on National Industrialization (Full Text Filipino)
Primer on National Industrialization (Full Text Filipino)Primer on National Industrialization (Full Text Filipino)
Primer on National Industrialization (Full Text Filipino)
 
Praymer hinggil sa Pambansang industriyalisasyon
Praymer hinggil sa Pambansang industriyalisasyonPraymer hinggil sa Pambansang industriyalisasyon
Praymer hinggil sa Pambansang industriyalisasyon
 
Agham Feed-in Tariff system Briefer
Agham Feed-in Tariff system BrieferAgham Feed-in Tariff system Briefer
Agham Feed-in Tariff system Briefer
 
Moving forward: Nationalize the lrt/mrt - agham
Moving forward: Nationalize the lrt/mrt - aghamMoving forward: Nationalize the lrt/mrt - agham
Moving forward: Nationalize the lrt/mrt - agham
 
Dam guide for communities
Dam guide for communitiesDam guide for communities
Dam guide for communities
 
Small Scale Mining in the Philippines: Towards Genuine National Development
Small Scale Mining in the Philippines: Towards Genuine National DevelopmentSmall Scale Mining in the Philippines: Towards Genuine National Development
Small Scale Mining in the Philippines: Towards Genuine National Development
 
AGHAM Notes on Renewable Energy in the Philippines
AGHAM Notes on Renewable Energy in the Philippines AGHAM Notes on Renewable Energy in the Philippines
AGHAM Notes on Renewable Energy in the Philippines
 
Agham bits on power shortage and emergency powers
Agham bits on power shortage and emergency powersAgham bits on power shortage and emergency powers
Agham bits on power shortage and emergency powers
 
Gabay sa Pagtatalakay ng EPIRA
Gabay sa Pagtatalakay ng EPIRAGabay sa Pagtatalakay ng EPIRA
Gabay sa Pagtatalakay ng EPIRA
 
The Role of Agricultural Modernization in Achieving Food Security and Self-su...
The Role of Agricultural Modernization in Achieving Food Security and Self-su...The Role of Agricultural Modernization in Achieving Food Security and Self-su...
The Role of Agricultural Modernization in Achieving Food Security and Self-su...
 
Mt.abo eim3
Mt.abo eim3Mt.abo eim3
Mt.abo eim3
 
On ven
On venOn ven
On ven
 
Report on Power failure: Ten (10) Years of EPIRA jun 2011
Report on Power failure: Ten (10) Years of EPIRA jun 2011Report on Power failure: Ten (10) Years of EPIRA jun 2011
Report on Power failure: Ten (10) Years of EPIRA jun 2011
 
Power failure: Ten (10) Years of EPIRA jun 2011
Power failure: Ten (10) Years of EPIRA jun 2011Power failure: Ten (10) Years of EPIRA jun 2011
Power failure: Ten (10) Years of EPIRA jun 2011
 
Beo!!!!
Beo!!!!Beo!!!!
Beo!!!!
 
Cec feedback03
Cec feedback03Cec feedback03
Cec feedback03
 
Radiation
RadiationRadiation
Radiation
 
Radiation
RadiationRadiation
Radiation
 
Earthquake and tsunami
Earthquake and tsunamiEarthquake and tsunami
Earthquake and tsunami
 

Recently uploaded

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 

Recently uploaded (20)

Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 

Science, Technology and the K-12 Education Program

  • 1. Science, technology and the K-12 education program Philippine education in general has historically been problematic with science and mathematics education even more weak. In view of this, the Aquino administration pushed for a complete overhaul of the education system by adding two years in basic education, apparently as a solution to its recurring troubles. Agham Advocates of Science and Technology for the People in its advocacy for a scientific and mass-oriented form of education, produced this paper as a critique of the K-12 program. This paper will enumerate the flaws of the K-12 program with focus on its impacts on the quality of the science and mathematics education in the country. Background on the K-12 Program In 2013, Republic Act No. 10533 or the Enhanced Basic Education Act (EBEA) was signed into law by President Benigno Aquino III. Its guiding principle is to make Filipino graduates “globally competitive” to serve the needs of a “globalized environment.” EBEA provided the basis for lengthening the basic education program from 10 years to 12 years. This encompasses a year of compulsory kindergarten, six years of elementary education and another six years of secondary education (which is subdivided into four years of junior high school plus 2 years of senior high school). The entrant age for kindergarten is five. Students are thus expected to graduate at age of 18. In pursuit of a strengthened curriculum, several reforms were provided in the EBEA, which include: (1) the spiral progression approach, (2) putting up career tracks as part of the senior high school including Science, Technology, Engineering and Mathematics (STEM) Strand of the Academic Track, and Technical-Vocational Track, (3) the Mother Tongue Based – Multilingual Education (MTB-MLE). The spiral progression approach’s objective is to impart knowledge in a less compact and more temporally distributed way. Basic knowledge will be taught in the early years of education and will be used as building blocks to add more complex concepts in the succeeding years. For example, in the old education program, biology is taught in 2nd year high school, chemistry in 3rd and physics in the 4th year. Under the K-12 program, Physics, Chemistry, Biology and Earth Sciences will be taught at all grade levels in elementary and junior high school with the topics changing every quarter and the complexity increasing as the student moves up to the higher grades. Career tracks in senior high school (SHS; grades 11 and 12) will define the subjects students will have to master. Each student may choose among three tracks: Academic, Technical- AGHAMAdvocates of Science and Technology for the People 127B Scout Fuentebella St. Brgy. Sacred Heart, Quezon City Telephone: +632 998 4226 E-mail: secretariat@agham.org URL: www.agham.org
  • 2. Page 2 of 11 Vocational-Livelihood, and Sports and Arts. The Academic Track has three strands under it: Business, Accountancy and Management (BAM); Humanities, Education, Social Science (HESS); and Science, Technology, Engineering, Mathematics (STEM). Aside from the track subjects, subject content under a core curriculum will have to be undergone by all senior high school students. Under the MTB-MLE scheme, the primary language of instruction from kindergarten to Grade 3 would be the students’ native/regional language. Filipino and English will subsequently be introduced and will replace the native language as primary language of instruction at secondary school. According to the Philippine government, K-12 was designed to improve the competency of Filipino graduates. While on the surface this could be laudable, a critical assessment of the components of the K-12 program, especially with regards to the Vocational Course Track, reveals a malevolent drive to produce “exportable” Filipino workers. A quick look at the government’s K-12 website reveals that the word “learning” appears 11 times. Meanwhile “employ” (including employment and employee) appears 14 times. Representative Rosenda Ocampo of Manila and sponsor of the K-12 House bill frankly states that, “...ang pagtukoy sa mga kurso sa ilalim ng programang K to 12 ay idinidikta ng pangangailangan, at ng job market...ang mga bansang industriyalisado at mas mayayaman ay may paparaming bilang ng matatanda na nangangailangan ng pag-aalaga, at ito ang dahilan kaya tayo may caregiving courses.” (the choice of courses in the K-12 program is dictated by the job market...the industrialized and developed nations have a growing senile population needing care, which is why we have caregiving courses). K-12 kicked off on school year 2012-2013, with the compulsory kindergarten program starting a year earlier. K-12 would not solve the systematic maladies of science and math education The “quality” of our science and math education as perceived by corporate interests jumped from rank of 96th (out of 144 countries) for the year 2013 to a rank of 70th for the year 2014, as the data from the World Economic Forum’s Global Competitive Index suggests. The jump coincides with the first year of the K-12 implementation. Before the implementation of the K-12 program, changes in the country’s rank were minimal. However, even if the Philippines ranks 70th in the world, science and Technology education in the Philippines has been historically weak, which persists until now. According to the 2003 Trends in Mathematics and Science Survey, we are 34th out of 38 countries in high school math; 43rd out 46 countries in high school science; and 23rd out of 25 countries in both grade school math and science. Nine years later this poor performance hasn’t improved at all, based on the results of the 2012 National Achievement Test. In the science part of the exam 41.58% of examinees scored below average (the other large chunk, at 49.95% of
  • 3. examinees scored average), which is a sad reflection of the overall state of the country’s basic education program. This wobbly foundation in basic science and math education translates to low number of enrollees in these disciplines. According to the data of the Commission on Higher Education (CHED), only 0.49% of the total enrollees from 2001-2012 entered mathematics-related programs while only 0.97% were enticed to pursue courses in natural science. The government claims that the K-12 program will remedy our education system’s deteriorating situation, especially in the field of science and technology. An investigation of the past educational system however reveals that the problem is deeper, symptomatic of institutional maladies and involving many sectors of society. By not directly addressing these root causes, K-12 will only aggravate rather solve the deterioration of our educational system. The poor state of our science and math education can be attributed to the following causes: a) inadequate science curriculum which does not promote a strong science culture; b) shortcomings in teachers’ capacity-building and c) shortages in basic education facilities, particularly science laboratories and equipment. a) inadequate science curriculum and weak promotion of a strong science culture One of the fundamental objectives of ensuring scientific literacy (and thus science education) in a country is to produce citizens capable of adapting to a variety of situations and solving problems through scientific thinking. Basic science education comes down to instilling into students the ability to think and view the universe objectively and systematically. Even at the early stages of education, curiosity and systematic exploration of the environment should be encouraged. If you ask any grade-schooler what he was taught at school during science classes, he’ll probably recite with enthusiasm the facts and data he learned, content with “learning” from the pages of a textbook rather than directly from nature. Before the implementation of the K-12 program, the Philippines used the 2002 Basic Education Curriculum and the 2010 Secondary Education Curriculum (SEC). Our student’s lackluster performance in past international science and math tests shows that there is a problem with our education system. A number of studies document that the BEC and SEC are partly to blame. A report prepared by Carlo Magno (2011) for AUSAID concludes that the SEC, “lacks opportunities to use science skills to support learners to solve problems, question, critique, analyze, and evaluate scientific claims.” It noted several instances in the secondary level science curriculum where certain topics were given unnecessary attention, in particular the general history of chemistry and the origins of the atomic theory. It’s implied that such time would have been better used in teaching the students how to use the concept (rather than how the concept came to be). Several topics are covered in the curricula of other countries but not in the BEC. In Philippine physics, topics like “circular motion, transistors and integrated circuits, mass-energy equivalence, the wave equation and wave-particle duality” were not discussed. In biology, students are not taught about, “disease, immunology, homeostasis, cell chemistry,
  • 4. Page 4 of 11 gene expression, and human evolution.” The report adds that in secondary school biology, the only bio-related technology that students are exposed to is a simple light microscope. A discussion paper published by the Philippine Institute for Development Studies (2005) remarks that the BEC is overcrowded in subjects and insensitive to the varied ethnic backgrounds of the students. This leads many students to lose focus and resort to memorization in order to pass. In a relatively backward country like ours, where superstitious belief and metaphysical thinking are still very prevalent, students will find it harder to reconcile scientific objectivity and the metaphysical culture he grew up with. Clearly an overhaul of the BEC and SEC is needed, but the spiral curriculum system spread over multiple years that the government is proposing might do more harm than good. The rationale behind this is that students can be taught a simple concept at the beginning, with the complexity of the topics increasing year after year. A short review or revisit of previous topics helps student recall and prepares them for the more complex lessons to come. But as noted by one academic, the spiral curriculum’s “implementation needs to be more compressed. It can be and is much more powerful when scaled down to fit the individual classroom or grade level.” Extending and spreading scientific topics across such a long period prevents students from engaging in the intense, focused praxis needed to achieve a mastery in science. This practical component is what is severely lacking in both our old curriculum and the new one. The practical work aspect allows, “learners to deal with the contents in depth in the classroom or mostly in science laboratories.” A 2005 study comparing the (old) Philippine and Japanese educational systems commented that “the use of science practical works is highly emphasized in the Japan science curriculum while the Philippine science curriculum emphasizes health education and Filipino values.” The topic and concepts of K-12’s spiral curriculum have also not been divided in order of increasing complexity. Many of the topics are related to each to other horizontally. For example, in the subject Parts and functions of animal and plants, the different organ systems, the Digestive, Respiratory, Excretory Systems are studied in Grade 8 while the circulatory, nervous, and endocrine systems are studied in the higher years when knowledge on one organ system is not a prerequisite for learning other organ systems.
  • 5. The table below is a summary of K-12’s science subjects for Grade 7 to 10. Grade 7 Grade 8 Grade 9 Grade 10 Properties and Structure of Matter Properties of Solutions, Distinguishing different solutions Particulate nature of matter (Atomic Theory), Periodic Table of Elements Chemical reactions and bonds : Ionic, covalent, metallic, The Mole Kinetic Molecular Theory (Gas Laws), Organic Molecules Changes that Matter Undergo Elements, Compounds, metals, non-metals, acids, and bases Phase Changes, Conservation of Mass Compounds Chemical Reactions, Conservation of Mass Parts and Function: Animal and Plants Cell as Unit of Life and Levels of Organization Digestive, Respiratory, Excretory Systems Digestive, Respiratory, and Circulatory systems Nervous and Endocrine System Heredity: Inheritance and Variation Asexual Reproduction Mitosis and Meiosis Genes and Chromosomes DNA and Inheritance Biodiversity and Evolution Animal and Plant Cells Species Extinction Natural Selection Ecosystem Populations Energy and Material cycles Photosynthesis and Cellular Respiration Human impacts on the environment Force and Motion and Distance, Speed, Acceleration, One Dimensional motion graph Newton’s Law of Motion, Conservation of Energy (in terms of Work) Conservation of Momentum, Projectile Motion Static and Dynamic equilibrium of bodies Energy Different forms of energy Energy transfer, temperature, current, speed of sound Conservation of Mechanical Energy, Heat and Work, Optics, Electric and Magnetic Fields b. Shortcomings in teachers' competency on science and math A CHED research on the competence of pre-service science teachers (PT) from four Teacher Education Institution (TEI) showed worrying results. Chemistry pre-service teachers scored low in their understanding of the foundational concepts of chemistry, especially with regards to the atomic and molecular nature of matter. Biology PT’s fared a little better, with more than half of test subjects showing an understanding of biological processes (e.g. how the food we eat is transformed into muscular energy). However, many do not have a grasp of the concept of randomness with regards to biological system (e.g. how random mutations affect the evolution of a certain species). As the paper noted, this is an essential view for comprehending the subtleties of biology. For physics PT’s the assessment revealed a lack of analytical skills, showing an inability to apply, synthesize, and evaluate different physics concepts together.
  • 6. Page 6 of 11 The results of the Licensure Exam for Teachers (LET) confirms the CHED study, revealing that the problem persists throughout the country and across other teacher specializations and subjects. From the August 2014 LET, only 35.74% of elementary school teacher examinees passed. Performance for secondary school teacher examinees is almost the same, with only 34.4% passing. It would be wrong to place the blame on the teacher’s themselves. The quality of training and preparation that they received from their respective TEI should also be taken into account. This is confirmed by CHED Memorandum Order No. 32 (2010) which placed a nationwide moratorium on the opening of teacher education courses for the school year 2011-2012. The memorandum cited the proliferation of substandard teacher schools which, “if allowed to continue unabated would result to the deterioration of the quality of graduates.” In 2012, the administration of the Test of English Proficiency for Teachers (TEPT) and Process Skills Test (PST) in Science and Mathematics to all permanent Grade I and II public school teachers was issued through DepED Memorandum No. 12, S. 2012. The Process Skills Test (PST) in Science and Mathematics is a 40-item multiple choice test to be taken for an hour. It is comprised of processing skills such as observing; classifying; inferring; predicting; measuring/quantifying; communicating; interpreting data; analyzing data; evaluating; experimenting; making conclusions; making models; and defining operationally. The Teachers’ Mean Performance in the PST in all regions, is low with only 26% - 50% proficiency level. The results of the 117,728 examinees show that 62% of the teachers have poor process skills which they used predominantly in teaching science and mathematics. Even if the problem of math and science education has already been identified, there has not been a substantial government intervention through trainings and programs that addressed the problem. c.) shortages in science laboratories and other facilities Although the DepED claims that the K-12 curriculum is centered on an inquiry-based approach, present material realities could render any reform ineffective. Data from the Department of Education reveals a serious lack of science laboratories. Only 4.8% of all public elementary schools have their own science lab. Regional variations reflect the uneven development between city and province. In NCR, roughly 42% of elementary schools have a science lab compared to a measly 2.3% for ARMM. Secondary schools fare better, with around 50% of secondary public schools nationwide having their own science lab. A separate statistic from DOST-SEI director Ester Ogena reveals an even more appalling perspective: on average, a science lab in the Philippines is shared by 1,325 students! Students don’t need an expensive science lab to learn and understand the basics. However in order for them to keep pace with today’s lightning advances in science and technology, they must have access to quality equipment and facilities. Take Biology as an example: plant growth and morphology can be taught outdoors but for students to understand
  • 7. the processes that enable plants to grow, they must be acquainted with cells and for that they need a microscope. The shortage in science laboratories and other facilities are a result of lack of adequate national budget for education. The 2015 National Expenditure Program increased the DepEd budget by 12.5% to P339.3 billion. Budgetary increments can be traced to the a much higher budget for operations, with significant increments going to the following expenditure items: (1) operations of schools, P15.4 billion; (2) provision of learning resources (e.g., textbooks, science and math equipment, DepEd computerization program), P7.7 billion; and (3) provision and maintenance of basic education facilities, P8.2 billion. Despite the budget increase, the predicted share of education to GDP is only 2.5% for 2015, way below the UN’s recommended share of 6% of the GDP. Following UN standards would require us to allocate about Php 800 billion or 30% of the national budget.1 This is not entirely impossible. In fact compared to other developing countries, the Philippines has a low tax-GDP ratio (at around 15.6% of the GDP as of 2013). This means that there are potential domestic resources to further fund education. UNESCO estimates that a modest increase in tax collection would result in enough funds to push education spending to 4.5% of the GDP (UNESCO, 2014). In comparison, Vietnam spends 6.6% of its GDP to education thanks to its 28% tax-GDP ratio. 1The IMF predicts the Philippine GDP for 2015 at $ 330.259 billion in current prices.
  • 8. Page 8 of 11 Towards a Nationalist, Scientific and Mass-oriented Educational Program To reverse the many crises in our education, dropping NAT scores, low enrollment in science and engineering, poor understanding of science, what is now required is a drastic overhaul of our educational system. Instead of a K-12 program that aims to produce a nation of employees for export, what is needed is a nation with highly developed scientific culture that embraces the quest for knowledge through systematic means and methodologies to promote the welfare of the majority. We need an education system that is vigorous in the development of its citizens’ capacity to shape their lives and propel their country towards holistic economic and social development. The country needs to develop and deploy an educational system that is nationalist, scientific and mass-oriented. A nationalist education program strives, in the words of the late Renato Constantino, for the country’s “economic emancipation, political independence and cultural renaissance.” The goal of such educational system would be to produce critical, empowered, and proactive citizens rather than exportable docile labourers. Such an educational program would instill in our students values that are being eroded in this era of globalization: respect for the dignity of labour and rights of indigenous people, reverence for the environment, love for one’s culture, an appreciation of the commons, and ultimately a predisposition for solidarity over individualism. A nationalist education system in particular would push for the use of our native languages, both in the vernacular and academic setting. The adoption of the English language as the primary mode of instruction has curtailed the nationalistic essence of the Philippines educational system. It served as the mode through which the United States conveyed its domination over the whole cultural superstructure of our country. This form of colonization is being propagated in the Philippines through the K-12 system. Ignoring several researches identifying the acceptability and appropriateness of using Filipino, English still remain as the medium of instruction in the new educational system. The mother-tongue based multi-lingual scheme under the K-12 does not necessarily uphold nationalism and cultural preservation since it is promoted only in the early years of education and will be eased by the introduction and subsequent domination of English and Filipino (Filipino will be the medium of instruction for only a selected number of subjects). The child’s formative years (Grade 1-2) will be focused on the development of oral and communication skills. Science would be taught much later at Grade 3. This set-up is strangely convenient for the country’s foreign dominated Business Processing Outsource and service industries. If the government was serious about the promotion of native languages, there should be support and opportunity to use the local tongue in more advanced and technical subjects. Such an effort would advance and further intellectualize the dynamics of our local languages. This is not entirely impossible as developed (and technology oriented) countries like Japan and Russia regularly publish scientific papers in their native tongue. A Mass-oriented educational program aims to cultivate a populace with high regards for domestic and indigenous knowledge-generation. It puts forth the needs of its own people and is sensitive to their experiences. Students of a mass-oriented educational program do not only
  • 9. strive to help the most vulnerable but to empathize with the weakest as well, appreciating the wisdom that the masses have accumulated in their practice of living and struggle. It is fighting not for the poor but with the poor. In this way, we can concretize the lessons taught in school, reversing the abstractions that science and math are notorious for. We can thus motivate students by showing them how exactly they can engage and contribute to Filipino society. A scientific educational program strives to develop knowledge and its use for the definite purpose of serving the needs of the country through the promotion of national industries. Thus it aims to generate the highest possible number of quality scientists, technologists and engineers. Every conceivable way to achieve this must be pursued. This means just wage for teachers, the use of required facilities and the promotion of higher education in the fields of agriculture, science and engineering through affordable and state supported infrastructures. Building such a system is possible, even with a “developing” nation budget. Cuba, a small Caribbean nation, that leads Latin America in Primary Math and Science performance, by investing as much as 10% of its GDP to education despite having an economy that is ten times smaller than ours has shown that political and economic shortages are no hindrance to a committed government. Strengthening the science and math education goes hand and hand with national industrialization The problems of science and math education in the country is not detached from the overall problem of basic education and the Philippine society as a whole. Unless these fundamental problems, including the lack of teachers and facilities, commercialization, and state neglect are addressed, science and math competencies of the Filipino children would never have the chance to flourish. An exceptional basic science and math education would be useless if it is not used for the benefit of the people through its application to basic industries. At present any development (or maldevelopment) in the quality and quantity of our science graduates would only benefit developed countries, as many of our scientists and engineers opt to work abroad or for the local subsidiary of a multinational company. There is a need for national domestic industries to create a demand for scientists, technologists and engineers within the country. Such a demand would spur further improvements in our science education programs. Advanced industries generally require scientists and technologists with greater skills and expertise. Unless there is a genuine program for national industrialization to be served by the country's educational system, programs such as K-12 are just extensions and variations of the existing rotten system. In the immediate, the inadequate science curriculum, lack of strong science culture; teachers' competencies, shortages in basic education facilities such as science laboratories and low educational budget could be addressed by government interventions which genuinely seeks to improve the country's educational program.
  • 10. Page 10 of 11 References Bernardo, A. (1999), Overcoming Obstacles to Understanding and Solving Word Problems in Mathematics [Abstract]. Educational Psychology, 19(2). Retrieved on January 22, 2015 from http://www.tandfonline.com/doi/abs/10.1080/0144341990190203?journalCode=cedp20#.VMBuFGSU dK8 Commission on Higher Education (2010). CHED Memorandum Order No. 32. Retrieved January 8, 2014, from: http://www.ched.gov.ph/wp-content/uploads/2013/07/CMO-No.32-s2010.pdf Commission on Higher Education (2010). Higher Education Indicator as of July 24, 2012. Retrieved on January 22, 2015 from http://www.ched.gov.ph/wp-content/uploads/2013/07/Higher-Education- Indicator-as-of-July-24-2012.pdf Constantino, R. (1970). The Miseducation of the Filipino. Journal of Contemporary Asia 1(1). Retrieved on January 20, 2015 from http://eaop.ucsd.edu/198/groupidentity/THE%20MISEDUCATION%20OF%20THE%20FILIPINO.pdf de Dios, Angelo C. (2015, January 10). Did We Totally Misunderstand What A Spiral Curriculum Should Be? [Web log]. Retrieved on January 22, 2015 from http://philbasiceducation.blogspot.com/2015/01/did-we-totally-misunderstand-what.html Department of Education (2013). K-12 Curriculum Guide Science. Retreieved on January 22, 2015 from lrmds.deped.gov.ph/download/3289 Freire, Paulo (1978). Pedagogy in Process: The Letters to Guinea Bissau. Gibbs, B.C. (2014) Reconfiguring Bruner: Compressing the Spiral Curriculum. Phi Delta Kappan, 95(7). Retrieved January 19, 2015, from http://pdk.sagepub.com/content/95/7/41.full Lee-Chua, Q. (2010, October 17). Science laboratory on wheels. Inquirer. Retrieved on January 20, 2015 from http://newsinfo.inquirer.net/inquirerheadlines/learning/view/20101017-298240/Science- laboratory-on-wheels Magno, C. (2011) Analysis of the Basic Education of the Philippines: Implications for the K to 12 Education Program. Retrieved January 20, 2015 from http://www.academia.edu/3814475/Analysis_of_the_Basic_Education_of_the_Philippines_ Maligalig, D. S., Albert J. G. (2005) Measures for Assessing Basic Education in the Philippines, PIDS Discussion Paper Series. Retrieved on January 19, 2015 from http://saber.eaber.org/sites/default/files/documents/PIDS_Maligalig_2008.pdf Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings From IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Retrieved on January 22, 2015 from http://timssandpirls.bc.edu/PDF/t03_download/T03_S_Chap1.pdf Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings From IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Retrieved on January 22, 2015 from http://timssandpirls.bc.edu/PDF/t03_download/T03_M_Chap2.pdf Padama, E., Gallardo, A., Lacuata, F., Lamorena, M., Navaza, D., Nueva Espana, R., ... Prudente, M. (2014). Practices of Teacher Education Institutions in Science Education. International Journal of Education and Research, 2(11). Retrieved January 8, 2015, from http://www.ijern.com/journal/2014/November-2014/29.pdf
  • 11. Pawilen, G. (2005). A Comparative Study of the Elementary Science Curriculum of Philippines and Japan. Ehime University Faculty of Education Bulletin 1(52). Retrieved on January 20, 2015 from http://www.ed.ehime-u.ac.jp/~kiyou/2005/pdf/19.pdf San Juan, D.M. (2013). Kaisipang Nasyonalista at Teoryang Dependensiya sa Edukasyon: Ideolohikal na Kritik ng Programang K to 12 ng Pilipinas. MALAY, 26(1)