SlideShare a Scribd company logo
1 of 83
R.M.K COLLEGE OF ENGINEERING
AND TECHNOLOGY
RSM NAGAR, PUDUVOYAL-601206
DEPARTMENT OF MECHANICAL ENGINEERING
CE6451 – FLUID MECHANICS & MACHINERY
III SEM MECHANICAL ENGINEERING
Regulation 2013
FORMULA BOOK
PREPARED BY
C.BIBIN / R.ASHOK KUMAR / N.SADASIVAN
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 2
PROPERTIES OF FLUID:
MASS DESNITY (ρ):
𝜌 =
π‘š
𝑉
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
m Mass Kg
V Volume m3
SPECIFIC VOLUME (v):
𝑣 =
𝑉
π‘š
=
1
𝜌
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
m Mass Kg
V Volume m3
𝑣 Specific Volume π‘š3
π‘˜π‘”β„
SPECIFIC WEIGTH or WEIGTH DENSITY (w):
𝑀 =
π‘Š
𝑉
=
π‘šπ‘”
𝑉
= πœŒπ‘”
𝑆𝑖𝑛𝑐𝑒 π‘Š = π‘šπ‘” π‘Žπ‘›π‘‘ 𝜌 = π‘š
𝑉⁄
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
m Mass Kg
V Volume m3
UNIT – I – FLUID PROPERTIES AND FLOW
CHARACTERISTICS
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 3
𝑀 Specific Weight 𝑁
π‘š3⁄
g Acceleration due to gravity π‘š
𝑠2⁄
SPECIFIC GRAVITY (S):
𝑆 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑒𝑖𝑑
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ 𝑓𝑙𝑒𝑖𝑑
𝑆 =
π‘€π‘Žπ‘ π‘  𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑒𝑖𝑑
π‘€π‘Žπ‘ π‘  𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ 𝑓𝑙𝑒𝑖𝑑
Symbol Description Unit
𝑆 Specific Gravity No unit
𝜌 Density or Mass Density π‘˜π‘”
π‘š3⁄
𝑀 Specific Weight 𝑁
π‘š3⁄
𝑀 π‘€π‘Žπ‘‘π‘’π‘Ÿ
Specific Weight of
Standard Fluid (Water) =
9.81
𝑁
π‘š3⁄
𝜌 π‘€π‘Žπ‘‘π‘’π‘Ÿ
Mass Density of Standard
Fluid (Water) = 1000
π‘˜π‘”
π‘š3⁄
VISCOSITY (ΞΌ):
𝜏 𝛼
𝑑𝑒
𝑑𝑦
𝜏 = πœ‡
𝑑𝑒
𝑑𝑦
Symbol Description Unit
𝜏 Shear Stress 𝑁
π‘š2⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝑑𝑒 Change in Velocity π‘š
𝑠⁄
𝑑𝑦 Change in Distance π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 4
DYNAMIC VISCOSITY (ΞΌ):
πœ‡ =
𝜏
𝑑𝑒
𝑑𝑦⁄
Symbol Description Unit
𝜏 Shear Stress 𝑁
π‘š2⁄
πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝑑𝑒 Change in Velocity π‘š
𝑠⁄
𝑑𝑦 Change in Distance π‘š
𝑑𝑒
𝑑𝑦⁄ Rate of Shear Strain 1
𝑠⁄
Unit Conversion:
1
𝑁𝑠
π‘š2
= 10 π‘π‘œπ‘–π‘ π‘’
1 πΆπ‘’π‘›π‘‘π‘–π‘π‘œπ‘–π‘ π‘’ =
1
100
π‘π‘œπ‘–π‘ π‘’
1 π‘π‘œπ‘–π‘ π‘’ = 0.1
𝑁𝑠
π‘š2
KINEMATIC VISCOSITY (Ξ³):
𝛾 =
πœ‡
𝜌
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
Ξ³ Kinematic Viscosity π‘š2
𝑠⁄
Unit Conversion:
1 π‘ π‘‘π‘œπ‘˜π‘’ = 10βˆ’4 π‘š2
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 5
1 πΆπ‘’π‘›π‘‘π‘–π‘ π‘‘π‘œπ‘˜π‘’ =
1
100
π‘ π‘‘π‘œπ‘˜π‘’
VISCOSITY PROBLEMS FOR PLATE TYPE:
FORCE (F):
𝜏 =
𝐹
𝐴
Symbol Description Unit
𝜏 Shear Stress 𝑁
π‘š2⁄
F Force N
A Area of the plate π‘š2
POWER (P):
𝑃 = 𝐹 βˆ— 𝑑𝑒
Symbol Description Unit
𝑃 Power π‘Š
F Force N
𝑑𝑒 Change in Velocity π‘š
𝑠⁄
VISCOSITY PROBLEMS FOR SHAFT TYPE:
VELOCITY OF SHAFT (u):
𝑒 =
πœ‹π·π‘
60
Symbol Description Unit
𝐷 Diameter of Shaft π‘š
N Speed of Shaft Rpm
𝑒 Velocity π‘š
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 6
FORCE (F):
𝜏 =
𝐹
𝐴
𝜏 = πœ‹π·πΏ
Symbol Description Unit
𝜏 Shear Stress 𝑁
π‘š2⁄
F Force N
A Circumference of Shaft π‘š2
𝐷 Diameter of Shaft π‘š
𝐿 Length of Shaft π‘š
TORQUE ON SHAFT (T):
𝑇 = 𝐹 βˆ—
𝐷
2
Symbol Description Unit
𝑇 Torque 𝑁 βˆ’ π‘š
F Force N
𝐷 Diameter of Shaft π‘š
POWER ON SHAFT (P):
𝑃 =
2πœ‹π‘π‘‡
60
Symbol Description Unit
𝑃 Power π‘Š
𝑇 Torque 𝑁 βˆ’ π‘š
N Speed of Shaft Rpm
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 7
VISCOSITY PROBLEMS FOR CONICAL BEARING:
ANGULAR VELOCITY (Ο‰):
πœ” =
2πœ‹π‘
60
Symbol Description Unit
πœ” Angular Velocity π‘Ÿπ‘Žπ‘‘
𝑠𝑒𝑐⁄
N Speed of Shaft Rpm
ANGLE (ΞΈ):
π‘‘π‘Žπ‘›πœƒ =
π‘Ÿ1 βˆ’ π‘Ÿ2
𝐻
Symbol Description Unit
π‘Ÿ1 Outer Radius π‘š
π‘Ÿ2 Inner Radius π‘š
𝐻 Height π‘š
POWER (P):
𝑃 =
2πœ‹π‘π‘‡
60
Symbol Description Unit
𝑃 Power π‘Š
𝑇 Torque 𝑁 βˆ’ π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 8
N Speed of Shaft Rpm
THICKNESS OF OIL (h):
𝑇 =
πœ‹πœ‡πœ”
2β„Žπ‘ π‘–π‘›πœƒ
( π‘Ÿ1
4
βˆ’ π‘Ÿ2
4)
Symbol Description Unit
πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝑇 Torque 𝑁 βˆ’ π‘š
πœ” Angular Velocity π‘Ÿπ‘Žπ‘‘
𝑠𝑒𝑐⁄
β„Ž Thickness of Oil π‘š
π‘Ÿ1 Outer Radius π‘š
π‘Ÿ2 Inner Radius π‘š
CAPILLARITY:
HEIGHT OF LIQUID IN TUBE (h):
β„Ž =
4πœŽπ‘π‘œπ‘ πœƒ
πœŒπ‘”π‘‘
Symbol Description Unit
β„Ž Height of Liquid in Tube π‘š
𝜎 Surface Tension 𝑁
π‘šβ„
πœƒ
Angle of Contact between
Liquid and Tube
π‘Ÿπ‘Žπ‘‘
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝑑 Diameter of Tube π‘š
SURFACE TENSION:
PRESSURE IN LIQUID DROPLET (P):
𝑃 =
4𝜎
𝑑
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 9
Symbol Description Unit
𝑃 Pressure 𝑁
π‘š2⁄
𝜎 Surface Tension 𝑁
π‘šβ„
𝑑 Diameter of Droplet π‘š
PRESSURE IN BUBBLE (P):
𝑃 =
8𝜎
𝑑
Symbol Description Unit
𝑃 Pressure 𝑁
π‘š2⁄
𝜎 Surface Tension 𝑁
π‘šβ„
𝑑 Diameter of Bubble π‘š
PRESSURE IN LIQUID JET (P):
𝑃 =
2𝜎
𝑑
Symbol Description Unit
𝑃 Pressure 𝑁
π‘š2⁄
𝜎 Surface Tension 𝑁
π‘šβ„
𝑑 Diameter of Jet π‘š
CONTINUITY EQUATION:
πœ•π‘’
πœ•π‘₯
+
πœ•π‘£
πœ•π‘¦
+
πœ•π‘€
πœ•π‘§
= 0 [ πΉπ‘œπ‘Ÿ 3 βˆ’ 𝐷 π‘“π‘™π‘œπ‘€]
πœ•π‘’
πœ•π‘₯
+
πœ•π‘£
πœ•π‘¦
+ = 0 [ πΉπ‘œπ‘Ÿ 2 βˆ’ 𝐷 π‘“π‘™π‘œπ‘€]
πœ•
πœ•π‘Ÿ
( π‘Ÿπ‘’ π‘Ÿ) +
πœ•
πœ•πœƒ
( 𝑒 πœƒ) = 0[ πΉπ‘œπ‘Ÿ π‘π‘œπ‘™π‘Žπ‘Ÿ π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ ]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 10
BERNOULLI’S EQUATION:
πœ•π‘ƒ
𝜌
+ 𝑣. 𝑑𝑣 + 𝑔. 𝑑𝑧 = 0
𝑃1
πœŒπ‘”
+
𝑣1
2
2𝑔
+ 𝑧1 =
𝑃2
πœŒπ‘”
+
𝑣2
2
2𝑔
+ 𝑧2 + β„Ž 𝑓
Symbol Description Unit
𝑃1 & 𝑃2 Pressure at Section 1 & 2 𝑁
π‘š2⁄
𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š
𝑠⁄
𝑧1 & 𝑧2
Datum Head at Section 1 &
2
π‘š
β„Ž 𝑓 Head Loss π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
COEFFICIENT OF DISCHARGE:
𝐢 𝑑 =
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
COEFFICIENT OF VELOCITY:
𝐢𝑣 =
𝑣 π΄π‘π‘‘π‘’π‘Žπ‘™
𝑣 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
DISCHARGE OF VENTURIMETER AND ORIFICEMETER:
𝑄 = 𝐢 𝑑
π‘Ž1 π‘Ž2
√( π‘Ž1
2 βˆ’ π‘Ž1
2)
√2π‘”β„Ž
Symbol Description Unit
π‘Ž1 & π‘Ž2 Area at Section 1 & 2 π‘š2
β„Ž
Pressure Difference
between Section 1 & 2
(
𝑃1βˆ’ 𝑃2
πœŒπ‘”
)
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 11
𝐢 𝑑 Coefficient of Discharge
π‘₯
Difference in Mercury
Level
π‘š
β„Ž = π‘₯ (1 βˆ’
𝑆 π‘š
𝑆
) [ π‘€β„Žπ‘’π‘› 𝑆 > 𝑆 π‘š]
β„Ž = π‘₯ (
𝑆 π‘š
𝑆
βˆ’ 1) [ π‘€β„Žπ‘’π‘› 𝑆 π‘š > 𝑆]
β„Ž = (
𝑃1
πœŒπ‘”
+ 𝑍1) βˆ’ (
𝑃2
πœŒπ‘”
+ 𝑍2) [ 𝐼𝑛𝑐𝑙𝑖𝑛𝑒𝑑 π‘‰π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ]
MOMENTUM EQUATION:
𝐹 =
𝑑 (π‘šπ‘£)
𝑑𝑑
FORCE ACTING IN X – DIRECTION:
𝐹π‘₯ = πœŒπ‘„ ( 𝑣1 βˆ’ 𝑣2 π‘π‘œπ‘ πœƒ) + 𝑃1 𝐴1 βˆ’ 𝑃2 𝐴2 π‘π‘œπ‘ πœƒ
FORCE ACTING IN Y – DIRECTION:
𝐹𝑦 = πœŒπ‘„ (βˆ’ 𝑣2 π‘ π‘–π‘›πœƒ) βˆ’ 𝑃2 𝐴2 π‘ π‘–π‘›πœƒ
Symbol Description Unit
𝑃1 & 𝑃2 Pressure at Section 1 & 2 𝑁
π‘š2⁄
𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š
𝑠⁄
𝐴1 & 𝐴2 Area at Section 1 & 2 π‘š
πœƒ Angle of the Bend π·π‘’π‘”π‘Ÿπ‘’π‘’
𝑄 Discharge π‘š3
𝑠⁄
RESULTANT FORCE:
𝐹𝑅 = √𝐹π‘₯
2
+ 𝐹𝑦
2
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 12
ANGLE MADE BY RESULTANT FORCE:
π‘‘π‘Žπ‘›πœƒ =
𝐹𝑦
𝐹π‘₯
MOMENT OF MOMENTUM EQUATION:
𝑇 = πœŒπ‘„ ( 𝑣2 π‘Ÿ2 βˆ’ 𝑣1 π‘Ÿ1)
Symbol Description Unit
𝑇 Torque 𝑁 βˆ’ π‘š
𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š
𝑠⁄
π‘Ÿ1 & π‘Ÿ2
Radius of Curvature at
Section 1 & 2
π‘š
𝑄 Discharge π‘š3
𝑠⁄
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 13
TOTAL ENERGY LINE (TEL):
𝑇𝐸𝐿 = π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ + 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 π»π‘’π‘Žπ‘‘ + π·π‘Žπ‘‘π‘’π‘š π»π‘’π‘Žπ‘‘
𝑇𝐸𝐿 =
𝑃
πœŒπ‘”
+
𝑣2
2𝑔
+ 𝑍
Symbol Description Unit
𝑃 Pressure 𝑁
π‘š2⁄
𝑣 Velocity π‘š
𝑠⁄
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑍 Datum Head π‘š
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
HYDRAULIC ENERGY LINE (HEL):
𝐻𝐸𝐿 = π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ + π·π‘Žπ‘‘π‘’π‘š π»π‘’π‘Žπ‘‘
𝑇𝐸𝐿 =
𝑃
πœŒπ‘”
+ 𝑍
HAGEN POISEUILLE’S EQUATION:
SHEAR STRESS:
𝜏 = βˆ’
πœ•π‘
πœ•π‘₯
βˆ—
π‘Ÿ
2
Symbol Description Unit
𝜏 Shear Stress 𝑁
π‘š2⁄
πœ•π‘
πœ•π‘₯
Pressure Gradient 𝑁
π‘š3⁄
π‘Ÿ Radius of pipe π‘š
UNIT – II – FLOW THROUGH CIRCULAR CONDUITS
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 14
VELOCITY:
𝑒 = βˆ’
1
4πœ‡
βˆ—
πœ•π‘
πœ•π‘₯
βˆ— (𝑅2
βˆ’ π‘Ÿ2
)
Symbol Description Unit
𝑒 Velocity of Fluid in Pipe π‘š
𝑠⁄
πœ•π‘
πœ•π‘₯
Pressure Gradient 𝑁
π‘š3⁄
π‘Ÿ Radius of pipe π‘š
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
MAXIMUM VELOCITY:
𝑒 = βˆ’
1
4πœ‡
βˆ—
πœ•π‘
πœ•π‘₯
βˆ— (𝑅2
)
Symbol Description Unit
𝑒 Velocity of Fluid in Pipe π‘š
𝑠⁄
πœ•π‘
πœ•π‘₯
Pressure Gradient 𝑁
π‘š3⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
AVERAGE VELOCITY:
𝑒̅ = βˆ’
1
4πœ‡
βˆ—
πœ•π‘
πœ•π‘₯
βˆ— (𝑅2
)
Symbol Description Unit
𝑒̅
Average Velocity of Fluid
in Pipe
π‘š
𝑠⁄
πœ•π‘
πœ•π‘₯
Pressure Gradient 𝑁
π‘š3⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
RATIO BETWEEN MAXIMUM VELOCITY AND AVERAGE VELOCITY:
𝑒 π‘šπ‘Žπ‘₯
𝑒̅
= 2
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 15
DISCHARGE:
𝑒 = βˆ’
1
8πœ‡
βˆ—
πœ•π‘
πœ•π‘₯
βˆ— πœ‹ βˆ— 𝑅4
Symbol Description Unit
𝑒 Velocity of Fluid in Pipe π‘š
𝑠⁄
πœ•π‘
πœ•π‘₯
Pressure Gradient 𝑁
π‘š3⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
PRESSURE DIFFERENCE:
𝑃1 βˆ’ 𝑃2 =
32πœ‡π‘’Μ…πΏ
𝐷2
Symbol Description Unit
𝑒̅
Average Velocity of Fluid
in Pipe
π‘š
𝑠⁄
𝐿 Length of Pipe π‘š
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝐷 Diameter of Pipe π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LOSS OF HEAD:
β„Ž 𝑓 =
𝑃1 βˆ’ 𝑃2
πœŒπ‘”
=
32πœ‡π‘’Μ…πΏ
πœŒπ‘”π·2
[ π‘“π‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ π‘“π‘™π‘œπ‘€]
DARCY WEISBACH EQUATION:
β„Ž 𝑓 =
𝑃1 βˆ’ 𝑃2
πœŒπ‘”
=
4𝑓𝐿𝑣2
2𝑔𝑑
[ π‘“π‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘“π‘™π‘œπ‘€]
Symbol Description Unit
𝑣 Velocity of Fluid in Pipe π‘š
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 16
𝐿 Length of Pipe π‘š
𝑓 Friction Factor
𝑑 Diameter of Pipe π‘š
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
REYNOLD’S NUMBER:
𝑅 𝑒 =
πœŒπ‘£π‘‘
πœ‡
𝑓 =
0.079
𝑅 𝑒
0.25
[ πΉπ‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ πΉπ‘™π‘œπ‘€]
𝑓 =
16
𝑅 𝑒
[ πΉπ‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ πΉπ‘™π‘œπ‘€]
𝑅 𝑒 < 2000 π‘‡β„Žπ‘’π‘› π‘‘β„Žπ‘’ πΉπ‘™π‘œπ‘€ 𝑖𝑠 πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ
𝑅 𝑒 > 2000 π‘‡β„Žπ‘’π‘› π‘‘β„Žπ‘’ πΉπ‘™π‘œπ‘€ 𝑖𝑠 π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘
Symbol Description Unit
𝑣 Velocity of Fluid in Pipe π‘š
𝑠⁄
𝑑 Diameter of Pipe π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
MAJOR LOSS IN PIPES:
β„Ž 𝑓 =
32πœ‡π‘’Μ…πΏ
πœŒπ‘”π‘‘2
[ π‘“π‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ π‘“π‘™π‘œπ‘€]
β„Ž 𝑓 =
4𝑓𝐿𝑣2
2𝑔𝑑
[ π‘“π‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘“π‘™π‘œπ‘€]
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 17
Symbol Description Unit
𝑒̅ & 𝑣 Velocity of Fluid in Pipe π‘š
𝑠⁄
𝑑 Diameter of Pipe π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝑙 Length of Pipe π‘š
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝑓 Friction Factor
MINOR LOSS IN PIPES:
LOSS DUE TO SUDDEN ENLARGEMENT:
β„Ž 𝑒 =
( 𝑣1 βˆ’ 𝑣2)2
2𝑔
Symbol Description Unit
𝑣1 & 𝑣2
Velocity of Fluid in Pipe at
Inlet and Outlet
π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LOSS DUE TO SUDDEN CONTRACTION:
β„Ž 𝑐 =
𝐾𝑣2
2𝑔
𝐾 = (
1
𝐢𝑐
βˆ’ 1)
2
β„Ž 𝑐 =
0.5𝑣2
2𝑔
[ 𝐼𝑓 𝐢𝑐 π‘›π‘œπ‘‘ 𝑔𝑖𝑣𝑒𝑛]
Symbol Description Unit
𝑣 Velocity of Fluid at Outlet π‘š
𝑠⁄
𝐢𝑐
Coefficient of Contraction
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 18
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LOSS AT ENTRANCE OF PIPE:
β„Žπ‘– =
0.5𝑣2
2𝑔
Symbol Description Unit
𝑣 Velocity of Fluid at Inlet π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LOSS AT EXIT OF PIPE:
β„Ž π‘œ =
𝑣2
2𝑔
Symbol Description Unit
𝑣 Velocity of Fluid at Outlet π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LOSS DUE TO GRADUAL CONTRACTION:
β„Ž 𝑒 =
𝐾( 𝑣1 βˆ’ 𝑣2)2
2𝑔
Symbol Description Unit
𝑣1 & 𝑣2
Velocity of Fluid in Pipe at
Inlet and Outlet
π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝐾 Coefficient of Contraction
LOSS AT BEND OF PIPE:
β„Ž 𝑏 =
𝐾𝑣2
2𝑔
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 19
Symbol Description Unit
𝑣 Velocity of Flow π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝐾 Coefficient of Bend
LOSS AT DUE TO VARIOUS FITTINGS:
β„Ž 𝑣 =
𝐾𝑣2
2𝑔
Symbol Description Unit
𝑣 Velocity of Flow π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝐾 Coefficient of Fittings
LOSS AT DUE TO OBSTRUCTION:
β„Ž 𝑣 =
𝑣2
2𝑔
(
𝐴
𝐢𝑐 ( 𝐴 βˆ’ π‘Ž)
βˆ’ 1)
𝐢𝑐 =
𝐴 𝑐
( 𝐴 βˆ’ π‘Ž)
Symbol Description Unit
𝑣 Velocity of Flow π‘š
𝑠⁄
𝐴 Area of Pipe π‘š2
π‘Ž Area of Obstruction π‘š2
𝐴 𝑐
Area of Vena Contraction π‘š2
WHEN PIPES ARE CONNECTED IN SERIES:
DISCHARGE:
𝑄 = 𝑄1 = 𝑄2
𝑄 = 𝐴1 𝑣1 = 𝐴2 𝑣2
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 20
HEAD LOSS:
β„Ž 𝑓 = β„Ž 𝑓1 + β„Ž 𝑓2
β„Ž 𝑓 =
4𝑓𝑙1 𝑣1
2
2𝑔𝑑1
+
4𝑓𝑙2 𝑣2
2
2𝑔𝑑2
Symbol Description Unit
𝑣1 & 𝑣2
Velocity of Flow at Pipe 1
& 2
π‘š
𝑠⁄
𝐴1& 𝐴2 Area of Pipe 1 & 2 π‘š2
𝑑1& 𝑑2 Diameter of Pipe 1 & 2 π‘š
𝑙1& 𝑙2 Length of Pipe 1 & 2 π‘š
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝑓 Friction Factor
WHEN PIPES ARE CONNECTED IN PARALLEL:
DISCHARGE:
𝑄 = 𝑄1 + 𝑄2
𝑄 = 𝐴1 𝑣1 + 𝐴2 𝑣2
HEAD LOSS:
β„Ž 𝑓 = β„Ž 𝑓1 = β„Ž 𝑓2
β„Ž 𝑓 =
4𝑓𝑙1 𝑣1
2
2𝑔𝑑1
=
4𝑓𝑙2 𝑣2
2
2𝑔𝑑2
Symbol Description Unit
𝑣1 & 𝑣2
Velocity of Flow at Pipe 1
& 2
π‘š
𝑠⁄
𝐴1& 𝐴2 Area of Pipe 1 & 2 π‘š2
𝑑1& 𝑑2 Diameter of Pipe 1 & 2 π‘š
𝑙1& 𝑙2 Length of Pipe 1 & 2 π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 21
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
𝑓 Friction Factor
EQUIVALENT PIPE:
𝐿
𝐷5
=
𝐿1
𝐷1
5 +
𝐿2
𝐷2
5 +
𝐿3
𝐷3
5 + β‹― +
𝐿 𝑛
𝐷 𝑛
5
Symbol Description Unit
𝐷 Diameter of Pipe π‘š
𝐿 Length of Pipe π‘š
BOUNDARY LAYER:
DISPLACEMENT THICKNESS:
π›Ώβˆ—
= ∫ (1 βˆ’
𝑒
π‘ˆ
)
𝛿
0
𝑑𝑦
MOMENTUM THICKNESS:
πœƒ = ∫
𝑒
π‘ˆ
(1 βˆ’
𝑒
π‘ˆ
)
𝛿
0
𝑑𝑦
MOMENTUM THICKNESS:
π›Ώβˆ—βˆ—
= ∫
𝑒
π‘ˆ
(1 βˆ’
𝑒2
π‘ˆ2
)
𝛿
0
𝑑𝑦
Symbol Description Unit
𝑒
π‘ˆ
Velocity Distribution
𝛿 Boundary layer thickness
SHEAR STRESS:
𝜏0
πœŒπ‘ˆ2
=
πœ•πœƒ
πœ•π‘₯
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 22
πœƒ = ∫
𝑒
π‘ˆ
(1 βˆ’
𝑒
π‘ˆ
)
𝛿
0
𝑑𝑦
DRAG FORCE:
𝐹 𝐷 = ∫ π‘†β„Žπ‘’π‘Žπ‘Ÿ π‘†π‘‘π‘Ÿπ‘’π‘ π‘  βˆ— π΄π‘Ÿπ‘’π‘Ž
𝐿
0
𝐹 𝐷 = ∫ 𝜏0 βˆ— 𝑏 βˆ— 𝑑π‘₯
𝐿
0
LOCAL COEFFICIENT OF DRAG:
𝐢 𝐷
βˆ—
=
𝜏0
1
2
πœŒπ‘ˆ2
AVERAGE COEFFICIENT OF DRAG:
𝐢 𝐷 =
𝐹 𝐷
1
2
πœŒπ΄π‘ˆ2
Symbol Description Unit
𝜏0 Shear Stress 𝑁
π‘š2⁄
𝑏 Width of Plate π‘š
π‘ˆ Free Stream Velocity π‘š
𝑠⁄
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝐴 Area π‘š2
𝐹 𝐷 Drag Force 𝑁
BLASIUS’S SOLUTION:
BOUNDARY LAYER THICKNESS:
𝛿 =
4.91π‘₯
√ 𝑅 𝑒π‘₯
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 23
LOCAL COEFFICIENT OF DRAG:
𝐢 𝐷
βˆ—
=
0.664
√ 𝑅 𝑒π‘₯
AVERAGE COEFFICIENT OF DRAG:
𝐢 𝐷 =
1.328
√ 𝑅 𝑒𝐿
Symbol Description Unit
𝑅 𝑒π‘₯
Reynold’s Number at
distance x
𝑅 𝑒𝐿
Reynold’s Number at
distance L
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 24
UNITS:
Physical Quantity Symbol Unit Dimensions
Length L m L
Mass M Kg M
Time T Sec T
Area A m2
L2
Volume V m3
L3
Diameter D m L
Head H m L
Roughness k M L
Velocity v m/s LT-1
Angular Velocity Ο‰ rad/sec T-1
Acceleration a m/s2
LT-2
Angular Acceleration Ξ± rad/sec2
T-2
Speed N Rpm T-1
Discharge Q m3
/s L3
T-1
Kinematic Viscosity Ξ³ cm2
/s L2
T-1
Dynamic Viscosity ΞΌ N-s/m2
ML-1
T-1
Force F N MLT-2
Weight W N MLT-2
Thrust T N MLT-2
Density ρ Kg/ m3
ML-3
Pressure P N/m2
ML-1
T-2
UNIT – III – DIMENSIONAL ANALYSIS
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 25
Physical Quantity Symbol Unit Dimensions
Specific Weight w N/m3
ML-2
T-2
Young’s Modulus E N/m2
ML-1
T-2
Bulk Modulus K N/m2
ML-1
T-2
Shear Stress Ο„ N/m2
ML-1
T-2
Surface Tension Οƒ N/m MT-2
Energy / Work W/E J = N-m ML2
T-2
Torque T N-m ML-2
T-2
Power P W=J/s ML-2
T-3
Momentum M Kg m/s MLT-1
Efficiency Ξ· No Unit Dimensionless
SIMILARITY:
GEOMETRIC SIMILARITY:
𝐿 𝑝
𝐿 π‘š
=
𝑏 𝑝
𝑏 π‘š
=
𝐷 𝑝
𝐷 π‘š
= 𝐿 π‘Ÿ
𝐴 𝑝
𝐴 π‘š
=
𝐿 𝑝
𝐿 π‘š
βˆ—
𝑏 𝑝
𝑏 π‘š
= 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ = 𝐿 π‘Ÿ
2
𝑉𝑝
π‘‰π‘š
=
𝐿 𝑝
𝐿 π‘š
βˆ—
𝑏 𝑝
𝑏 π‘š
βˆ—
𝑑 𝑝
𝑑 π‘š
= 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ = 𝐿 π‘Ÿ
3
Symbol Description Unit
𝐿 𝑝&𝐿 π‘š
Length of Prototype &
Model
π‘š
𝑏 𝑝&𝑏 π‘š
Breadth of Prototype &
Model
π‘š
𝐷 𝑝&𝐷 π‘š
Diameter of Prototype &
Model
π‘š
𝑑 𝑝&𝑑 π‘š
Thickness of Prototype &
Model
π‘š
𝐴 𝑝&𝐴 π‘š Area of Prototype & Model π‘š2
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 26
𝑉𝑝&π‘‰π‘š
Volume of Prototype &
Model
π‘š3
𝐿 π‘Ÿ Length Ratio
KINEMATIC SIMILARITY:
𝑣 𝑝
𝑣 π‘š
= π‘£π‘Ÿ
π‘Ž 𝑝
π‘Ž π‘š
= π‘Ž π‘Ÿ
Symbol Description Unit
𝑣 𝑝&𝑣 π‘š
Velocity of Prototype &
Model
π‘š
𝑠⁄
π‘Ž 𝑝&π‘Ž π‘š
Acceleration of Prototype
& Model
π‘š
𝑠2⁄
π‘£π‘Ÿ Velocity Ratio
π‘Ž π‘Ÿ Acceleration Ratio
DYNAMIC SIMILARITY:
( 𝐹𝑖) 𝑝
( 𝐹𝑖) π‘š
=
( 𝐹𝑣) 𝑝
( 𝐹𝑣) π‘š
=
(𝐹𝑔)
𝑝
(𝐹𝑔)
π‘š
= πΉπ‘Ÿ
Symbol Description Unit
( 𝐹𝑖) 𝑝& ( 𝐹𝑖) π‘š
Inertia Force of Prototype
& Model
𝑁
( 𝐹𝑣) 𝑝& ( 𝐹𝑣) π‘š
Viscous Force of Prototype
& Model
𝑁
(𝐹𝑔)
𝑝
& (𝐹𝑔)
π‘š
Gravity Force of Prototype
& Model
𝑁
πΉπ‘Ÿ Force Ratio
DIMENSIONLESS NUMBER:
REYNOLD’S NUMBER:
𝑅 𝑒 =
πœŒπ‘£π·
πœ‡
(π‘œπ‘Ÿ)
πœŒπ‘£πΏ
πœ‡
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 27
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑣 Velocity π‘š
𝑠⁄
πœ‡ Viscosity 𝑁 βˆ’ 𝑠
π‘š2⁄
𝐷 Diameter π‘š
𝐿 Length π‘š
FROUDE’S NUMBER:
𝐹𝑒 =
𝑣
√ 𝐿𝑔
Symbol Description Unit
𝑣 Velocity π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐿 Length π‘š
FROUDE’S NUMBER:
𝐹𝑒 =
𝑣
√ 𝐿𝑔
Symbol Description Unit
𝑣 Velocity π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐿 Length π‘š
EULER’S NUMBER:
𝐸 𝑒 =
𝑣
√ 𝑝
πœŒβ„
Symbol Description Unit
𝑣 Velocity π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 28
𝑝 Pressure 𝑁
π‘š2⁄
WEBER’S NUMBER:
π‘Šπ‘’ =
𝑣
√ 𝜎
πœŒπΏβ„
Symbol Description Unit
𝑣 Velocity π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝐿 Length π‘š
𝜎 Surface Tension 𝑁
π‘šβ„
MACH’S NUMBER:
π‘Šπ‘’ =
𝑣
√ 𝐾
πœŒβ„
Symbol Description Unit
𝑣 Velocity π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝐾 Elastic Stress 𝑁
π‘š2⁄
REYNOLD’S MODEL LAW:
TIME RATIO:
πΉπ‘Ÿ = π‘š π‘Ÿ π‘Ž π‘Ÿ
πΉπ‘Ÿ = π‘š π‘Ÿ
π‘£π‘Ÿ
π‘‡π‘Ÿ
DISCHARGE RATIO:
𝑄 π‘Ÿ = πœŒπ‘Ÿ 𝐿 π‘Ÿ
2
π‘£π‘Ÿ
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 29
Symbol Description Unit
πΉπ‘Ÿ Force Ratio
π‘š π‘Ÿ Mass Ratio
π‘£π‘Ÿ Velocity Ratio
π‘‡π‘Ÿ Time Ratio
𝐿 π‘Ÿ Length Ratio
πœŒπ‘Ÿ Density Ratio
FROUDE’S MODEL LAW:
TIME RATIO:
π‘‡π‘Ÿ = √ 𝐿 π‘Ÿ
ACCELERATION RATIO:
π‘Ž π‘Ÿ = 1
DISCHARGE RATIO:
𝑄 π‘Ÿ = ( 𝐿 π‘Ÿ)
5
2⁄
FORCE RATIO:
πΉπ‘Ÿ = ( 𝐿 π‘Ÿ)3
PRESSURE RATIO:
πΉπ‘Ÿ = 𝐿 π‘Ÿ
ENERGY RATIO:
πΈπ‘Ÿ = ( 𝐿 π‘Ÿ)4
MOMENTUM RATIO:
π‘€π‘Ÿ = ( 𝐿 π‘Ÿ)3
βˆ— √ 𝐿 π‘Ÿ
TORQUE RATIO:
π‘‡π‘Ÿ = ( 𝐿 π‘Ÿ)4
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 30
POWER RATIO:
π‘ƒπ‘Ÿ = ( 𝐿 π‘Ÿ)
7
2⁄
Symbol Description Unit
𝐿 π‘Ÿ Length Ratio
DISTORTED MODELS:
( 𝐿 π‘Ÿ) 𝐻 =
πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘ƒπ‘Ÿπ‘œπ‘‘π‘œπ‘‘π‘¦π‘π‘’
πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘€π‘œπ‘‘π‘’π‘™
( 𝐿 π‘Ÿ) 𝐻 =
𝐿 𝑝
𝐿 π‘š
=
𝐡𝑝
𝐡 π‘š
( 𝐿 π‘Ÿ) 𝑉 =
πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π‘‰π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘ƒπ‘Ÿπ‘œπ‘‘π‘œπ‘‘π‘¦π‘π‘’
πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π‘‰π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘€π‘œπ‘‘π‘’π‘™
( 𝐿 π‘Ÿ) 𝑉 =
β„Ž 𝑝
β„Ž π‘š
VELOCITY RATIO:
π‘£π‘Ÿ = √(𝐿 π‘Ÿ) 𝑉
AREA RATIO:
𝐴 π‘Ÿ = ( 𝐿 π‘Ÿ) 𝐻 βˆ— ( 𝐿 π‘Ÿ) 𝑉
DISCAHRGE RATIO:
𝑄 π‘Ÿ = ( 𝐿 π‘Ÿ) 𝐻 βˆ— [( 𝐿 π‘Ÿ) 𝑉]
3
2⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 31
CENTRIFUGAL PUMP:
VELOCITY TRIANGLE DIAGRAM:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Impeller at Inlet & Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣1&𝑣2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
UNIT – IV – PUMPS
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 32
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
𝛽
Angle made by Absolute
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
TANGENTIAL VELOCITY AT INLET:
𝑒1 =
πœ‹π‘‘1 𝑁
60
Symbol Description Unit
𝑑1
Inlet (or) Internal Diameter
of Impeller
π‘š
𝑁 Speed of Impeller π‘Ÿπ‘π‘š
TANGENTIAL VELOCITY AT OUTLET:
𝑒2 =
πœ‹π‘‘2 𝑁
60
Symbol Description Unit
𝑑2
Oulet (or) External
Diameter of Impeller
π‘š
𝑁 Speed of Impeller π‘Ÿπ‘π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
π‘‘π‘Žπ‘›πœƒ =
𝑣𝑓1
𝑒1
Symbol Description Unit
𝑒1
Tangential Velocity of
Impeller at Inlet
π‘š
𝑠⁄
𝑣1 Absolute Velocity at Inlet π‘š
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 33
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
∡ 𝛼 = 90Β°
𝑣1 = 𝑣𝑓1
FROM OUTLET VELOCITY TRIANGLE DIAGRAM:
π‘‘π‘Žπ‘›πœ™ =
𝑣𝑓2
𝑒2 βˆ’ 𝑣 𝑀2
𝑣2 = βˆšπ‘£π‘“2
2 + 𝑣 𝑀2
2
π‘‘π‘Žπ‘›π›½ =
𝑣𝑓2
𝑣 𝑀2
Symbol Description Unit
𝑒2
Tangential Velocity of
Impeller at Outlet
π‘š
𝑠⁄
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑣2 Absolute Velocity at Outlet π‘š
𝑠⁄
𝑣𝑓2 Flow Velocity at Outlet π‘š
𝑠⁄
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
𝛽
Angle made by Absolute
Velocity at Outlet with the
Degree
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 34
Direction of Motion of
Vane
DISCHARGE:
𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2
Symbol Description Unit
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
𝑏1&𝑏2
Width of Impeller at Inlet
& Outlet
π‘š
𝑄 Discharge π‘š3
𝑠⁄
WORK DONE BY AN IMPELLER PER SECOND:
π‘Š =
πœŒπ‘”π‘„
𝑔
𝑣 𝑀2 𝑒2
Symbol Description Unit
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
WORK DONE BY AN IMPELLER PER UNIT WEIGHT OF WATER:
π‘Š =
𝑣 𝑀2 𝑒2
𝑔
Symbol Description Unit
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 35
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
MANOMETRIC EFFICIENCY:
πœ‚ π‘š =
𝑔𝐻
𝑣 𝑀2 𝑒2
Symbol Description Unit
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
𝐻 Manometric Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
POWER REQUIRED BY THE PUMP:
𝑃 = πœŒπ‘„π‘£ 𝑀2 𝑒2
Symbol Description Unit
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑃 Power π‘˜π‘Š
MINIMUM SPEED TO START THE PUMP:
𝑁 π‘šπ‘–π‘› =
120 βˆ— πœ‚ π‘š βˆ— 𝑣 𝑀2 βˆ— 𝑑2
πœ‹ (𝑑2
2
βˆ’ 𝑑1
2
)
Symbol Description Unit
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
πœ‚ π‘š Manometric Efficiency
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 36
OVERALL EFFICIENCY:
πœ‚ π‘œ =
πΌπ‘šπ‘π‘’π‘™π‘™π‘’π‘Ÿ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
=
πœŒπ‘”π‘„π»
𝑆. 𝑃
πœ‚ π‘œ = πœ‚ π‘šπ‘Žπ‘›π‘œ βˆ— πœ‚ π‘šπ‘’π‘β„Ž βˆ— πœ‚ π‘£π‘œπ‘™
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Manometric Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
MECHANICAL EFFICIENCY:
πœ‚ π‘šπ‘’π‘β„Ž =
πœŒπ‘”π‘„π»
𝑆. 𝑃
βˆ—
𝑣 𝑀2 𝑒2
𝑔𝐻
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Manometric Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝑆. 𝑃 Shaft Power π‘Š
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
POWER OF PUMP:
𝑃 = πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 37
𝐻 Manometric Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐿𝑖𝑓𝑑
π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐿𝑖𝑓𝑑
=
π΄π‘π‘‘π‘’π‘Žπ‘™ π»π‘’π‘Žπ‘‘
πΌπ‘‘π‘’π‘Žπ‘™ π»π‘’π‘Žπ‘‘
IDEAL HEAD:
𝑃𝐼 = πœŒπ‘”(𝑄 + π‘ž)𝐻𝑖
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
π‘ž Leakage of Water π‘š3
𝑠⁄
𝐻𝑖 Ideal Head π‘š
𝑃𝐼 Power at Input π‘Š
TORQUE EXERTED BY IMPELLER:
𝑇 =
πœŒπ‘”π‘„
𝑔
βˆ— 𝑣 𝑀2 βˆ— 𝑅2
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑅2
Radius of Impeller at
Outlet
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 38
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
SPEED RATIO:
𝐾 𝑒 =
𝑒2
√2𝑔𝐻
𝐾 𝑒 = 0.95 βˆ’ 1.25
Symbol Description Unit
𝑒2
Tangential Velocity at
Outlet
π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾 𝑒 Speed Ratio
FLOW RATIO:
𝐾𝑓 =
𝑣𝑓2
√2𝑔𝐻
𝐾𝑓 = 0.1 βˆ’ 0.25
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 39
Symbol Description Unit
𝑣𝑓2 Flow Velocity at Outlet π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾𝑓 Flow Ratio
RECIPROCATING PUMP:
DISCHARGE:
𝑄 =
𝐴𝐿𝑁
60
𝐴 =
πœ‹
4
𝐷2 [ πΉπ‘œπ‘Ÿ 𝑆𝑖𝑛𝑔𝑙𝑒 𝐴𝑐𝑑𝑖𝑛𝑔 π‘ƒπ‘’π‘šπ‘]
𝐴 = [
πœ‹
4
𝐷2
+
πœ‹
4
( 𝐷2
βˆ’ 𝑑2)] [ πΉπ‘œπ‘Ÿ π·π‘œπ‘’π‘π‘™π‘’ 𝐴𝑐𝑑𝑖𝑛𝑔 π‘ƒπ‘’π‘šπ‘]
Symbol Description Unit
𝐴 Area of Cylinder π‘š2
𝐿 Stroke Length π‘š
𝑁 Speed π‘Ÿπ‘π‘š
𝐷
Diameter of Cylinder or
Bore
π‘š
𝑑 Diameter of Piston Rod π‘š
WEIGHT OF THE WATER DELIVERED PER SECOND:
π‘Š = πœŒπ‘”π‘„
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
π‘Š Weight of Water 𝑁
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 40
WORK DONE BY RECIPROCATING PUMP:
π‘Š = πœŒπ‘”π‘„π»
𝐻 = β„Ž 𝑠 + β„Ž 𝑑
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
π‘Š Work Done π‘Š
β„Ž 𝑠 Suction Head π‘š
β„Ž 𝑑 Delivery Head π‘š
POWER DEVELOPED BY RECIPROCATING PUMP:
𝑃 = πœŒπ‘”π‘„ π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐻
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
POWER REQUIRED TO DRIVE THE PUMP:
𝑃 = πœŒπ‘”π‘„ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐻
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 41
SLIP OF RECIPROCATING PUMP:
𝑆 = 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ βˆ’ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
Symbol Description Unit
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3
𝑠⁄
COEFFICENT OF DISCHARGE:
𝐢 𝑑 =
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
Symbol Description Unit
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3
𝑠⁄
PERCENTAGE OF SLIP IN RECIPROCATING PUMP:
% π‘œπ‘“ 𝑆𝑙𝑖𝑝 =
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ βˆ’ 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
% π‘œπ‘“ 𝑆𝑙𝑖𝑝 = 1 βˆ’ 𝐢 𝑑
Symbol Description Unit
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3
𝑠⁄
𝐢 𝑑 Coefficient of Discharge
VOLUMETRIC EFFICIENCY:
πœ‚ π‘‰π‘œπ‘™ =
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
= 𝐢 𝑑
Symbol Description Unit
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™
Theoretical Discharge π‘š3
𝑠⁄
𝐢 𝑑
Coefficient of Discharge
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 42
MECHANICAL EFFICIENCY:
πœ‚ π‘šπ‘’π‘β„Ž =
π‘ƒπ‘œπ‘€π‘’π‘Ÿ π·π‘’π‘£π‘’π‘™π‘œπ‘π‘’π‘‘ 𝑏𝑦 π‘ƒπ‘’π‘šπ‘
π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘‘π‘œ π·π‘Ÿπ‘–π‘£π‘’ π‘‘β„Žπ‘’ π‘ƒπ‘’π‘šπ‘
πœ‚ π‘šπ‘’π‘β„Ž =
π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘ƒπ‘’π‘šπ‘
π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘€π‘œπ‘‘π‘œπ‘Ÿ
πœ‚ π‘šπ‘’π‘β„Ž =
πœŒπ‘”π‘„ π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐻
πœŒπ‘”π‘„ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐻
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3
𝑠⁄
𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
ACCELERATION HEAD:
β„Ž π‘Žπ‘  =
𝑙 𝑠
𝑔
βˆ—
𝐴
π‘Ž 𝑠
βˆ— πœ”2
βˆ— π‘Ÿ βˆ— π‘π‘œπ‘ πœƒ [ 𝐴𝑑 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
β„Ž 𝑑𝑠 =
𝑙 𝑑
𝑔
βˆ—
𝐴
π‘Ž 𝑑
βˆ— πœ”2
βˆ— π‘Ÿ βˆ— π‘π‘œπ‘ πœƒ [ 𝐴𝑑 π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
𝐴 =
πœ‹
4
𝐷2
π‘Ž 𝑠 =
πœ‹
4
𝑑 𝑠
2
π‘Ž 𝑑 =
πœ‹
4
𝑑 𝑑
2
πœ” =
2πœ‹π‘
60
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 43
π‘Ÿ =
𝐿
2
Symbol Description Unit
𝑙 𝑠 Length of Suction Pipe π‘š
𝑙 𝑑 Length of Delivery Pipe π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐴 Area of Cylinder π‘š2
π‘Ž 𝑠 Area of Suction Pipe π‘š2
π‘Ž 𝑑 Area of Delivery Pipe π‘š2
πœ” Angular Speed π‘Ÿπ‘Žπ‘‘
𝑠⁄
π‘Ÿ Radius of Crank π‘š
πœƒ Angle of Crank π‘‘π‘’π‘”π‘Ÿπ‘’π‘’
𝐷
Diameter of Cylinder or
Bore
π‘š
𝑑 𝑠 Diameter of Suction Pipe π‘š
𝑑 𝑑 Diameter of Delivery Pipe π‘š
𝑁 Speed of Crank π‘Ÿπ‘π‘š
𝐿 Stroke Length π‘š
PRESSURE HEAD:
π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = β„Ž 𝑠 + β„Ž π‘Žπ‘  [ πΉπ‘œπ‘Ÿ π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = β„Ž 𝑑 + β„Ž π‘Žπ‘‘ [ πΉπ‘œπ‘Ÿ π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
Symbol Description Unit
β„Ž 𝑠 Suction Head π‘š
β„Ž 𝑑 Delivery Head π‘š
β„Ž π‘Žπ‘ 
Acceleration Head at
Suction
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 44
β„Ž π‘Žπ‘‘
Acceleration Head at
Delivery
π‘š
ABSOLUTE PRESSURE HEAD:
π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘
= 𝐻 π‘Žπ‘‘π‘š βˆ’ (β„Ž 𝑠 + β„Ž π‘Žπ‘ ) [ πΉπ‘œπ‘Ÿ π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘
= 𝐻 π‘Žπ‘‘π‘š + (β„Ž 𝑑 + β„Ž π‘Žπ‘‘ ) [ πΉπ‘œπ‘Ÿ π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’]
Symbol Description Unit
β„Ž 𝑠 Suction Head π‘š
β„Ž 𝑑 Delivery Head π‘š
β„Ž π‘Žπ‘ 
Acceleration Head at
Suction
π‘š
β„Ž π‘Žπ‘‘
Acceleration Head at
Delivery
π‘š
𝐻 π‘Žπ‘‘π‘š
Atmospheric Pressure
Head
π‘š
SEPARATION HEAD:
𝑃𝑠𝑒𝑝 = πœŒπ‘”β„Ž 𝑆𝑒𝑝
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
β„Ž 𝑠𝑒𝑝 Separation Head π‘š
𝑃𝑠𝑒𝑝 Separation Pressure 𝑁
π‘š2⁄
HEAD LOSS WITHOUT AIR VESSEL:
β„Ž π‘“π‘Šπ‘‚π΄ =
4𝑓𝑙 𝑑 𝑣2
2𝑔𝑑 𝑑
Symbol Description Unit
𝑓 Friction Factor
𝑙 𝑑 Length of Delivery Pipe π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 45
𝑣
Velocity without Air
Vessel
π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝑑 𝑑 Diameter of Delivery Pipe π‘š
VELOCITY WITHOUT AIR VESSEL:
𝑣 =
𝐴
π‘Ž 𝑑
βˆ— πœ” βˆ— π‘Ÿ
𝐴 =
πœ‹
4
𝐷2
π‘Ž 𝑑 =
πœ‹
4
𝑑 𝑑
2
πœ” =
2πœ‹π‘
60
π‘Ÿ =
𝐿
2
Symbol Description Unit
𝐴 Area of Cylinder π‘š2
π‘Ž 𝑑 Area of Delivery Pipe π‘š2
πœ” Angular Speed π‘Ÿπ‘Žπ‘‘
𝑠⁄
π‘Ÿ Radius of Crank π‘š
𝐷
Diameter of Cylinder or
Bore
π‘š
𝑑 𝑑 Diameter of Delivery Pipe π‘š
𝑁 Speed of Crank π‘Ÿπ‘π‘š
𝐿 Stroke Length π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 46
HEAD LOSS WITH AIR VESSEL:
β„Ž π‘“π‘Šπ΄ =
4𝑓𝑙 𝑑 𝑣2
2𝑔𝑑 𝑑
Symbol Description Unit
𝑓 Friction Factor
𝑙 𝑑 Length of Delivery Pipe π‘š
𝑣 Velocity with Air Vessel π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝑑 𝑑 Diameter of Delivery Pipe π‘š
VELOCITY WITH AIR VESSEL:
𝑣 =
𝐴
π‘Ž 𝑑
βˆ— πœ” βˆ—
π‘Ÿ
πœ‹
𝐴 =
πœ‹
4
𝐷2
π‘Ž 𝑑 =
πœ‹
4
𝑑 𝑑
2
πœ” =
2πœ‹π‘
60
π‘Ÿ =
𝐿
2
Symbol Description Unit
𝐴 Area of Cylinder π‘š2
π‘Ž 𝑑 Area of Delivery Pipe π‘š2
πœ” Angular Speed π‘Ÿπ‘Žπ‘‘
𝑠⁄
π‘Ÿ Radius of Crank π‘š
𝐷
Diameter of Cylinder or
Bore
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 47
𝑑 𝑑 Diameter of Delivery Pipe π‘š
𝑁 Speed of Crank π‘Ÿπ‘π‘š
𝐿 Stroke Length π‘š
POWER SAVED BY AIR VESSEL:
𝑃 = πœŒπ‘”π‘„ (
2
3
β„Ž π‘“π‘Šπ‘‚π΄ βˆ’ β„Ž π‘“π‘Šπ΄)
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
β„Ž π‘“π‘Šπ‘‚π΄
Head Loss Without Air
Vessel
π‘š
β„Ž π‘“π‘Šπ΄ Head Loss With Air Vessel π‘š
POWER REQUIRED TO DRIVE THE PUMP:
𝑃 = πœŒπ‘”π‘„ (β„Ž 𝑠 + β„Ž 𝑑 +
2
3
β„Ž π‘“π‘ π‘Šπ‘‚π΄ + β„Ž π‘“π‘‘π‘Šπ΄)
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
β„Ž 𝑠 Suction Head π‘š
β„Ž 𝑑 Delivery Head π‘š
β„Ž π‘“π‘ π‘Šπ‘‚π΄
Head Loss Without Air
Vessel at Suction
π‘š
β„Ž π‘“π‘‘π‘Šπ΄
Head Loss With Air Vessel
at Delivery
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 48
PELTON WHEEL:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Runner at Inlet & Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1&𝑉2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛽
Angle made by Absolute
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
UNIT – V – TURBINES
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 49
TANGENTIAL VELOCITY AT INLET AND OUTLET (OR) VELOCITY OF
WHEEL:
𝑒 =
πœ‹π·π‘
60
Symbol Description Unit
𝐷 Diameter of Runner π‘š
𝑁 Speed of Impeller π‘Ÿπ‘π‘š
VELOCITY OF JET:
𝑉1 = πΆπ‘£βˆš2𝑔𝐻
𝐢𝑣 = 0.97 βˆ’ 0.99
Symbol Description Unit
𝐢𝑣 Coefficient of Velocity
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
VELOCITY OF WHEEL:
𝑒 = π‘˜ π‘’βˆš2𝑔𝐻
π‘˜ 𝑒 = 0.43 βˆ’ 0.45
Symbol Description Unit
π‘˜ 𝑒 Speed Ratio
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
𝑉 𝑀1 = 𝑉1
𝑉 𝑀1 = 𝑒1 + π‘‰π‘Ÿ1
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 50
Symbol Description Unit
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
FROM OUTLET VELOCITY TRIANGLE DIAGRAM:
cos πœ™ =
𝑒2 + 𝑣 𝑀2
𝑣 π‘Ÿ2
tan πœ™ =
𝑣𝑓2
𝑒2 + 𝑣 𝑀2
sin πœ™ =
𝑣𝑓2
𝑣 π‘Ÿ2
tan 𝛽 =
𝑣𝑓2
𝑣 𝑀2
Symbol Description Unit
𝑒2
Tangential Velocity of
Runner at Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ2 Relative Velocity at Outlet π‘š
𝑠⁄
𝑣 𝑀2 Whirl Velocity at Outlet π‘š
𝑠⁄
𝑣𝑓2 Flow Velocity at Outlet π‘š
𝑠⁄
WORK DONE BY JET PER SECOND:
π‘Š = πœŒπ‘„ [ 𝑣 𝑀1 + 𝑣 𝑀2] 𝑒
Symbol Description Unit
𝑒
Tangential Velocity of
Runner
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 51
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
2[ 𝑣 𝑀1 + 𝑣 𝑀2] 𝑒
𝑉1
2
Symbol Description Unit
𝑒
Tangential Velocity of
Runner
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
OVERALL EFFICIENCY:
πœ‚ π‘œ =
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
πœ‚ π‘œ =
𝑆. 𝑃
πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
𝑆. 𝑃 Shaft Power π‘Š
DISCHARGE OF SINGLE JET:
π‘ž =
πœ‹
4
βˆ— 𝑑2
βˆ— 𝑉1
Symbol Description Unit
𝑑 Diameter of Jet π‘š
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
π‘ž Discharge of Single Jet π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 52
NUMBER OF JET:
𝑛 =
𝑄
π‘ž
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
π‘ž Discharge of Single Jet π‘š3
𝑠⁄
NUMBER OF BUCKET:
𝑍 = 15 +
𝐷
2𝑑
Symbol Description Unit
𝑑 Diameter of Jet π‘š
𝐷 Diameter of Runner π‘š
DIMENSIONS OF BUCKET:
𝐴π‘₯π‘–π‘Žπ‘™ π‘Šπ‘–π‘‘π‘‘β„Ž 𝐡 = 4.5𝑑
π‘…π‘Žπ‘‘π‘–π‘Žπ‘™ πΏπ‘’π‘›π‘”π‘‘β„Ž 𝐿 = 2.5𝑑
π·π‘’π‘π‘‘β„Ž π‘œπ‘“ π΅π‘’π‘π‘˜π‘’π‘‘ 𝑇 = 𝑑
Symbol Description Unit
𝑑 Diameter of Jet π‘š
KINETIC ENERGY OF JET:
𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 =
1
2
π‘š 𝑉1
2
𝑆𝑖𝑛𝑐𝑒 π‘š = πœŒπ΄π‘‰
π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 =
1
2
𝜌 βˆ— 𝐴 βˆ— 𝑉1 βˆ— 𝑉1
2
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 53
𝑆𝑖𝑛𝑐𝑒 𝑄 = 𝐴𝑉
π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 =
1
2
𝜌 βˆ— 𝑄 βˆ— 𝑉1
2
POWER LOST IN NOZZLE:
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘π‘œπ‘§π‘§π‘™π‘’
POWER LOST IN RUNNER:
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
= π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘†β„Žπ‘Žπ‘“π‘‘ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘π‘œπ‘§π‘§π‘™π‘’
+ π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘…π‘’π‘›π‘›π‘’π‘Ÿ
+ π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝐷𝑒𝑒 π‘‘π‘œ π‘€π‘’π‘β„Žπ‘Žπ‘›π‘–π‘π‘Žπ‘™ π‘…π‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
RESULTANT FORCE ON BUCKET:
𝐹 = πœŒπ‘„ [ 𝑣 𝑀1 + 𝑣 𝑀2]
Symbol Description Unit
𝐹 Resultant Force on Bucket 𝑁
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
TORQUE:
𝑇 = 𝐹 βˆ—
𝐷
2
Symbol Description Unit
𝐹 Resultant Force on Bucket 𝑁
𝐷 Diameter of Runner π‘š
𝑇 Torque 𝑁 βˆ’ π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 54
POWER:
𝑃 =
2πœ‹π‘π‘‡
60
Symbol Description Unit
𝑃 Power π‘Š
𝑇 Torque 𝑁 βˆ’ π‘š
N Speed of Shaft Rpm
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 55
REACTION TURBINE:
INWARD FLOW REACTION TURBINE:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Runner at Inlet & Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1&𝑉2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Degree
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 56
Direction of Motion of
Vane
TANGENTIAL VELOCITY AT INLET:
𝑒1 =
πœ‹π‘‘1 𝑁
60
Symbol Description Unit
𝑑1
Inlet (or) External
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
TANGENTIAL VELOCITY AT OUTLET:
𝑒2 =
πœ‹π‘‘2 𝑁
60
Symbol Description Unit
𝑑2
Outlet (or) Internal
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
sin 𝛼 =
𝑣𝑓1
𝑉1
cos 𝛼 =
𝑣 𝑀1
𝑉1
tan 𝛼 =
𝑣𝑓1
𝑣 𝑀1
sin πœƒ =
𝑣𝑓1
𝑣 π‘Ÿ1
cos πœƒ =
𝑣 𝑀1 βˆ’ 𝑒1
𝑣 π‘Ÿ1
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 57
tan πœƒ =
𝑣𝑓1
𝑣 𝑀1 βˆ’ 𝑒1
Symbol Description Unit
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
RELATIVE VELOCITY AT INLET:
𝑣 π‘Ÿ1 = √ 𝑣𝑓1
2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2
Symbol Description Unit
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
DISCHARGE:
𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2
𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2
Symbol Description Unit
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 58
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
𝑏1&𝑏2
Width of Impeller at Inlet
& Outlet
π‘š
𝑄 Discharge π‘š3
𝑠⁄
𝐴 Area of Runner π‘š2
𝐴 𝑓1&𝐴 𝑓2
Area of Flow at Inlet &
Outlet
π‘š
𝑠⁄
MASS OF WATER FLOWING THROUGH THE RUNNER:
π‘š = 𝜌 𝑄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
HEAD AT INLET OF TURBINE:
𝐻 =
1
𝑔
βˆ— 𝑣 𝑀1 βˆ— 𝑒1 +
𝑣𝑓1
2
2𝑔
Symbol Description Unit
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:
𝑃 = πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 59
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
POWER DEVELOPED BY TURBINE:
𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
𝑣 𝑀1 𝑒1
𝑔𝐻
πœ‚β„Žπ‘¦π‘‘ =
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘ 
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑
Symbol Description Unit
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
OVERALL EFFICIENCY:
πœ‚ π‘œ =
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
πœ‚ π‘œ =
𝑆. 𝑃
πœŒπ‘”π‘„π»
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 60
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
𝑆. 𝑃 Shaft Power π‘Š
SPEED RATIO:
𝐾 𝑒 =
𝑒
√2𝑔𝐻
𝐾 𝑒 = 0.6 βˆ’ 0.9
Symbol Description Unit
𝑒 Tangential Velocity π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾 𝑒 Speed Ratio
FLOW RATIO:
𝐾𝑓 =
𝑣𝑓1
√2𝑔𝐻
𝐾𝑓 = 0.15 βˆ’ 0.3
Symbol Description Unit
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾𝑓 Flow Ratio
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 61
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
OUTWARD FLOW REACTION TURBINE:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Runner at Inlet & Outlet
π‘š
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 62
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1&𝑉2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
TANGENTIAL VELOCITY AT INLET:
𝑒1 =
πœ‹π‘‘1 𝑁
60
Symbol Description Unit
𝑑1 Inlet (or) Internal Diameter π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
TANGENTIAL VELOCITY AT OUTLET:
𝑒2 =
πœ‹π‘‘2 𝑁
60
Symbol Description Unit
𝑑2
Outlet (or) External
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 63
sin 𝛼 =
𝑣𝑓1
𝑉1
cos 𝛼 =
𝑣 𝑀1
𝑉1
tan 𝛼 =
𝑣𝑓1
𝑣 𝑀1
sin πœƒ =
𝑣𝑓1
𝑣 π‘Ÿ1
cos πœƒ =
𝑣 𝑀1 βˆ’ 𝑒1
𝑣 π‘Ÿ1
tan πœƒ =
𝑣𝑓1
𝑣 𝑀1 βˆ’ 𝑒1
Symbol
Description Unit
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 64
RELATIVE VELOCITY AT INLET:
𝑣 π‘Ÿ1 = √ 𝑣𝑓1
2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2
Symbol Description Unit
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
DISCHARGE:
𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2
𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2
Symbol Description Unit
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
𝑏1&𝑏2
Width of Impeller at Inlet
& Outlet
π‘š
𝑄 Discharge π‘š3
𝑠⁄
𝐴 Area of Runner π‘š2
𝐴 𝑓1&𝐴 𝑓2
Area of Flow at Inlet &
Outlet
π‘š
𝑠⁄
MASS OF WATER FLOWING THROUGH THE RUNNER:
π‘š = 𝜌 𝑄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 65
INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:
𝑃 = πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
POWER DEVELOPED BY TURBINE:
𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
𝑣 𝑀1 𝑒1
𝑔𝐻
πœ‚β„Žπ‘¦π‘‘ =
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘ 
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑
Symbol Description Unit
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 66
OVERALL EFFICIENCY:
πœ‚ π‘œ =
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
πœ‚ π‘œ =
𝑆. 𝑃
πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
𝑆. 𝑃 Shaft Power π‘Š
SPEED RATIO:
𝐾 𝑒 =
𝑒
√2𝑔𝐻
𝐾 𝑒 = 0.6 βˆ’ 0.9
Symbol Description Unit
𝑒 Tangential Velocity π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾 𝑒 Speed Ratio
FLOW RATIO:
𝐾𝑓 =
𝑣𝑓1
√2𝑔𝐻
𝐾𝑓 = 0.15 βˆ’ 0.3
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 67
Symbol Description Unit
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾𝑓 Flow Ratio
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 68
FRANCIS TURBINE:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Runner at Inlet & Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1&𝑉2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 69
TANGENTIAL VELOCITY AT INLET:
𝑒1 =
πœ‹π‘‘1 𝑁
60
Symbol Description Unit
𝑑1
Inlet (or) External
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
TANGENTIAL VELOCITY AT OUTLET:
𝑒2 =
πœ‹π‘‘2 𝑁
60
Symbol Description Unit
𝑑2
Outlet (or) Internal
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
sin 𝛼 =
𝑣𝑓1
𝑉1
cos 𝛼 =
𝑣 𝑀1
𝑉1
tan 𝛼 =
𝑣𝑓1
𝑣 𝑀1
sin πœƒ =
𝑣𝑓1
𝑣 π‘Ÿ1
cos πœƒ =
𝑣 𝑀1 βˆ’ 𝑒1
𝑣 π‘Ÿ1
tan πœƒ =
𝑣𝑓1
𝑣 𝑀1 βˆ’ 𝑒1
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 70
Symbol Description Unit
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
RELATIVE VELOCITY AT INLET:
𝑣 π‘Ÿ1 = √ 𝑣𝑓1
2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2
Symbol Description Unit
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
DISCHARGE:
𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2
𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2
Symbol Description Unit
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 71
𝑏1&𝑏2
Width of Impeller at Inlet
& Outlet
π‘š
𝑄 Discharge π‘š3
𝑠⁄
𝐴 Area of Runner π‘š2
𝐴 𝑓1&𝐴 𝑓2
Area of Flow at Inlet &
Outlet
π‘š
𝑠⁄
CIRCUMFERENTIAL AREA OF RUNNER:
𝐴 = πœ‹π‘‘1 𝑏1 = πœ‹π‘‘2 𝑏2
Symbol Description Unit
𝑑1&𝑑2
Diameter of Impeller at
Inlet & Outlet
π‘š
𝑏1&𝑏2
Width of Impeller at Inlet
& Outlet
π‘š
𝐴
Circumferential Area of
Runner
π‘š2
MASS OF WATER FLOWING THROUGH THE RUNNER:
π‘š = 𝜌 𝑄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:
𝑃 = πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 72
POWER DEVELOPED BY TURBINE:
𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
𝑣 𝑀1 𝑒1
𝑔𝐻
πœ‚β„Žπ‘¦π‘‘ =
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘ 
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑
Symbol Description Unit
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
OVERALL EFFICIENCY:
πœ‚ π‘œ =
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
πœ‚ π‘œ =
𝑆. 𝑃
πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 73
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
𝑆. 𝑃 Shaft Power π‘Š
SPEED RATIO:
𝐾 𝑒 =
𝑒
√2𝑔𝐻
𝐾 𝑒 = 0.6 βˆ’ 0.9
Symbol Description Unit
𝑒 Tangential Velocity π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾 𝑒 Speed Ratio
FLOW RATIO:
𝐾𝑓 =
𝑣𝑓1
√2𝑔𝐻
𝐾𝑓 = 0.15 βˆ’ 0.3
Symbol Description Unit
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾𝑓 Flow Ratio
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 74
BREADTH RATIO:
𝑛 =
𝑏1
𝑑1
𝑛 = 0.1 βˆ’ 0.4
Symbol Description Unit
𝑏1 Width of Runner at Inlet π‘š
𝑑1 Diameter of Runner at Inlet π‘š
𝑛 Breadth Ratio
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 75
KAPLAN TURBINE:
Symbol Description Unit
𝑒1&𝑒2
Tangential Velocity of
Runner at Inlet & Outlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1&𝑣 π‘Ÿ2
Relative Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑣 𝑀1&𝑣 𝑀2
Whirl Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝑉1&𝑉2
Absolute Velocity at Inlet
& Outlet
π‘š
𝑠⁄
𝑣𝑓1&𝑣𝑓2
Flow Velocity at Inlet &
Outlet
π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœ™
Angle made by Relative
Velocity at Outlet with the
Direction of Motion of
Vane
Degree
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 76
TANGENTIAL VELOCITY AT INLET:
𝑒1 =
πœ‹π· π‘œ 𝑁
60
Symbol Description Unit
𝐷 π‘œ
Inlet (or) External
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
TANGENTIAL VELOCITY AT OUTLET:
𝑒2 =
πœ‹π· 𝑏 𝑁
60
=
πœ‹π·β„Ž 𝑁
60
Symbol Description Unit
𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž
Outlet (or) Boss (or) Hub
Diameter
π‘š
𝑁 Speed of Turbine π‘Ÿπ‘π‘š
FROM INLET VELOCITY TRIANGLE DIAGRAM:
sin 𝛼 =
𝑣𝑓1
𝑉1
cos 𝛼 =
𝑣 𝑀1
𝑉1
tan 𝛼 =
𝑣𝑓1
𝑣 𝑀1
sin πœƒ =
𝑣𝑓1
𝑣 π‘Ÿ1
cos πœƒ =
𝑣 𝑀1 βˆ’ 𝑒1
𝑣 π‘Ÿ1
tan πœƒ =
𝑣𝑓1
𝑣 𝑀1 βˆ’ 𝑒1
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 77
Symbol Description Unit
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑉1 Absolute Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝛼
Angle made by Absolute
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
πœƒ
Angle made by Relative
Velocity at Inlet with the
Direction of Motion of
Vane
Degree
RELATIVE VELOCITY AT INLET:
𝑣 π‘Ÿ1 = √ 𝑣𝑓1
2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2
Symbol Description Unit
𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
DISCHARGE:
𝑄 =
πœ‹
4
[𝐷0
2
βˆ’ 𝐷 𝑏
2
]𝑣𝑓1
Symbol Description Unit
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝐷0
Inlet (or) External
Diameter
π‘š
𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž
Outlet (or) Boss (or) Hub
Diameter
π‘š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 78
𝑄 Discharge π‘š3
𝑠⁄
CIRCUMFERENTIAL AREA OF RUNNER:
𝐴 =
πœ‹
4
[𝐷0
2
βˆ’ 𝐷 𝑏
2
]
Symbol Description Unit
𝐷0
Inlet (or) External
Diameter
π‘š
𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž
Outlet (or) Boss (or) Hub
Diameter
π‘š
𝐴
Circumferential Area of
Runner
π‘š2
MASS OF WATER FLOWING THROUGH THE RUNNER:
π‘š = 𝜌 𝑄
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝜌 Density π‘˜π‘”
π‘š3⁄
INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:
𝑃 = πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
POWER DEVELOPED BY TURBINE:
𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 79
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
HYDRAULIC EFFICIENCY:
πœ‚β„Žπ‘¦π‘‘ =
𝑣 𝑀1 𝑒1
𝑔𝐻
πœ‚β„Žπ‘¦π‘‘ =
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘ 
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑
Symbol Description Unit
𝑒1
Tangential Velocity of
Runner at Inlet
π‘š
𝑠⁄
𝑣 𝑀1 Whirl Velocity at Inlet π‘š
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
OVERALL EFFICIENCY:
πœ‚ π‘œ =
π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ
𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ
πœ‚ π‘œ =
𝑆. 𝑃
πœŒπ‘”π‘„π»
Symbol Description Unit
𝜌 Density π‘˜π‘”
π‘š3⁄
𝑄 Discharge π‘š3
𝑠⁄
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐻 Head π‘š
𝑆. 𝑃 Shaft Power π‘Š
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 80
SPEED RATIO:
𝐾 𝑒 =
𝑒
√2𝑔𝐻
𝐾 𝑒 = 0.6 βˆ’ 0.9
Symbol Description Unit
𝑒 Tangential Velocity π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾 𝑒 Speed Ratio
FLOW RATIO:
𝐾𝑓 =
𝑣𝑓1
√2𝑔𝐻
𝐾𝑓 = 0.15 βˆ’ 0.3
Symbol Description Unit
𝑣𝑓1 Flow Velocity at Inlet π‘š
𝑠⁄
𝐻 Head π‘š
𝑔
Acceleration due to
Gravity
π‘š
𝑠2⁄
𝐾𝑓 Flow Ratio
SPECIFIC SPEED:
𝑁𝑠 =
π‘βˆš 𝑄
𝐻
3
4⁄
𝑁𝑠 =
π‘βˆš 𝑃
𝐻
5
4⁄
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 81
Symbol Description Unit
𝑄 Discharge π‘š3
𝑠⁄
𝐻 Head π‘š
𝑃 Power π‘˜π‘Š
𝑁 Speed π‘Ÿπ‘π‘š
𝑁𝑠 Specific Speed
DRAFT TUBE:
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 82
Symbol Description Unit
𝑉1&𝑉2 Velocity at Inlet & Outlet π‘š
𝑠⁄
𝐻𝑠
Vertical Height of Draft
Tube Above Tail Race
π‘š
𝑦
Distance of Bottom of
Draft Tube from Tail Race
π‘š
FROM BERNOULLI’S EQUATION:
𝑃1
πœŒπ‘”
+
𝑉1
2
2𝑔
+ 𝑧1 =
𝑃2
πœŒπ‘”
+
𝑉2
2
2𝑔
+ 𝑧2 + β„Ž 𝑓
Symbol Description Unit
𝑃1 & 𝑃2
Pressure at Inlet & Outlet
of Draft Tube
𝑁
π‘š2⁄
𝑉1 & 𝑉2
Velocity at Inlet & Outlet
of Draft Tube
π‘š
𝑠⁄
𝑧1 & 𝑧2
Datum Head Inlet & Outlet
of Draft Tube
π‘š
β„Ž 𝑓 Head Loss π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
LENGTH OF DRAFT TUBE:
𝐿 = 𝐻𝑠 + 𝑦
Symbol Description Unit
𝐿 Length of Draft Tube π‘š
𝐻𝑠
Vertical Height of Draft
Tube Above Tail Race
π‘š
𝑦
Distance of Bottom of
Draft Tube from Tail Race
π‘š
EFFICIENCY OF DRAFT TUBE:
πœ‚ 𝑑 =
(
𝑉1
2
2𝑔
βˆ’
𝑉2
2
2𝑔
) βˆ’ β„Ž 𝑓
𝑉1
2
2𝑔
R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017
CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK
Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 83
Symbol Description Unit
𝑉1 & 𝑉2
Velocity at Inlet & Outlet
of Draft Tube
π‘š
𝑠⁄
β„Ž 𝑓 Head Loss π‘š
𝑔 Acceleration due to gravity π‘š
𝑠2⁄
HYDRAULIC EFFICIENCY OF DRAFT TUBE:
πœ‚β„Žπ‘¦π‘‘ =
π»π‘’π‘Žπ‘‘ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘’π‘‘ 𝑏𝑦 π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’
π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 π‘œπ‘“ π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’
πœ‚β„Žπ‘¦π‘‘ =
𝐻 βˆ’ β„Ž 𝑓𝑑 βˆ’ β„Ž 𝑓𝑑 βˆ’
𝑉2
2
2𝑔
𝑃1
πœŒπ‘”
+
𝑉1
2
2𝑔
+ 𝑧1
Symbol Description Unit
𝑃1
Pressure at Inlet of Draft
Tube
𝑁
π‘š2⁄
𝑉1 & 𝑉2
Velocity at Inlet & Outlet
of Draft Tube
π‘š
𝑠⁄
𝑧1
Datum Head Inlet of Draft
Tube
π‘š
β„Ž 𝑓 Head Loss π‘š
𝜌 Density of Liquid π‘˜π‘”
π‘š3⁄
𝑔 Acceleration due to gravity π‘š
𝑠2⁄

More Related Content

What's hot

Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
Mohsin Siddique
Β 

What's hot (20)

1.4 law of gearing
1.4 law of gearing1.4 law of gearing
1.4 law of gearing
Β 
Bending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth JebarajBending and Torsion A.Vinoth Jebaraj
Bending and Torsion A.Vinoth Jebaraj
Β 
TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)
Β 
Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...
Β 
Principal stresses and strains (Mos)
Principal stresses and strains (Mos)Principal stresses and strains (Mos)
Principal stresses and strains (Mos)
Β 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
Β 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
Β 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
Β 
Introduction to ANSYS Workbench
Introduction to ANSYS WorkbenchIntroduction to ANSYS Workbench
Introduction to ANSYS Workbench
Β 
Unit 1 what is machine design
Unit 1 what is machine designUnit 1 what is machine design
Unit 1 what is machine design
Β 
Pelton wheel experiment
Pelton wheel experimentPelton wheel experiment
Pelton wheel experiment
Β 
DYNAMICS OF MACHINES UNIT -3&4 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
DYNAMICS OF MACHINES UNIT -3&4 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBEDYNAMICS OF MACHINES UNIT -3&4 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
DYNAMICS OF MACHINES UNIT -3&4 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
Β 
PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)
Β 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
Β 
Failure Theories - Static Loads
Failure Theories - Static LoadsFailure Theories - Static Loads
Failure Theories - Static Loads
Β 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of Materials
Β 
theories of failure
theories of failure theories of failure
theories of failure
Β 
Shear stresses in beams
Shear stresses in beamsShear stresses in beams
Shear stresses in beams
Β 
Complex stresses
Complex stressesComplex stresses
Complex stresses
Β 
Bending stresses in beams
Bending stresses in beams Bending stresses in beams
Bending stresses in beams
Β 

Viewers also liked

Case studies in BioMEMS
Case studies in BioMEMSCase studies in BioMEMS
Case studies in BioMEMS
intellisense
Β 
Solução introduction to fluid mechanics (fox, 6th ed)
Solução   introduction to fluid mechanics (fox, 6th ed)Solução   introduction to fluid mechanics (fox, 6th ed)
Solução introduction to fluid mechanics (fox, 6th ed)
Eduvfs
Β 
Introdução Γ  mecΓ’nica dos fluidos 6Βͺ ed. - robert w. fox; alan t. mc donald...
Introdução Γ  mecΓ’nica dos fluidos   6Βͺ ed. - robert w. fox; alan t. mc donald...Introdução Γ  mecΓ’nica dos fluidos   6Βͺ ed. - robert w. fox; alan t. mc donald...
Introdução Γ  mecΓ’nica dos fluidos 6Βͺ ed. - robert w. fox; alan t. mc donald...
Guilherme Miller
Β 

Viewers also liked (13)

Properties of Fluids
Properties of FluidsProperties of Fluids
Properties of Fluids
Β 
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Β 
NUMERICAL SIMULATION AND ENHANCEMENT OF HEAT TRANSFER USING CUO/WATER NANO-FL...
NUMERICAL SIMULATION AND ENHANCEMENT OF HEAT TRANSFER USING CUO/WATER NANO-FL...NUMERICAL SIMULATION AND ENHANCEMENT OF HEAT TRANSFER USING CUO/WATER NANO-FL...
NUMERICAL SIMULATION AND ENHANCEMENT OF HEAT TRANSFER USING CUO/WATER NANO-FL...
Β 
Fox solution
Fox   solutionFox   solution
Fox solution
Β 
Microheat Exchangers
Microheat ExchangersMicroheat Exchangers
Microheat Exchangers
Β 
Emerging Trends of Industrial Inkjet Printing
Emerging Trends of Industrial Inkjet PrintingEmerging Trends of Industrial Inkjet Printing
Emerging Trends of Industrial Inkjet Printing
Β 
Case studies in BioMEMS
Case studies in BioMEMSCase studies in BioMEMS
Case studies in BioMEMS
Β 
Solução introduction to fluid mechanics (fox, 6th ed)
Solução   introduction to fluid mechanics (fox, 6th ed)Solução   introduction to fluid mechanics (fox, 6th ed)
Solução introduction to fluid mechanics (fox, 6th ed)
Β 
Solution manual of fluid mechanics fundamentals and applications - cengel [...
Solution manual of fluid mechanics   fundamentals and applications - cengel [...Solution manual of fluid mechanics   fundamentals and applications - cengel [...
Solution manual of fluid mechanics fundamentals and applications - cengel [...
Β 
Introdução Γ  mecΓ’nica dos fluidos 6Βͺ ed. - robert w. fox; alan t. mc donald...
Introdução Γ  mecΓ’nica dos fluidos   6Βͺ ed. - robert w. fox; alan t. mc donald...Introdução Γ  mecΓ’nica dos fluidos   6Βͺ ed. - robert w. fox; alan t. mc donald...
Introdução Γ  mecΓ’nica dos fluidos 6Βͺ ed. - robert w. fox; alan t. mc donald...
Β 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Β 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier application
Β 
[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald
Β 

Similar to FLUID MECHANICS AND MACHINERY FORMULA BOOK

Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
IJERA Editor
Β 
Io2616501653
Io2616501653Io2616501653
Io2616501653
IJERA Editor
Β 

Similar to FLUID MECHANICS AND MACHINERY FORMULA BOOK (20)

Lecture 10 som 06.03.2021
Lecture 10 som 06.03.2021Lecture 10 som 06.03.2021
Lecture 10 som 06.03.2021
Β 
Design & Computational Fluid Dynamics Analyses of an Axisymmetric Nozzle at T...
Design & Computational Fluid Dynamics Analyses of an Axisymmetric Nozzle at T...Design & Computational Fluid Dynamics Analyses of an Axisymmetric Nozzle at T...
Design & Computational Fluid Dynamics Analyses of an Axisymmetric Nozzle at T...
Β 
Lecture 06 som 03.03.2021
Lecture 06 som 03.03.2021Lecture 06 som 03.03.2021
Lecture 06 som 03.03.2021
Β 
Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021
Β 
Pressure distribution around a circular cylinder bodies | Fluid Laboratory
Pressure distribution around a circular cylinder bodies  | Fluid Laboratory Pressure distribution around a circular cylinder bodies  | Fluid Laboratory
Pressure distribution around a circular cylinder bodies | Fluid Laboratory
Β 
Comparison of Nozzle Pressure Ratios
Comparison of Nozzle Pressure RatiosComparison of Nozzle Pressure Ratios
Comparison of Nozzle Pressure Ratios
Β 
Pressure distribution along convergent- divergent Nozzle
Pressure distribution along convergent- divergent NozzlePressure distribution along convergent- divergent Nozzle
Pressure distribution along convergent- divergent Nozzle
Β 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusor
Β 
Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
Flow analysis of centrifugal pump using CFX solver and remedies for cavitatio...
Β 
CE6451 FLUID MECHANICS AND MACHINERY
CE6451 FLUID MECHANICS AND MACHINERYCE6451 FLUID MECHANICS AND MACHINERY
CE6451 FLUID MECHANICS AND MACHINERY
Β 
CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...CFD Analysis for Computing Drag force on Various types of blades for Vertical...
CFD Analysis for Computing Drag force on Various types of blades for Vertical...
Β 
Lecture 13 som 11.03.2021
Lecture 13 som 11.03.2021Lecture 13 som 11.03.2021
Lecture 13 som 11.03.2021
Β 
Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occu...
Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occu...Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occu...
Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occu...
Β 
Experimental Investigations and Computational Analysis on Subsonic Wind Tunnel
Experimental Investigations and Computational Analysis on Subsonic Wind TunnelExperimental Investigations and Computational Analysis on Subsonic Wind Tunnel
Experimental Investigations and Computational Analysis on Subsonic Wind Tunnel
Β 
Lecture 08 som 05.03.2021
Lecture 08 som 05.03.2021Lecture 08 som 05.03.2021
Lecture 08 som 05.03.2021
Β 
Cfd analysis in an ejector of gas turbine engine test bed
Cfd analysis in an ejector of gas turbine engine test bedCfd analysis in an ejector of gas turbine engine test bed
Cfd analysis in an ejector of gas turbine engine test bed
Β 
IRJET- A Comparative Study of Design of DAM
IRJET- A Comparative Study of Design of DAMIRJET- A Comparative Study of Design of DAM
IRJET- A Comparative Study of Design of DAM
Β 
Io2616501653
Io2616501653Io2616501653
Io2616501653
Β 
DYNAMIC BEHAVIOUR OF HYDRAULIC PRESSURE RELIEF VALVE
DYNAMIC BEHAVIOUR OF HYDRAULIC PRESSURE RELIEF VALVEDYNAMIC BEHAVIOUR OF HYDRAULIC PRESSURE RELIEF VALVE
DYNAMIC BEHAVIOUR OF HYDRAULIC PRESSURE RELIEF VALVE
Β 
Dynamic behaviour of hydraulic pressure relief valve
Dynamic behaviour of hydraulic pressure relief valveDynamic behaviour of hydraulic pressure relief valve
Dynamic behaviour of hydraulic pressure relief valve
Β 

More from ASHOK KUMAR RAJENDRAN

More from ASHOK KUMAR RAJENDRAN (20)

ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
ME6601 DESIGN OF TRANSMISSION SYSTEMS TWO MARK QUESTION & ANSWERS
Β 
COMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUALCOMPUTER AIDED MACHINE DRAWING LAB MANUAL
COMPUTER AIDED MACHINE DRAWING LAB MANUAL
Β 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
Β 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
Β 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - II NOTES
Β 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I  NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - I NOTES
Β 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - V NOTES
Β 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - IV NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - IV NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - IV NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - IV NOTES
Β 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - III NOTES
Β 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - II NOTES
Β 
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES  CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
CE6451 - FLUID MECHANICS AND MACHINERY UNIT - I NOTES
Β 
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOKME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
Β 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
Β 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
Β 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
Β 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
Β 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
Β 
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
ME6601 - DESIGN OF TRANSMISSION SYSTEM NOTES AND QUESTION BANK
Β 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
Β 
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANKDESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
DESIGN OF TRANSMISSION SYSTEMS QUESTION BANK
Β 

Recently uploaded

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
Β 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
Β 

Recently uploaded (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
Β 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Β 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
Β 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Β 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 

FLUID MECHANICS AND MACHINERY FORMULA BOOK

  • 1. R.M.K COLLEGE OF ENGINEERING AND TECHNOLOGY RSM NAGAR, PUDUVOYAL-601206 DEPARTMENT OF MECHANICAL ENGINEERING CE6451 – FLUID MECHANICS & MACHINERY III SEM MECHANICAL ENGINEERING Regulation 2013 FORMULA BOOK PREPARED BY C.BIBIN / R.ASHOK KUMAR / N.SADASIVAN
  • 2. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 2 PROPERTIES OF FLUID: MASS DESNITY (ρ): 𝜌 = π‘š 𝑉 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ m Mass Kg V Volume m3 SPECIFIC VOLUME (v): 𝑣 = 𝑉 π‘š = 1 𝜌 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ m Mass Kg V Volume m3 𝑣 Specific Volume π‘š3 π‘˜π‘”β„ SPECIFIC WEIGTH or WEIGTH DENSITY (w): 𝑀 = π‘Š 𝑉 = π‘šπ‘” 𝑉 = πœŒπ‘” 𝑆𝑖𝑛𝑐𝑒 π‘Š = π‘šπ‘” π‘Žπ‘›π‘‘ 𝜌 = π‘š 𝑉⁄ Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ m Mass Kg V Volume m3 UNIT – I – FLUID PROPERTIES AND FLOW CHARACTERISTICS
  • 3. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 3 𝑀 Specific Weight 𝑁 π‘š3⁄ g Acceleration due to gravity π‘š 𝑠2⁄ SPECIFIC GRAVITY (S): 𝑆 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑒𝑖𝑑 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ 𝑓𝑙𝑒𝑖𝑑 𝑆 = π‘€π‘Žπ‘ π‘  𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑒𝑖𝑑 π‘€π‘Žπ‘ π‘  𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ 𝑓𝑙𝑒𝑖𝑑 Symbol Description Unit 𝑆 Specific Gravity No unit 𝜌 Density or Mass Density π‘˜π‘” π‘š3⁄ 𝑀 Specific Weight 𝑁 π‘š3⁄ 𝑀 π‘€π‘Žπ‘‘π‘’π‘Ÿ Specific Weight of Standard Fluid (Water) = 9.81 𝑁 π‘š3⁄ 𝜌 π‘€π‘Žπ‘‘π‘’π‘Ÿ Mass Density of Standard Fluid (Water) = 1000 π‘˜π‘” π‘š3⁄ VISCOSITY (ΞΌ): 𝜏 𝛼 𝑑𝑒 𝑑𝑦 𝜏 = πœ‡ 𝑑𝑒 𝑑𝑦 Symbol Description Unit 𝜏 Shear Stress 𝑁 π‘š2⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝑑𝑒 Change in Velocity π‘š 𝑠⁄ 𝑑𝑦 Change in Distance π‘š
  • 4. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 4 DYNAMIC VISCOSITY (ΞΌ): πœ‡ = 𝜏 𝑑𝑒 𝑑𝑦⁄ Symbol Description Unit 𝜏 Shear Stress 𝑁 π‘š2⁄ πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝑑𝑒 Change in Velocity π‘š 𝑠⁄ 𝑑𝑦 Change in Distance π‘š 𝑑𝑒 𝑑𝑦⁄ Rate of Shear Strain 1 𝑠⁄ Unit Conversion: 1 𝑁𝑠 π‘š2 = 10 π‘π‘œπ‘–π‘ π‘’ 1 πΆπ‘’π‘›π‘‘π‘–π‘π‘œπ‘–π‘ π‘’ = 1 100 π‘π‘œπ‘–π‘ π‘’ 1 π‘π‘œπ‘–π‘ π‘’ = 0.1 𝑁𝑠 π‘š2 KINEMATIC VISCOSITY (Ξ³): 𝛾 = πœ‡ 𝜌 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ Ξ³ Kinematic Viscosity π‘š2 𝑠⁄ Unit Conversion: 1 π‘ π‘‘π‘œπ‘˜π‘’ = 10βˆ’4 π‘š2 𝑠⁄
  • 5. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 5 1 πΆπ‘’π‘›π‘‘π‘–π‘ π‘‘π‘œπ‘˜π‘’ = 1 100 π‘ π‘‘π‘œπ‘˜π‘’ VISCOSITY PROBLEMS FOR PLATE TYPE: FORCE (F): 𝜏 = 𝐹 𝐴 Symbol Description Unit 𝜏 Shear Stress 𝑁 π‘š2⁄ F Force N A Area of the plate π‘š2 POWER (P): 𝑃 = 𝐹 βˆ— 𝑑𝑒 Symbol Description Unit 𝑃 Power π‘Š F Force N 𝑑𝑒 Change in Velocity π‘š 𝑠⁄ VISCOSITY PROBLEMS FOR SHAFT TYPE: VELOCITY OF SHAFT (u): 𝑒 = πœ‹π·π‘ 60 Symbol Description Unit 𝐷 Diameter of Shaft π‘š N Speed of Shaft Rpm 𝑒 Velocity π‘š 𝑠⁄
  • 6. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 6 FORCE (F): 𝜏 = 𝐹 𝐴 𝜏 = πœ‹π·πΏ Symbol Description Unit 𝜏 Shear Stress 𝑁 π‘š2⁄ F Force N A Circumference of Shaft π‘š2 𝐷 Diameter of Shaft π‘š 𝐿 Length of Shaft π‘š TORQUE ON SHAFT (T): 𝑇 = 𝐹 βˆ— 𝐷 2 Symbol Description Unit 𝑇 Torque 𝑁 βˆ’ π‘š F Force N 𝐷 Diameter of Shaft π‘š POWER ON SHAFT (P): 𝑃 = 2πœ‹π‘π‘‡ 60 Symbol Description Unit 𝑃 Power π‘Š 𝑇 Torque 𝑁 βˆ’ π‘š N Speed of Shaft Rpm
  • 7. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 7 VISCOSITY PROBLEMS FOR CONICAL BEARING: ANGULAR VELOCITY (Ο‰): πœ” = 2πœ‹π‘ 60 Symbol Description Unit πœ” Angular Velocity π‘Ÿπ‘Žπ‘‘ 𝑠𝑒𝑐⁄ N Speed of Shaft Rpm ANGLE (ΞΈ): π‘‘π‘Žπ‘›πœƒ = π‘Ÿ1 βˆ’ π‘Ÿ2 𝐻 Symbol Description Unit π‘Ÿ1 Outer Radius π‘š π‘Ÿ2 Inner Radius π‘š 𝐻 Height π‘š POWER (P): 𝑃 = 2πœ‹π‘π‘‡ 60 Symbol Description Unit 𝑃 Power π‘Š 𝑇 Torque 𝑁 βˆ’ π‘š
  • 8. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 8 N Speed of Shaft Rpm THICKNESS OF OIL (h): 𝑇 = πœ‹πœ‡πœ” 2β„Žπ‘ π‘–π‘›πœƒ ( π‘Ÿ1 4 βˆ’ π‘Ÿ2 4) Symbol Description Unit πœ‡ Dynamic Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝑇 Torque 𝑁 βˆ’ π‘š πœ” Angular Velocity π‘Ÿπ‘Žπ‘‘ 𝑠𝑒𝑐⁄ β„Ž Thickness of Oil π‘š π‘Ÿ1 Outer Radius π‘š π‘Ÿ2 Inner Radius π‘š CAPILLARITY: HEIGHT OF LIQUID IN TUBE (h): β„Ž = 4πœŽπ‘π‘œπ‘ πœƒ πœŒπ‘”π‘‘ Symbol Description Unit β„Ž Height of Liquid in Tube π‘š 𝜎 Surface Tension 𝑁 π‘šβ„ πœƒ Angle of Contact between Liquid and Tube π‘Ÿπ‘Žπ‘‘ 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝑑 Diameter of Tube π‘š SURFACE TENSION: PRESSURE IN LIQUID DROPLET (P): 𝑃 = 4𝜎 𝑑
  • 9. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 9 Symbol Description Unit 𝑃 Pressure 𝑁 π‘š2⁄ 𝜎 Surface Tension 𝑁 π‘šβ„ 𝑑 Diameter of Droplet π‘š PRESSURE IN BUBBLE (P): 𝑃 = 8𝜎 𝑑 Symbol Description Unit 𝑃 Pressure 𝑁 π‘š2⁄ 𝜎 Surface Tension 𝑁 π‘šβ„ 𝑑 Diameter of Bubble π‘š PRESSURE IN LIQUID JET (P): 𝑃 = 2𝜎 𝑑 Symbol Description Unit 𝑃 Pressure 𝑁 π‘š2⁄ 𝜎 Surface Tension 𝑁 π‘šβ„ 𝑑 Diameter of Jet π‘š CONTINUITY EQUATION: πœ•π‘’ πœ•π‘₯ + πœ•π‘£ πœ•π‘¦ + πœ•π‘€ πœ•π‘§ = 0 [ πΉπ‘œπ‘Ÿ 3 βˆ’ 𝐷 π‘“π‘™π‘œπ‘€] πœ•π‘’ πœ•π‘₯ + πœ•π‘£ πœ•π‘¦ + = 0 [ πΉπ‘œπ‘Ÿ 2 βˆ’ 𝐷 π‘“π‘™π‘œπ‘€] πœ• πœ•π‘Ÿ ( π‘Ÿπ‘’ π‘Ÿ) + πœ• πœ•πœƒ ( 𝑒 πœƒ) = 0[ πΉπ‘œπ‘Ÿ π‘π‘œπ‘™π‘Žπ‘Ÿ π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ ]
  • 10. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 10 BERNOULLI’S EQUATION: πœ•π‘ƒ 𝜌 + 𝑣. 𝑑𝑣 + 𝑔. 𝑑𝑧 = 0 𝑃1 πœŒπ‘” + 𝑣1 2 2𝑔 + 𝑧1 = 𝑃2 πœŒπ‘” + 𝑣2 2 2𝑔 + 𝑧2 + β„Ž 𝑓 Symbol Description Unit 𝑃1 & 𝑃2 Pressure at Section 1 & 2 𝑁 π‘š2⁄ 𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š 𝑠⁄ 𝑧1 & 𝑧2 Datum Head at Section 1 & 2 π‘š β„Ž 𝑓 Head Loss π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ COEFFICIENT OF DISCHARGE: 𝐢 𝑑 = 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ COEFFICIENT OF VELOCITY: 𝐢𝑣 = 𝑣 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑣 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ DISCHARGE OF VENTURIMETER AND ORIFICEMETER: 𝑄 = 𝐢 𝑑 π‘Ž1 π‘Ž2 √( π‘Ž1 2 βˆ’ π‘Ž1 2) √2π‘”β„Ž Symbol Description Unit π‘Ž1 & π‘Ž2 Area at Section 1 & 2 π‘š2 β„Ž Pressure Difference between Section 1 & 2 ( 𝑃1βˆ’ 𝑃2 πœŒπ‘” ) π‘š
  • 11. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 11 𝐢 𝑑 Coefficient of Discharge π‘₯ Difference in Mercury Level π‘š β„Ž = π‘₯ (1 βˆ’ 𝑆 π‘š 𝑆 ) [ π‘€β„Žπ‘’π‘› 𝑆 > 𝑆 π‘š] β„Ž = π‘₯ ( 𝑆 π‘š 𝑆 βˆ’ 1) [ π‘€β„Žπ‘’π‘› 𝑆 π‘š > 𝑆] β„Ž = ( 𝑃1 πœŒπ‘” + 𝑍1) βˆ’ ( 𝑃2 πœŒπ‘” + 𝑍2) [ 𝐼𝑛𝑐𝑙𝑖𝑛𝑒𝑑 π‘‰π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ] MOMENTUM EQUATION: 𝐹 = 𝑑 (π‘šπ‘£) 𝑑𝑑 FORCE ACTING IN X – DIRECTION: 𝐹π‘₯ = πœŒπ‘„ ( 𝑣1 βˆ’ 𝑣2 π‘π‘œπ‘ πœƒ) + 𝑃1 𝐴1 βˆ’ 𝑃2 𝐴2 π‘π‘œπ‘ πœƒ FORCE ACTING IN Y – DIRECTION: 𝐹𝑦 = πœŒπ‘„ (βˆ’ 𝑣2 π‘ π‘–π‘›πœƒ) βˆ’ 𝑃2 𝐴2 π‘ π‘–π‘›πœƒ Symbol Description Unit 𝑃1 & 𝑃2 Pressure at Section 1 & 2 𝑁 π‘š2⁄ 𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š 𝑠⁄ 𝐴1 & 𝐴2 Area at Section 1 & 2 π‘š πœƒ Angle of the Bend π·π‘’π‘”π‘Ÿπ‘’π‘’ 𝑄 Discharge π‘š3 𝑠⁄ RESULTANT FORCE: 𝐹𝑅 = √𝐹π‘₯ 2 + 𝐹𝑦 2
  • 12. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 12 ANGLE MADE BY RESULTANT FORCE: π‘‘π‘Žπ‘›πœƒ = 𝐹𝑦 𝐹π‘₯ MOMENT OF MOMENTUM EQUATION: 𝑇 = πœŒπ‘„ ( 𝑣2 π‘Ÿ2 βˆ’ 𝑣1 π‘Ÿ1) Symbol Description Unit 𝑇 Torque 𝑁 βˆ’ π‘š 𝑣1 & 𝑣2 Velocity at Section 1 & 2 π‘š 𝑠⁄ π‘Ÿ1 & π‘Ÿ2 Radius of Curvature at Section 1 & 2 π‘š 𝑄 Discharge π‘š3 𝑠⁄ 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄
  • 13. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 13 TOTAL ENERGY LINE (TEL): 𝑇𝐸𝐿 = π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ + 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 π»π‘’π‘Žπ‘‘ + π·π‘Žπ‘‘π‘’π‘š π»π‘’π‘Žπ‘‘ 𝑇𝐸𝐿 = 𝑃 πœŒπ‘” + 𝑣2 2𝑔 + 𝑍 Symbol Description Unit 𝑃 Pressure 𝑁 π‘š2⁄ 𝑣 Velocity π‘š 𝑠⁄ 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑍 Datum Head π‘š 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ HYDRAULIC ENERGY LINE (HEL): 𝐻𝐸𝐿 = π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ + π·π‘Žπ‘‘π‘’π‘š π»π‘’π‘Žπ‘‘ 𝑇𝐸𝐿 = 𝑃 πœŒπ‘” + 𝑍 HAGEN POISEUILLE’S EQUATION: SHEAR STRESS: 𝜏 = βˆ’ πœ•π‘ πœ•π‘₯ βˆ— π‘Ÿ 2 Symbol Description Unit 𝜏 Shear Stress 𝑁 π‘š2⁄ πœ•π‘ πœ•π‘₯ Pressure Gradient 𝑁 π‘š3⁄ π‘Ÿ Radius of pipe π‘š UNIT – II – FLOW THROUGH CIRCULAR CONDUITS
  • 14. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 14 VELOCITY: 𝑒 = βˆ’ 1 4πœ‡ βˆ— πœ•π‘ πœ•π‘₯ βˆ— (𝑅2 βˆ’ π‘Ÿ2 ) Symbol Description Unit 𝑒 Velocity of Fluid in Pipe π‘š 𝑠⁄ πœ•π‘ πœ•π‘₯ Pressure Gradient 𝑁 π‘š3⁄ π‘Ÿ Radius of pipe π‘š πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ MAXIMUM VELOCITY: 𝑒 = βˆ’ 1 4πœ‡ βˆ— πœ•π‘ πœ•π‘₯ βˆ— (𝑅2 ) Symbol Description Unit 𝑒 Velocity of Fluid in Pipe π‘š 𝑠⁄ πœ•π‘ πœ•π‘₯ Pressure Gradient 𝑁 π‘š3⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ AVERAGE VELOCITY: 𝑒̅ = βˆ’ 1 4πœ‡ βˆ— πœ•π‘ πœ•π‘₯ βˆ— (𝑅2 ) Symbol Description Unit 𝑒̅ Average Velocity of Fluid in Pipe π‘š 𝑠⁄ πœ•π‘ πœ•π‘₯ Pressure Gradient 𝑁 π‘š3⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ RATIO BETWEEN MAXIMUM VELOCITY AND AVERAGE VELOCITY: 𝑒 π‘šπ‘Žπ‘₯ 𝑒̅ = 2
  • 15. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 15 DISCHARGE: 𝑒 = βˆ’ 1 8πœ‡ βˆ— πœ•π‘ πœ•π‘₯ βˆ— πœ‹ βˆ— 𝑅4 Symbol Description Unit 𝑒 Velocity of Fluid in Pipe π‘š 𝑠⁄ πœ•π‘ πœ•π‘₯ Pressure Gradient 𝑁 π‘š3⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ PRESSURE DIFFERENCE: 𝑃1 βˆ’ 𝑃2 = 32πœ‡π‘’Μ…πΏ 𝐷2 Symbol Description Unit 𝑒̅ Average Velocity of Fluid in Pipe π‘š 𝑠⁄ 𝐿 Length of Pipe π‘š πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝐷 Diameter of Pipe π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LOSS OF HEAD: β„Ž 𝑓 = 𝑃1 βˆ’ 𝑃2 πœŒπ‘” = 32πœ‡π‘’Μ…πΏ πœŒπ‘”π·2 [ π‘“π‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ π‘“π‘™π‘œπ‘€] DARCY WEISBACH EQUATION: β„Ž 𝑓 = 𝑃1 βˆ’ 𝑃2 πœŒπ‘” = 4𝑓𝐿𝑣2 2𝑔𝑑 [ π‘“π‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘“π‘™π‘œπ‘€] Symbol Description Unit 𝑣 Velocity of Fluid in Pipe π‘š 𝑠⁄
  • 16. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 16 𝐿 Length of Pipe π‘š 𝑓 Friction Factor 𝑑 Diameter of Pipe π‘š 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ REYNOLD’S NUMBER: 𝑅 𝑒 = πœŒπ‘£π‘‘ πœ‡ 𝑓 = 0.079 𝑅 𝑒 0.25 [ πΉπ‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ πΉπ‘™π‘œπ‘€] 𝑓 = 16 𝑅 𝑒 [ πΉπ‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ πΉπ‘™π‘œπ‘€] 𝑅 𝑒 < 2000 π‘‡β„Žπ‘’π‘› π‘‘β„Žπ‘’ πΉπ‘™π‘œπ‘€ 𝑖𝑠 πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ 𝑅 𝑒 > 2000 π‘‡β„Žπ‘’π‘› π‘‘β„Žπ‘’ πΉπ‘™π‘œπ‘€ 𝑖𝑠 π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ Symbol Description Unit 𝑣 Velocity of Fluid in Pipe π‘š 𝑠⁄ 𝑑 Diameter of Pipe π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ MAJOR LOSS IN PIPES: β„Ž 𝑓 = 32πœ‡π‘’Μ…πΏ πœŒπ‘”π‘‘2 [ π‘“π‘œπ‘Ÿ πΏπ‘Žπ‘šπ‘–π‘›π‘Žπ‘Ÿ π‘“π‘™π‘œπ‘€] β„Ž 𝑓 = 4𝑓𝐿𝑣2 2𝑔𝑑 [ π‘“π‘œπ‘Ÿ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘“π‘™π‘œπ‘€]
  • 17. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 17 Symbol Description Unit 𝑒̅ & 𝑣 Velocity of Fluid in Pipe π‘š 𝑠⁄ 𝑑 Diameter of Pipe π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝑙 Length of Pipe π‘š 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝑓 Friction Factor MINOR LOSS IN PIPES: LOSS DUE TO SUDDEN ENLARGEMENT: β„Ž 𝑒 = ( 𝑣1 βˆ’ 𝑣2)2 2𝑔 Symbol Description Unit 𝑣1 & 𝑣2 Velocity of Fluid in Pipe at Inlet and Outlet π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LOSS DUE TO SUDDEN CONTRACTION: β„Ž 𝑐 = 𝐾𝑣2 2𝑔 𝐾 = ( 1 𝐢𝑐 βˆ’ 1) 2 β„Ž 𝑐 = 0.5𝑣2 2𝑔 [ 𝐼𝑓 𝐢𝑐 π‘›π‘œπ‘‘ 𝑔𝑖𝑣𝑒𝑛] Symbol Description Unit 𝑣 Velocity of Fluid at Outlet π‘š 𝑠⁄ 𝐢𝑐 Coefficient of Contraction
  • 18. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 18 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LOSS AT ENTRANCE OF PIPE: β„Žπ‘– = 0.5𝑣2 2𝑔 Symbol Description Unit 𝑣 Velocity of Fluid at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LOSS AT EXIT OF PIPE: β„Ž π‘œ = 𝑣2 2𝑔 Symbol Description Unit 𝑣 Velocity of Fluid at Outlet π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LOSS DUE TO GRADUAL CONTRACTION: β„Ž 𝑒 = 𝐾( 𝑣1 βˆ’ 𝑣2)2 2𝑔 Symbol Description Unit 𝑣1 & 𝑣2 Velocity of Fluid in Pipe at Inlet and Outlet π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝐾 Coefficient of Contraction LOSS AT BEND OF PIPE: β„Ž 𝑏 = 𝐾𝑣2 2𝑔
  • 19. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 19 Symbol Description Unit 𝑣 Velocity of Flow π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝐾 Coefficient of Bend LOSS AT DUE TO VARIOUS FITTINGS: β„Ž 𝑣 = 𝐾𝑣2 2𝑔 Symbol Description Unit 𝑣 Velocity of Flow π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝐾 Coefficient of Fittings LOSS AT DUE TO OBSTRUCTION: β„Ž 𝑣 = 𝑣2 2𝑔 ( 𝐴 𝐢𝑐 ( 𝐴 βˆ’ π‘Ž) βˆ’ 1) 𝐢𝑐 = 𝐴 𝑐 ( 𝐴 βˆ’ π‘Ž) Symbol Description Unit 𝑣 Velocity of Flow π‘š 𝑠⁄ 𝐴 Area of Pipe π‘š2 π‘Ž Area of Obstruction π‘š2 𝐴 𝑐 Area of Vena Contraction π‘š2 WHEN PIPES ARE CONNECTED IN SERIES: DISCHARGE: 𝑄 = 𝑄1 = 𝑄2 𝑄 = 𝐴1 𝑣1 = 𝐴2 𝑣2
  • 20. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 20 HEAD LOSS: β„Ž 𝑓 = β„Ž 𝑓1 + β„Ž 𝑓2 β„Ž 𝑓 = 4𝑓𝑙1 𝑣1 2 2𝑔𝑑1 + 4𝑓𝑙2 𝑣2 2 2𝑔𝑑2 Symbol Description Unit 𝑣1 & 𝑣2 Velocity of Flow at Pipe 1 & 2 π‘š 𝑠⁄ 𝐴1& 𝐴2 Area of Pipe 1 & 2 π‘š2 𝑑1& 𝑑2 Diameter of Pipe 1 & 2 π‘š 𝑙1& 𝑙2 Length of Pipe 1 & 2 π‘š 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝑓 Friction Factor WHEN PIPES ARE CONNECTED IN PARALLEL: DISCHARGE: 𝑄 = 𝑄1 + 𝑄2 𝑄 = 𝐴1 𝑣1 + 𝐴2 𝑣2 HEAD LOSS: β„Ž 𝑓 = β„Ž 𝑓1 = β„Ž 𝑓2 β„Ž 𝑓 = 4𝑓𝑙1 𝑣1 2 2𝑔𝑑1 = 4𝑓𝑙2 𝑣2 2 2𝑔𝑑2 Symbol Description Unit 𝑣1 & 𝑣2 Velocity of Flow at Pipe 1 & 2 π‘š 𝑠⁄ 𝐴1& 𝐴2 Area of Pipe 1 & 2 π‘š2 𝑑1& 𝑑2 Diameter of Pipe 1 & 2 π‘š 𝑙1& 𝑙2 Length of Pipe 1 & 2 π‘š
  • 21. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 21 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ 𝑓 Friction Factor EQUIVALENT PIPE: 𝐿 𝐷5 = 𝐿1 𝐷1 5 + 𝐿2 𝐷2 5 + 𝐿3 𝐷3 5 + β‹― + 𝐿 𝑛 𝐷 𝑛 5 Symbol Description Unit 𝐷 Diameter of Pipe π‘š 𝐿 Length of Pipe π‘š BOUNDARY LAYER: DISPLACEMENT THICKNESS: π›Ώβˆ— = ∫ (1 βˆ’ 𝑒 π‘ˆ ) 𝛿 0 𝑑𝑦 MOMENTUM THICKNESS: πœƒ = ∫ 𝑒 π‘ˆ (1 βˆ’ 𝑒 π‘ˆ ) 𝛿 0 𝑑𝑦 MOMENTUM THICKNESS: π›Ώβˆ—βˆ— = ∫ 𝑒 π‘ˆ (1 βˆ’ 𝑒2 π‘ˆ2 ) 𝛿 0 𝑑𝑦 Symbol Description Unit 𝑒 π‘ˆ Velocity Distribution 𝛿 Boundary layer thickness SHEAR STRESS: 𝜏0 πœŒπ‘ˆ2 = πœ•πœƒ πœ•π‘₯
  • 22. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 22 πœƒ = ∫ 𝑒 π‘ˆ (1 βˆ’ 𝑒 π‘ˆ ) 𝛿 0 𝑑𝑦 DRAG FORCE: 𝐹 𝐷 = ∫ π‘†β„Žπ‘’π‘Žπ‘Ÿ π‘†π‘‘π‘Ÿπ‘’π‘ π‘  βˆ— π΄π‘Ÿπ‘’π‘Ž 𝐿 0 𝐹 𝐷 = ∫ 𝜏0 βˆ— 𝑏 βˆ— 𝑑π‘₯ 𝐿 0 LOCAL COEFFICIENT OF DRAG: 𝐢 𝐷 βˆ— = 𝜏0 1 2 πœŒπ‘ˆ2 AVERAGE COEFFICIENT OF DRAG: 𝐢 𝐷 = 𝐹 𝐷 1 2 πœŒπ΄π‘ˆ2 Symbol Description Unit 𝜏0 Shear Stress 𝑁 π‘š2⁄ 𝑏 Width of Plate π‘š π‘ˆ Free Stream Velocity π‘š 𝑠⁄ 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝐴 Area π‘š2 𝐹 𝐷 Drag Force 𝑁 BLASIUS’S SOLUTION: BOUNDARY LAYER THICKNESS: 𝛿 = 4.91π‘₯ √ 𝑅 𝑒π‘₯
  • 23. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 23 LOCAL COEFFICIENT OF DRAG: 𝐢 𝐷 βˆ— = 0.664 √ 𝑅 𝑒π‘₯ AVERAGE COEFFICIENT OF DRAG: 𝐢 𝐷 = 1.328 √ 𝑅 𝑒𝐿 Symbol Description Unit 𝑅 𝑒π‘₯ Reynold’s Number at distance x 𝑅 𝑒𝐿 Reynold’s Number at distance L
  • 24. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 24 UNITS: Physical Quantity Symbol Unit Dimensions Length L m L Mass M Kg M Time T Sec T Area A m2 L2 Volume V m3 L3 Diameter D m L Head H m L Roughness k M L Velocity v m/s LT-1 Angular Velocity Ο‰ rad/sec T-1 Acceleration a m/s2 LT-2 Angular Acceleration Ξ± rad/sec2 T-2 Speed N Rpm T-1 Discharge Q m3 /s L3 T-1 Kinematic Viscosity Ξ³ cm2 /s L2 T-1 Dynamic Viscosity ΞΌ N-s/m2 ML-1 T-1 Force F N MLT-2 Weight W N MLT-2 Thrust T N MLT-2 Density ρ Kg/ m3 ML-3 Pressure P N/m2 ML-1 T-2 UNIT – III – DIMENSIONAL ANALYSIS
  • 25. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 25 Physical Quantity Symbol Unit Dimensions Specific Weight w N/m3 ML-2 T-2 Young’s Modulus E N/m2 ML-1 T-2 Bulk Modulus K N/m2 ML-1 T-2 Shear Stress Ο„ N/m2 ML-1 T-2 Surface Tension Οƒ N/m MT-2 Energy / Work W/E J = N-m ML2 T-2 Torque T N-m ML-2 T-2 Power P W=J/s ML-2 T-3 Momentum M Kg m/s MLT-1 Efficiency Ξ· No Unit Dimensionless SIMILARITY: GEOMETRIC SIMILARITY: 𝐿 𝑝 𝐿 π‘š = 𝑏 𝑝 𝑏 π‘š = 𝐷 𝑝 𝐷 π‘š = 𝐿 π‘Ÿ 𝐴 𝑝 𝐴 π‘š = 𝐿 𝑝 𝐿 π‘š βˆ— 𝑏 𝑝 𝑏 π‘š = 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ = 𝐿 π‘Ÿ 2 𝑉𝑝 π‘‰π‘š = 𝐿 𝑝 𝐿 π‘š βˆ— 𝑏 𝑝 𝑏 π‘š βˆ— 𝑑 𝑝 𝑑 π‘š = 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ βˆ— 𝐿 π‘Ÿ = 𝐿 π‘Ÿ 3 Symbol Description Unit 𝐿 𝑝&𝐿 π‘š Length of Prototype & Model π‘š 𝑏 𝑝&𝑏 π‘š Breadth of Prototype & Model π‘š 𝐷 𝑝&𝐷 π‘š Diameter of Prototype & Model π‘š 𝑑 𝑝&𝑑 π‘š Thickness of Prototype & Model π‘š 𝐴 𝑝&𝐴 π‘š Area of Prototype & Model π‘š2
  • 26. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 26 𝑉𝑝&π‘‰π‘š Volume of Prototype & Model π‘š3 𝐿 π‘Ÿ Length Ratio KINEMATIC SIMILARITY: 𝑣 𝑝 𝑣 π‘š = π‘£π‘Ÿ π‘Ž 𝑝 π‘Ž π‘š = π‘Ž π‘Ÿ Symbol Description Unit 𝑣 𝑝&𝑣 π‘š Velocity of Prototype & Model π‘š 𝑠⁄ π‘Ž 𝑝&π‘Ž π‘š Acceleration of Prototype & Model π‘š 𝑠2⁄ π‘£π‘Ÿ Velocity Ratio π‘Ž π‘Ÿ Acceleration Ratio DYNAMIC SIMILARITY: ( 𝐹𝑖) 𝑝 ( 𝐹𝑖) π‘š = ( 𝐹𝑣) 𝑝 ( 𝐹𝑣) π‘š = (𝐹𝑔) 𝑝 (𝐹𝑔) π‘š = πΉπ‘Ÿ Symbol Description Unit ( 𝐹𝑖) 𝑝& ( 𝐹𝑖) π‘š Inertia Force of Prototype & Model 𝑁 ( 𝐹𝑣) 𝑝& ( 𝐹𝑣) π‘š Viscous Force of Prototype & Model 𝑁 (𝐹𝑔) 𝑝 & (𝐹𝑔) π‘š Gravity Force of Prototype & Model 𝑁 πΉπ‘Ÿ Force Ratio DIMENSIONLESS NUMBER: REYNOLD’S NUMBER: 𝑅 𝑒 = πœŒπ‘£π· πœ‡ (π‘œπ‘Ÿ) πœŒπ‘£πΏ πœ‡
  • 27. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 27 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑣 Velocity π‘š 𝑠⁄ πœ‡ Viscosity 𝑁 βˆ’ 𝑠 π‘š2⁄ 𝐷 Diameter π‘š 𝐿 Length π‘š FROUDE’S NUMBER: 𝐹𝑒 = 𝑣 √ 𝐿𝑔 Symbol Description Unit 𝑣 Velocity π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐿 Length π‘š FROUDE’S NUMBER: 𝐹𝑒 = 𝑣 √ 𝐿𝑔 Symbol Description Unit 𝑣 Velocity π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐿 Length π‘š EULER’S NUMBER: 𝐸 𝑒 = 𝑣 √ 𝑝 πœŒβ„ Symbol Description Unit 𝑣 Velocity π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄
  • 28. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 28 𝑝 Pressure 𝑁 π‘š2⁄ WEBER’S NUMBER: π‘Šπ‘’ = 𝑣 √ 𝜎 πœŒπΏβ„ Symbol Description Unit 𝑣 Velocity π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝐿 Length π‘š 𝜎 Surface Tension 𝑁 π‘šβ„ MACH’S NUMBER: π‘Šπ‘’ = 𝑣 √ 𝐾 πœŒβ„ Symbol Description Unit 𝑣 Velocity π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝐾 Elastic Stress 𝑁 π‘š2⁄ REYNOLD’S MODEL LAW: TIME RATIO: πΉπ‘Ÿ = π‘š π‘Ÿ π‘Ž π‘Ÿ πΉπ‘Ÿ = π‘š π‘Ÿ π‘£π‘Ÿ π‘‡π‘Ÿ DISCHARGE RATIO: 𝑄 π‘Ÿ = πœŒπ‘Ÿ 𝐿 π‘Ÿ 2 π‘£π‘Ÿ
  • 29. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 29 Symbol Description Unit πΉπ‘Ÿ Force Ratio π‘š π‘Ÿ Mass Ratio π‘£π‘Ÿ Velocity Ratio π‘‡π‘Ÿ Time Ratio 𝐿 π‘Ÿ Length Ratio πœŒπ‘Ÿ Density Ratio FROUDE’S MODEL LAW: TIME RATIO: π‘‡π‘Ÿ = √ 𝐿 π‘Ÿ ACCELERATION RATIO: π‘Ž π‘Ÿ = 1 DISCHARGE RATIO: 𝑄 π‘Ÿ = ( 𝐿 π‘Ÿ) 5 2⁄ FORCE RATIO: πΉπ‘Ÿ = ( 𝐿 π‘Ÿ)3 PRESSURE RATIO: πΉπ‘Ÿ = 𝐿 π‘Ÿ ENERGY RATIO: πΈπ‘Ÿ = ( 𝐿 π‘Ÿ)4 MOMENTUM RATIO: π‘€π‘Ÿ = ( 𝐿 π‘Ÿ)3 βˆ— √ 𝐿 π‘Ÿ TORQUE RATIO: π‘‡π‘Ÿ = ( 𝐿 π‘Ÿ)4
  • 30. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 30 POWER RATIO: π‘ƒπ‘Ÿ = ( 𝐿 π‘Ÿ) 7 2⁄ Symbol Description Unit 𝐿 π‘Ÿ Length Ratio DISTORTED MODELS: ( 𝐿 π‘Ÿ) 𝐻 = πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘ƒπ‘Ÿπ‘œπ‘‘π‘œπ‘‘π‘¦π‘π‘’ πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π»π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘€π‘œπ‘‘π‘’π‘™ ( 𝐿 π‘Ÿ) 𝐻 = 𝐿 𝑝 𝐿 π‘š = 𝐡𝑝 𝐡 π‘š ( 𝐿 π‘Ÿ) 𝑉 = πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π‘‰π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘ƒπ‘Ÿπ‘œπ‘‘π‘œπ‘‘π‘¦π‘π‘’ πΏπ‘–π‘›π‘’π‘Žπ‘Ÿ π‘‰π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘€π‘œπ‘‘π‘’π‘™ ( 𝐿 π‘Ÿ) 𝑉 = β„Ž 𝑝 β„Ž π‘š VELOCITY RATIO: π‘£π‘Ÿ = √(𝐿 π‘Ÿ) 𝑉 AREA RATIO: 𝐴 π‘Ÿ = ( 𝐿 π‘Ÿ) 𝐻 βˆ— ( 𝐿 π‘Ÿ) 𝑉 DISCAHRGE RATIO: 𝑄 π‘Ÿ = ( 𝐿 π‘Ÿ) 𝐻 βˆ— [( 𝐿 π‘Ÿ) 𝑉] 3 2⁄
  • 31. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 31 CENTRIFUGAL PUMP: VELOCITY TRIANGLE DIAGRAM: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Impeller at Inlet & Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣1&𝑣2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree UNIT – IV – PUMPS
  • 32. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 32 πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree 𝛽 Angle made by Absolute Velocity at Outlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree TANGENTIAL VELOCITY AT INLET: 𝑒1 = πœ‹π‘‘1 𝑁 60 Symbol Description Unit 𝑑1 Inlet (or) Internal Diameter of Impeller π‘š 𝑁 Speed of Impeller π‘Ÿπ‘π‘š TANGENTIAL VELOCITY AT OUTLET: 𝑒2 = πœ‹π‘‘2 𝑁 60 Symbol Description Unit 𝑑2 Oulet (or) External Diameter of Impeller π‘š 𝑁 Speed of Impeller π‘Ÿπ‘π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM: π‘‘π‘Žπ‘›πœƒ = 𝑣𝑓1 𝑒1 Symbol Description Unit 𝑒1 Tangential Velocity of Impeller at Inlet π‘š 𝑠⁄ 𝑣1 Absolute Velocity at Inlet π‘š 𝑠⁄
  • 33. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 33 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree ∡ 𝛼 = 90Β° 𝑣1 = 𝑣𝑓1 FROM OUTLET VELOCITY TRIANGLE DIAGRAM: π‘‘π‘Žπ‘›πœ™ = 𝑣𝑓2 𝑒2 βˆ’ 𝑣 𝑀2 𝑣2 = βˆšπ‘£π‘“2 2 + 𝑣 𝑀2 2 π‘‘π‘Žπ‘›π›½ = 𝑣𝑓2 𝑣 𝑀2 Symbol Description Unit 𝑒2 Tangential Velocity of Impeller at Outlet π‘š 𝑠⁄ 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑣2 Absolute Velocity at Outlet π‘š 𝑠⁄ 𝑣𝑓2 Flow Velocity at Outlet π‘š 𝑠⁄ πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree 𝛽 Angle made by Absolute Velocity at Outlet with the Degree
  • 34. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 34 Direction of Motion of Vane DISCHARGE: 𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2 Symbol Description Unit 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š 𝑏1&𝑏2 Width of Impeller at Inlet & Outlet π‘š 𝑄 Discharge π‘š3 𝑠⁄ WORK DONE BY AN IMPELLER PER SECOND: π‘Š = πœŒπ‘”π‘„ 𝑔 𝑣 𝑀2 𝑒2 Symbol Description Unit 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ WORK DONE BY AN IMPELLER PER UNIT WEIGHT OF WATER: π‘Š = 𝑣 𝑀2 𝑒2 𝑔 Symbol Description Unit 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄
  • 35. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 35 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ MANOMETRIC EFFICIENCY: πœ‚ π‘š = 𝑔𝐻 𝑣 𝑀2 𝑒2 Symbol Description Unit 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄ 𝐻 Manometric Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ POWER REQUIRED BY THE PUMP: 𝑃 = πœŒπ‘„π‘£ 𝑀2 𝑒2 Symbol Description Unit 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑃 Power π‘˜π‘Š MINIMUM SPEED TO START THE PUMP: 𝑁 π‘šπ‘–π‘› = 120 βˆ— πœ‚ π‘š βˆ— 𝑣 𝑀2 βˆ— 𝑑2 πœ‹ (𝑑2 2 βˆ’ 𝑑1 2 ) Symbol Description Unit 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š πœ‚ π‘š Manometric Efficiency
  • 36. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 36 OVERALL EFFICIENCY: πœ‚ π‘œ = πΌπ‘šπ‘π‘’π‘™π‘™π‘’π‘Ÿ π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = πœŒπ‘”π‘„π» 𝑆. 𝑃 πœ‚ π‘œ = πœ‚ π‘šπ‘Žπ‘›π‘œ βˆ— πœ‚ π‘šπ‘’π‘β„Ž βˆ— πœ‚ π‘£π‘œπ‘™ Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Manometric Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ MECHANICAL EFFICIENCY: πœ‚ π‘šπ‘’π‘β„Ž = πœŒπ‘”π‘„π» 𝑆. 𝑃 βˆ— 𝑣 𝑀2 𝑒2 𝑔𝐻 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Manometric Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝑆. 𝑃 Shaft Power π‘Š 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄ POWER OF PUMP: 𝑃 = πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄
  • 37. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 37 𝐻 Manometric Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐿𝑖𝑓𝑑 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐿𝑖𝑓𝑑 = π΄π‘π‘‘π‘’π‘Žπ‘™ π»π‘’π‘Žπ‘‘ πΌπ‘‘π‘’π‘Žπ‘™ π»π‘’π‘Žπ‘‘ IDEAL HEAD: 𝑃𝐼 = πœŒπ‘”(𝑄 + π‘ž)𝐻𝑖 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ π‘ž Leakage of Water π‘š3 𝑠⁄ 𝐻𝑖 Ideal Head π‘š 𝑃𝐼 Power at Input π‘Š TORQUE EXERTED BY IMPELLER: 𝑇 = πœŒπ‘”π‘„ 𝑔 βˆ— 𝑣 𝑀2 βˆ— 𝑅2 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑅2 Radius of Impeller at Outlet π‘š
  • 38. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 38 SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄ Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed SPEED RATIO: 𝐾 𝑒 = 𝑒2 √2𝑔𝐻 𝐾 𝑒 = 0.95 βˆ’ 1.25 Symbol Description Unit 𝑒2 Tangential Velocity at Outlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾 𝑒 Speed Ratio FLOW RATIO: 𝐾𝑓 = 𝑣𝑓2 √2𝑔𝐻 𝐾𝑓 = 0.1 βˆ’ 0.25
  • 39. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 39 Symbol Description Unit 𝑣𝑓2 Flow Velocity at Outlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾𝑓 Flow Ratio RECIPROCATING PUMP: DISCHARGE: 𝑄 = 𝐴𝐿𝑁 60 𝐴 = πœ‹ 4 𝐷2 [ πΉπ‘œπ‘Ÿ 𝑆𝑖𝑛𝑔𝑙𝑒 𝐴𝑐𝑑𝑖𝑛𝑔 π‘ƒπ‘’π‘šπ‘] 𝐴 = [ πœ‹ 4 𝐷2 + πœ‹ 4 ( 𝐷2 βˆ’ 𝑑2)] [ πΉπ‘œπ‘Ÿ π·π‘œπ‘’π‘π‘™π‘’ 𝐴𝑐𝑑𝑖𝑛𝑔 π‘ƒπ‘’π‘šπ‘] Symbol Description Unit 𝐴 Area of Cylinder π‘š2 𝐿 Stroke Length π‘š 𝑁 Speed π‘Ÿπ‘π‘š 𝐷 Diameter of Cylinder or Bore π‘š 𝑑 Diameter of Piston Rod π‘š WEIGHT OF THE WATER DELIVERED PER SECOND: π‘Š = πœŒπ‘”π‘„ Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ π‘Š Weight of Water 𝑁 𝑠⁄
  • 40. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 40 WORK DONE BY RECIPROCATING PUMP: π‘Š = πœŒπ‘”π‘„π» 𝐻 = β„Ž 𝑠 + β„Ž 𝑑 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š π‘Š Work Done π‘Š β„Ž 𝑠 Suction Head π‘š β„Ž 𝑑 Delivery Head π‘š POWER DEVELOPED BY RECIPROCATING PUMP: 𝑃 = πœŒπ‘”π‘„ π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐻 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š POWER REQUIRED TO DRIVE THE PUMP: 𝑃 = πœŒπ‘”π‘„ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐻 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š
  • 41. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 41 SLIP OF RECIPROCATING PUMP: 𝑆 = 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ βˆ’ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Symbol Description Unit 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ COEFFICENT OF DISCHARGE: 𝐢 𝑑 = 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Symbol Description Unit 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ PERCENTAGE OF SLIP IN RECIPROCATING PUMP: % π‘œπ‘“ 𝑆𝑙𝑖𝑝 = 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ βˆ’ 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ % π‘œπ‘“ 𝑆𝑙𝑖𝑝 = 1 βˆ’ 𝐢 𝑑 Symbol Description Unit 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ 𝐢 𝑑 Coefficient of Discharge VOLUMETRIC EFFICIENCY: πœ‚ π‘‰π‘œπ‘™ = 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ = 𝐢 𝑑 Symbol Description Unit 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ 𝐢 𝑑 Coefficient of Discharge
  • 42. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 42 MECHANICAL EFFICIENCY: πœ‚ π‘šπ‘’π‘β„Ž = π‘ƒπ‘œπ‘€π‘’π‘Ÿ π·π‘’π‘£π‘’π‘™π‘œπ‘π‘’π‘‘ 𝑏𝑦 π‘ƒπ‘’π‘šπ‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘…π‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘‘π‘œ π·π‘Ÿπ‘–π‘£π‘’ π‘‘β„Žπ‘’ π‘ƒπ‘’π‘šπ‘ πœ‚ π‘šπ‘’π‘β„Ž = π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘ƒπ‘’π‘šπ‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘€π‘œπ‘‘π‘œπ‘Ÿ πœ‚ π‘šπ‘’π‘β„Ž = πœŒπ‘”π‘„ π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐻 πœŒπ‘”π‘„ π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ 𝐻 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 π΄π‘π‘‘π‘’π‘Žπ‘™ Actual Discharge π‘š3 𝑠⁄ 𝑄 π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ Theoretical Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š ACCELERATION HEAD: β„Ž π‘Žπ‘  = 𝑙 𝑠 𝑔 βˆ— 𝐴 π‘Ž 𝑠 βˆ— πœ”2 βˆ— π‘Ÿ βˆ— π‘π‘œπ‘ πœƒ [ 𝐴𝑑 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] β„Ž 𝑑𝑠 = 𝑙 𝑑 𝑔 βˆ— 𝐴 π‘Ž 𝑑 βˆ— πœ”2 βˆ— π‘Ÿ βˆ— π‘π‘œπ‘ πœƒ [ 𝐴𝑑 π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] 𝐴 = πœ‹ 4 𝐷2 π‘Ž 𝑠 = πœ‹ 4 𝑑 𝑠 2 π‘Ž 𝑑 = πœ‹ 4 𝑑 𝑑 2 πœ” = 2πœ‹π‘ 60
  • 43. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 43 π‘Ÿ = 𝐿 2 Symbol Description Unit 𝑙 𝑠 Length of Suction Pipe π‘š 𝑙 𝑑 Length of Delivery Pipe π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐴 Area of Cylinder π‘š2 π‘Ž 𝑠 Area of Suction Pipe π‘š2 π‘Ž 𝑑 Area of Delivery Pipe π‘š2 πœ” Angular Speed π‘Ÿπ‘Žπ‘‘ 𝑠⁄ π‘Ÿ Radius of Crank π‘š πœƒ Angle of Crank π‘‘π‘’π‘”π‘Ÿπ‘’π‘’ 𝐷 Diameter of Cylinder or Bore π‘š 𝑑 𝑠 Diameter of Suction Pipe π‘š 𝑑 𝑑 Diameter of Delivery Pipe π‘š 𝑁 Speed of Crank π‘Ÿπ‘π‘š 𝐿 Stroke Length π‘š PRESSURE HEAD: π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = β„Ž 𝑠 + β„Ž π‘Žπ‘  [ πΉπ‘œπ‘Ÿ π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = β„Ž 𝑑 + β„Ž π‘Žπ‘‘ [ πΉπ‘œπ‘Ÿ π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] Symbol Description Unit β„Ž 𝑠 Suction Head π‘š β„Ž 𝑑 Delivery Head π‘š β„Ž π‘Žπ‘  Acceleration Head at Suction π‘š
  • 44. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 44 β„Ž π‘Žπ‘‘ Acceleration Head at Delivery π‘š ABSOLUTE PRESSURE HEAD: π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = 𝐻 π‘Žπ‘‘π‘š βˆ’ (β„Ž 𝑠 + β„Ž π‘Žπ‘ ) [ πΉπ‘œπ‘Ÿ π‘†π‘’π‘π‘‘π‘–π‘œπ‘› π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π»π‘’π‘Žπ‘‘ = 𝐻 π‘Žπ‘‘π‘š + (β„Ž 𝑑 + β„Ž π‘Žπ‘‘ ) [ πΉπ‘œπ‘Ÿ π·π‘’π‘™π‘–π‘£π‘’π‘Ÿπ‘¦ π‘†π‘‘π‘Ÿπ‘œπ‘˜π‘’] Symbol Description Unit β„Ž 𝑠 Suction Head π‘š β„Ž 𝑑 Delivery Head π‘š β„Ž π‘Žπ‘  Acceleration Head at Suction π‘š β„Ž π‘Žπ‘‘ Acceleration Head at Delivery π‘š 𝐻 π‘Žπ‘‘π‘š Atmospheric Pressure Head π‘š SEPARATION HEAD: 𝑃𝑠𝑒𝑝 = πœŒπ‘”β„Ž 𝑆𝑒𝑝 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ β„Ž 𝑠𝑒𝑝 Separation Head π‘š 𝑃𝑠𝑒𝑝 Separation Pressure 𝑁 π‘š2⁄ HEAD LOSS WITHOUT AIR VESSEL: β„Ž π‘“π‘Šπ‘‚π΄ = 4𝑓𝑙 𝑑 𝑣2 2𝑔𝑑 𝑑 Symbol Description Unit 𝑓 Friction Factor 𝑙 𝑑 Length of Delivery Pipe π‘š
  • 45. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 45 𝑣 Velocity without Air Vessel π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝑑 𝑑 Diameter of Delivery Pipe π‘š VELOCITY WITHOUT AIR VESSEL: 𝑣 = 𝐴 π‘Ž 𝑑 βˆ— πœ” βˆ— π‘Ÿ 𝐴 = πœ‹ 4 𝐷2 π‘Ž 𝑑 = πœ‹ 4 𝑑 𝑑 2 πœ” = 2πœ‹π‘ 60 π‘Ÿ = 𝐿 2 Symbol Description Unit 𝐴 Area of Cylinder π‘š2 π‘Ž 𝑑 Area of Delivery Pipe π‘š2 πœ” Angular Speed π‘Ÿπ‘Žπ‘‘ 𝑠⁄ π‘Ÿ Radius of Crank π‘š 𝐷 Diameter of Cylinder or Bore π‘š 𝑑 𝑑 Diameter of Delivery Pipe π‘š 𝑁 Speed of Crank π‘Ÿπ‘π‘š 𝐿 Stroke Length π‘š
  • 46. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 46 HEAD LOSS WITH AIR VESSEL: β„Ž π‘“π‘Šπ΄ = 4𝑓𝑙 𝑑 𝑣2 2𝑔𝑑 𝑑 Symbol Description Unit 𝑓 Friction Factor 𝑙 𝑑 Length of Delivery Pipe π‘š 𝑣 Velocity with Air Vessel π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝑑 𝑑 Diameter of Delivery Pipe π‘š VELOCITY WITH AIR VESSEL: 𝑣 = 𝐴 π‘Ž 𝑑 βˆ— πœ” βˆ— π‘Ÿ πœ‹ 𝐴 = πœ‹ 4 𝐷2 π‘Ž 𝑑 = πœ‹ 4 𝑑 𝑑 2 πœ” = 2πœ‹π‘ 60 π‘Ÿ = 𝐿 2 Symbol Description Unit 𝐴 Area of Cylinder π‘š2 π‘Ž 𝑑 Area of Delivery Pipe π‘š2 πœ” Angular Speed π‘Ÿπ‘Žπ‘‘ 𝑠⁄ π‘Ÿ Radius of Crank π‘š 𝐷 Diameter of Cylinder or Bore π‘š
  • 47. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 47 𝑑 𝑑 Diameter of Delivery Pipe π‘š 𝑁 Speed of Crank π‘Ÿπ‘π‘š 𝐿 Stroke Length π‘š POWER SAVED BY AIR VESSEL: 𝑃 = πœŒπ‘”π‘„ ( 2 3 β„Ž π‘“π‘Šπ‘‚π΄ βˆ’ β„Ž π‘“π‘Šπ΄) Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ β„Ž π‘“π‘Šπ‘‚π΄ Head Loss Without Air Vessel π‘š β„Ž π‘“π‘Šπ΄ Head Loss With Air Vessel π‘š POWER REQUIRED TO DRIVE THE PUMP: 𝑃 = πœŒπ‘”π‘„ (β„Ž 𝑠 + β„Ž 𝑑 + 2 3 β„Ž π‘“π‘ π‘Šπ‘‚π΄ + β„Ž π‘“π‘‘π‘Šπ΄) Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ β„Ž 𝑠 Suction Head π‘š β„Ž 𝑑 Delivery Head π‘š β„Ž π‘“π‘ π‘Šπ‘‚π΄ Head Loss Without Air Vessel at Suction π‘š β„Ž π‘“π‘‘π‘Šπ΄ Head Loss With Air Vessel at Delivery π‘š
  • 48. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 48 PELTON WHEEL: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Runner at Inlet & Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1&𝑉2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛽 Angle made by Absolute Velocity at Outlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree UNIT – V – TURBINES
  • 49. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 49 TANGENTIAL VELOCITY AT INLET AND OUTLET (OR) VELOCITY OF WHEEL: 𝑒 = πœ‹π·π‘ 60 Symbol Description Unit 𝐷 Diameter of Runner π‘š 𝑁 Speed of Impeller π‘Ÿπ‘π‘š VELOCITY OF JET: 𝑉1 = πΆπ‘£βˆš2𝑔𝐻 𝐢𝑣 = 0.97 βˆ’ 0.99 Symbol Description Unit 𝐢𝑣 Coefficient of Velocity 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š VELOCITY OF WHEEL: 𝑒 = π‘˜ π‘’βˆš2𝑔𝐻 π‘˜ 𝑒 = 0.43 βˆ’ 0.45 Symbol Description Unit π‘˜ 𝑒 Speed Ratio 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM: 𝑉 𝑀1 = 𝑉1 𝑉 𝑀1 = 𝑒1 + π‘‰π‘Ÿ1
  • 50. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 50 Symbol Description Unit 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ FROM OUTLET VELOCITY TRIANGLE DIAGRAM: cos πœ™ = 𝑒2 + 𝑣 𝑀2 𝑣 π‘Ÿ2 tan πœ™ = 𝑣𝑓2 𝑒2 + 𝑣 𝑀2 sin πœ™ = 𝑣𝑓2 𝑣 π‘Ÿ2 tan 𝛽 = 𝑣𝑓2 𝑣 𝑀2 Symbol Description Unit 𝑒2 Tangential Velocity of Runner at Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ2 Relative Velocity at Outlet π‘š 𝑠⁄ 𝑣 𝑀2 Whirl Velocity at Outlet π‘š 𝑠⁄ 𝑣𝑓2 Flow Velocity at Outlet π‘š 𝑠⁄ WORK DONE BY JET PER SECOND: π‘Š = πœŒπ‘„ [ 𝑣 𝑀1 + 𝑣 𝑀2] 𝑒 Symbol Description Unit 𝑒 Tangential Velocity of Runner π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄
  • 51. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 51 HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = 2[ 𝑣 𝑀1 + 𝑣 𝑀2] 𝑒 𝑉1 2 Symbol Description Unit 𝑒 Tangential Velocity of Runner π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ OVERALL EFFICIENCY: πœ‚ π‘œ = π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ πœ‚ π‘œ = 𝑆. 𝑃 πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š 𝑆. 𝑃 Shaft Power π‘Š DISCHARGE OF SINGLE JET: π‘ž = πœ‹ 4 βˆ— 𝑑2 βˆ— 𝑉1 Symbol Description Unit 𝑑 Diameter of Jet π‘š 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ π‘ž Discharge of Single Jet π‘š3 𝑠⁄
  • 52. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 52 NUMBER OF JET: 𝑛 = 𝑄 π‘ž Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ π‘ž Discharge of Single Jet π‘š3 𝑠⁄ NUMBER OF BUCKET: 𝑍 = 15 + 𝐷 2𝑑 Symbol Description Unit 𝑑 Diameter of Jet π‘š 𝐷 Diameter of Runner π‘š DIMENSIONS OF BUCKET: 𝐴π‘₯π‘–π‘Žπ‘™ π‘Šπ‘–π‘‘π‘‘β„Ž 𝐡 = 4.5𝑑 π‘…π‘Žπ‘‘π‘–π‘Žπ‘™ πΏπ‘’π‘›π‘”π‘‘β„Ž 𝐿 = 2.5𝑑 π·π‘’π‘π‘‘β„Ž π‘œπ‘“ π΅π‘’π‘π‘˜π‘’π‘‘ 𝑇 = 𝑑 Symbol Description Unit 𝑑 Diameter of Jet π‘š KINETIC ENERGY OF JET: 𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 = 1 2 π‘š 𝑉1 2 𝑆𝑖𝑛𝑐𝑒 π‘š = πœŒπ΄π‘‰ π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 = 1 2 𝜌 βˆ— 𝐴 βˆ— 𝑉1 βˆ— 𝑉1 2
  • 53. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 53 𝑆𝑖𝑛𝑐𝑒 𝑄 = 𝐴𝑉 π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝐾. 𝐸 π‘œπ‘“ 𝐽𝑒𝑑 = 1 2 𝜌 βˆ— 𝑄 βˆ— 𝑉1 2 POWER LOST IN NOZZLE: 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘π‘œπ‘§π‘§π‘™π‘’ POWER LOST IN RUNNER: 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘†β„Žπ‘Žπ‘“π‘‘ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘π‘œπ‘§π‘§π‘™π‘’ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝑖𝑛 π‘…π‘’π‘›π‘›π‘’π‘Ÿ + π‘ƒπ‘œπ‘€π‘’π‘Ÿ πΏπ‘œπ‘ π‘‘ 𝐷𝑒𝑒 π‘‘π‘œ π‘€π‘’π‘β„Žπ‘Žπ‘›π‘–π‘π‘Žπ‘™ π‘…π‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ RESULTANT FORCE ON BUCKET: 𝐹 = πœŒπ‘„ [ 𝑣 𝑀1 + 𝑣 𝑀2] Symbol Description Unit 𝐹 Resultant Force on Bucket 𝑁 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ TORQUE: 𝑇 = 𝐹 βˆ— 𝐷 2 Symbol Description Unit 𝐹 Resultant Force on Bucket 𝑁 𝐷 Diameter of Runner π‘š 𝑇 Torque 𝑁 βˆ’ π‘š
  • 54. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 54 POWER: 𝑃 = 2πœ‹π‘π‘‡ 60 Symbol Description Unit 𝑃 Power π‘Š 𝑇 Torque 𝑁 βˆ’ π‘š N Speed of Shaft Rpm SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄ Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed
  • 55. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 55 REACTION TURBINE: INWARD FLOW REACTION TURBINE: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Runner at Inlet & Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1&𝑉2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Degree
  • 56. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 56 Direction of Motion of Vane TANGENTIAL VELOCITY AT INLET: 𝑒1 = πœ‹π‘‘1 𝑁 60 Symbol Description Unit 𝑑1 Inlet (or) External Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š TANGENTIAL VELOCITY AT OUTLET: 𝑒2 = πœ‹π‘‘2 𝑁 60 Symbol Description Unit 𝑑2 Outlet (or) Internal Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM: sin 𝛼 = 𝑣𝑓1 𝑉1 cos 𝛼 = 𝑣 𝑀1 𝑉1 tan 𝛼 = 𝑣𝑓1 𝑣 𝑀1 sin πœƒ = 𝑣𝑓1 𝑣 π‘Ÿ1 cos πœƒ = 𝑣 𝑀1 βˆ’ 𝑒1 𝑣 π‘Ÿ1
  • 57. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 57 tan πœƒ = 𝑣𝑓1 𝑣 𝑀1 βˆ’ 𝑒1 Symbol Description Unit 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree RELATIVE VELOCITY AT INLET: 𝑣 π‘Ÿ1 = √ 𝑣𝑓1 2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2 Symbol Description Unit 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ DISCHARGE: 𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2 𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2 Symbol Description Unit
  • 58. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 58 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š 𝑏1&𝑏2 Width of Impeller at Inlet & Outlet π‘š 𝑄 Discharge π‘š3 𝑠⁄ 𝐴 Area of Runner π‘š2 𝐴 𝑓1&𝐴 𝑓2 Area of Flow at Inlet & Outlet π‘š 𝑠⁄ MASS OF WATER FLOWING THROUGH THE RUNNER: π‘š = 𝜌 𝑄 Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ HEAD AT INLET OF TURBINE: 𝐻 = 1 𝑔 βˆ— 𝑣 𝑀1 βˆ— 𝑒1 + 𝑣𝑓1 2 2𝑔 Symbol Description Unit 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE: 𝑃 = πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄
  • 59. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 59 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š POWER DEVELOPED BY TURBINE: 𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = 𝑣 𝑀1 𝑒1 𝑔𝐻 πœ‚β„Žπ‘¦π‘‘ = π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘  π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 Symbol Description Unit 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š OVERALL EFFICIENCY: πœ‚ π‘œ = π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ πœ‚ π‘œ = 𝑆. 𝑃 πœŒπ‘”π‘„π»
  • 60. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 60 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š 𝑆. 𝑃 Shaft Power π‘Š SPEED RATIO: 𝐾 𝑒 = 𝑒 √2𝑔𝐻 𝐾 𝑒 = 0.6 βˆ’ 0.9 Symbol Description Unit 𝑒 Tangential Velocity π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾 𝑒 Speed Ratio FLOW RATIO: 𝐾𝑓 = 𝑣𝑓1 √2𝑔𝐻 𝐾𝑓 = 0.15 βˆ’ 0.3 Symbol Description Unit 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾𝑓 Flow Ratio
  • 61. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 61 SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄ Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed OUTWARD FLOW REACTION TURBINE: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Runner at Inlet & Outlet π‘š 𝑠⁄
  • 62. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 62 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1&𝑉2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree TANGENTIAL VELOCITY AT INLET: 𝑒1 = πœ‹π‘‘1 𝑁 60 Symbol Description Unit 𝑑1 Inlet (or) Internal Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š TANGENTIAL VELOCITY AT OUTLET: 𝑒2 = πœ‹π‘‘2 𝑁 60 Symbol Description Unit 𝑑2 Outlet (or) External Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM:
  • 63. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 63 sin 𝛼 = 𝑣𝑓1 𝑉1 cos 𝛼 = 𝑣 𝑀1 𝑉1 tan 𝛼 = 𝑣𝑓1 𝑣 𝑀1 sin πœƒ = 𝑣𝑓1 𝑣 π‘Ÿ1 cos πœƒ = 𝑣 𝑀1 βˆ’ 𝑒1 𝑣 π‘Ÿ1 tan πœƒ = 𝑣𝑓1 𝑣 𝑀1 βˆ’ 𝑒1 Symbol Description Unit 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree
  • 64. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 64 RELATIVE VELOCITY AT INLET: 𝑣 π‘Ÿ1 = √ 𝑣𝑓1 2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2 Symbol Description Unit 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ DISCHARGE: 𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2 𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2 Symbol Description Unit 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š 𝑏1&𝑏2 Width of Impeller at Inlet & Outlet π‘š 𝑄 Discharge π‘š3 𝑠⁄ 𝐴 Area of Runner π‘š2 𝐴 𝑓1&𝐴 𝑓2 Area of Flow at Inlet & Outlet π‘š 𝑠⁄ MASS OF WATER FLOWING THROUGH THE RUNNER: π‘š = 𝜌 𝑄 Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄
  • 65. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 65 INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE: 𝑃 = πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š POWER DEVELOPED BY TURBINE: 𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = 𝑣 𝑀1 𝑒1 𝑔𝐻 πœ‚β„Žπ‘¦π‘‘ = π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘  π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 Symbol Description Unit 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š
  • 66. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 66 OVERALL EFFICIENCY: πœ‚ π‘œ = π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ πœ‚ π‘œ = 𝑆. 𝑃 πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š 𝑆. 𝑃 Shaft Power π‘Š SPEED RATIO: 𝐾 𝑒 = 𝑒 √2𝑔𝐻 𝐾 𝑒 = 0.6 βˆ’ 0.9 Symbol Description Unit 𝑒 Tangential Velocity π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾 𝑒 Speed Ratio FLOW RATIO: 𝐾𝑓 = 𝑣𝑓1 √2𝑔𝐻 𝐾𝑓 = 0.15 βˆ’ 0.3
  • 67. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 67 Symbol Description Unit 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾𝑓 Flow Ratio SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄ Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed
  • 68. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 68 FRANCIS TURBINE: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Runner at Inlet & Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1&𝑉2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree
  • 69. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 69 TANGENTIAL VELOCITY AT INLET: 𝑒1 = πœ‹π‘‘1 𝑁 60 Symbol Description Unit 𝑑1 Inlet (or) External Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š TANGENTIAL VELOCITY AT OUTLET: 𝑒2 = πœ‹π‘‘2 𝑁 60 Symbol Description Unit 𝑑2 Outlet (or) Internal Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM: sin 𝛼 = 𝑣𝑓1 𝑉1 cos 𝛼 = 𝑣 𝑀1 𝑉1 tan 𝛼 = 𝑣𝑓1 𝑣 𝑀1 sin πœƒ = 𝑣𝑓1 𝑣 π‘Ÿ1 cos πœƒ = 𝑣 𝑀1 βˆ’ 𝑒1 𝑣 π‘Ÿ1 tan πœƒ = 𝑣𝑓1 𝑣 𝑀1 βˆ’ 𝑒1
  • 70. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 70 Symbol Description Unit 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree RELATIVE VELOCITY AT INLET: 𝑣 π‘Ÿ1 = √ 𝑣𝑓1 2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2 Symbol Description Unit 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ DISCHARGE: 𝑄 = πœ‹π‘‘1 𝑏1 𝑣𝑓1 = πœ‹π‘‘2 𝑏2 𝑣𝑓2 𝑄 = 𝐴𝑣𝑓1 = 𝐴𝑣𝑓2 = 𝐴 𝑓1 𝑣𝑓1 = 𝐴 𝑓2 𝑣𝑓2 Symbol Description Unit 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š
  • 71. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 71 𝑏1&𝑏2 Width of Impeller at Inlet & Outlet π‘š 𝑄 Discharge π‘š3 𝑠⁄ 𝐴 Area of Runner π‘š2 𝐴 𝑓1&𝐴 𝑓2 Area of Flow at Inlet & Outlet π‘š 𝑠⁄ CIRCUMFERENTIAL AREA OF RUNNER: 𝐴 = πœ‹π‘‘1 𝑏1 = πœ‹π‘‘2 𝑏2 Symbol Description Unit 𝑑1&𝑑2 Diameter of Impeller at Inlet & Outlet π‘š 𝑏1&𝑏2 Width of Impeller at Inlet & Outlet π‘š 𝐴 Circumferential Area of Runner π‘š2 MASS OF WATER FLOWING THROUGH THE RUNNER: π‘š = 𝜌 𝑄 Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE: 𝑃 = πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š
  • 72. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 72 POWER DEVELOPED BY TURBINE: 𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = 𝑣 𝑀1 𝑒1 𝑔𝐻 πœ‚β„Žπ‘¦π‘‘ = π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘  π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 Symbol Description Unit 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š OVERALL EFFICIENCY: πœ‚ π‘œ = π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ πœ‚ π‘œ = 𝑆. 𝑃 πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄
  • 73. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 73 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š 𝑆. 𝑃 Shaft Power π‘Š SPEED RATIO: 𝐾 𝑒 = 𝑒 √2𝑔𝐻 𝐾 𝑒 = 0.6 βˆ’ 0.9 Symbol Description Unit 𝑒 Tangential Velocity π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾 𝑒 Speed Ratio FLOW RATIO: 𝐾𝑓 = 𝑣𝑓1 √2𝑔𝐻 𝐾𝑓 = 0.15 βˆ’ 0.3 Symbol Description Unit 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾𝑓 Flow Ratio
  • 74. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 74 BREADTH RATIO: 𝑛 = 𝑏1 𝑑1 𝑛 = 0.1 βˆ’ 0.4 Symbol Description Unit 𝑏1 Width of Runner at Inlet π‘š 𝑑1 Diameter of Runner at Inlet π‘š 𝑛 Breadth Ratio SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄ Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed
  • 75. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 75 KAPLAN TURBINE: Symbol Description Unit 𝑒1&𝑒2 Tangential Velocity of Runner at Inlet & Outlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1&𝑣 π‘Ÿ2 Relative Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣 𝑀1&𝑣 𝑀2 Whirl Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑉1&𝑉2 Absolute Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝑣𝑓1&𝑣𝑓2 Flow Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree πœ™ Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane Degree
  • 76. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 76 TANGENTIAL VELOCITY AT INLET: 𝑒1 = πœ‹π· π‘œ 𝑁 60 Symbol Description Unit 𝐷 π‘œ Inlet (or) External Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š TANGENTIAL VELOCITY AT OUTLET: 𝑒2 = πœ‹π· 𝑏 𝑁 60 = πœ‹π·β„Ž 𝑁 60 Symbol Description Unit 𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž Outlet (or) Boss (or) Hub Diameter π‘š 𝑁 Speed of Turbine π‘Ÿπ‘π‘š FROM INLET VELOCITY TRIANGLE DIAGRAM: sin 𝛼 = 𝑣𝑓1 𝑉1 cos 𝛼 = 𝑣 𝑀1 𝑉1 tan 𝛼 = 𝑣𝑓1 𝑣 𝑀1 sin πœƒ = 𝑣𝑓1 𝑣 π‘Ÿ1 cos πœƒ = 𝑣 𝑀1 βˆ’ 𝑒1 𝑣 π‘Ÿ1 tan πœƒ = 𝑣𝑓1 𝑣 𝑀1 βˆ’ 𝑒1
  • 77. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 77 Symbol Description Unit 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑉1 Absolute Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝛼 Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane Degree πœƒ Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane Degree RELATIVE VELOCITY AT INLET: 𝑣 π‘Ÿ1 = √ 𝑣𝑓1 2 + ( 𝑣 𝑀1 βˆ’ 𝑒1)2 Symbol Description Unit 𝑣 π‘Ÿ1 Relative Velocity at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ DISCHARGE: 𝑄 = πœ‹ 4 [𝐷0 2 βˆ’ 𝐷 𝑏 2 ]𝑣𝑓1 Symbol Description Unit 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝐷0 Inlet (or) External Diameter π‘š 𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž Outlet (or) Boss (or) Hub Diameter π‘š
  • 78. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 78 𝑄 Discharge π‘š3 𝑠⁄ CIRCUMFERENTIAL AREA OF RUNNER: 𝐴 = πœ‹ 4 [𝐷0 2 βˆ’ 𝐷 𝑏 2 ] Symbol Description Unit 𝐷0 Inlet (or) External Diameter π‘š 𝐷 𝑏 π‘œπ‘Ÿ π·β„Ž Outlet (or) Boss (or) Hub Diameter π‘š 𝐴 Circumferential Area of Runner π‘š2 MASS OF WATER FLOWING THROUGH THE RUNNER: π‘š = 𝜌 𝑄 Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝜌 Density π‘˜π‘” π‘š3⁄ INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE: 𝑃 = πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š POWER DEVELOPED BY TURBINE: 𝑃 = 𝜌 βˆ— 𝑄 βˆ— 𝑣 𝑀1 βˆ— 𝑒1 Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄
  • 79. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 79 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ HYDRAULIC EFFICIENCY: πœ‚β„Žπ‘¦π‘‘ = 𝑣 𝑀1 𝑒1 𝑔𝐻 πœ‚β„Žπ‘¦π‘‘ = π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 βˆ’ π»π‘’π‘Žπ‘‘ πΏπ‘œπ‘ π‘  π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 Symbol Description Unit 𝑒1 Tangential Velocity of Runner at Inlet π‘š 𝑠⁄ 𝑣 𝑀1 Whirl Velocity at Inlet π‘š 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š OVERALL EFFICIENCY: πœ‚ π‘œ = π‘†β„Žπ‘Žπ‘“π‘‘ π‘ƒπ‘œπ‘€π‘’π‘Ÿ 𝐼𝑛𝑝𝑒𝑑 π‘ƒπ‘œπ‘€π‘’π‘Ÿ πœ‚ π‘œ = 𝑆. 𝑃 πœŒπ‘”π‘„π» Symbol Description Unit 𝜌 Density π‘˜π‘” π‘š3⁄ 𝑄 Discharge π‘š3 𝑠⁄ 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐻 Head π‘š 𝑆. 𝑃 Shaft Power π‘Š
  • 80. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 80 SPEED RATIO: 𝐾 𝑒 = 𝑒 √2𝑔𝐻 𝐾 𝑒 = 0.6 βˆ’ 0.9 Symbol Description Unit 𝑒 Tangential Velocity π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾 𝑒 Speed Ratio FLOW RATIO: 𝐾𝑓 = 𝑣𝑓1 √2𝑔𝐻 𝐾𝑓 = 0.15 βˆ’ 0.3 Symbol Description Unit 𝑣𝑓1 Flow Velocity at Inlet π‘š 𝑠⁄ 𝐻 Head π‘š 𝑔 Acceleration due to Gravity π‘š 𝑠2⁄ 𝐾𝑓 Flow Ratio SPECIFIC SPEED: 𝑁𝑠 = π‘βˆš 𝑄 𝐻 3 4⁄ 𝑁𝑠 = π‘βˆš 𝑃 𝐻 5 4⁄
  • 81. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 81 Symbol Description Unit 𝑄 Discharge π‘š3 𝑠⁄ 𝐻 Head π‘š 𝑃 Power π‘˜π‘Š 𝑁 Speed π‘Ÿπ‘π‘š 𝑁𝑠 Specific Speed DRAFT TUBE:
  • 82. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 82 Symbol Description Unit 𝑉1&𝑉2 Velocity at Inlet & Outlet π‘š 𝑠⁄ 𝐻𝑠 Vertical Height of Draft Tube Above Tail Race π‘š 𝑦 Distance of Bottom of Draft Tube from Tail Race π‘š FROM BERNOULLI’S EQUATION: 𝑃1 πœŒπ‘” + 𝑉1 2 2𝑔 + 𝑧1 = 𝑃2 πœŒπ‘” + 𝑉2 2 2𝑔 + 𝑧2 + β„Ž 𝑓 Symbol Description Unit 𝑃1 & 𝑃2 Pressure at Inlet & Outlet of Draft Tube 𝑁 π‘š2⁄ 𝑉1 & 𝑉2 Velocity at Inlet & Outlet of Draft Tube π‘š 𝑠⁄ 𝑧1 & 𝑧2 Datum Head Inlet & Outlet of Draft Tube π‘š β„Ž 𝑓 Head Loss π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ LENGTH OF DRAFT TUBE: 𝐿 = 𝐻𝑠 + 𝑦 Symbol Description Unit 𝐿 Length of Draft Tube π‘š 𝐻𝑠 Vertical Height of Draft Tube Above Tail Race π‘š 𝑦 Distance of Bottom of Draft Tube from Tail Race π‘š EFFICIENCY OF DRAFT TUBE: πœ‚ 𝑑 = ( 𝑉1 2 2𝑔 βˆ’ 𝑉2 2 2𝑔 ) βˆ’ β„Ž 𝑓 𝑉1 2 2𝑔
  • 83. R.M.K COLLEGE OF ENGG AND TECH / AQ / R2013/ CE6451 / III / MECH / JUNE 2017 – NOV 2017 CE6451 – FLUID MECHANICS AND MACHINERY FORMULA BOOK Prepared By BIBIN.C / ASHOK KUMAR.R / SADASIVAN . N (AP / Mech) 83 Symbol Description Unit 𝑉1 & 𝑉2 Velocity at Inlet & Outlet of Draft Tube π‘š 𝑠⁄ β„Ž 𝑓 Head Loss π‘š 𝑔 Acceleration due to gravity π‘š 𝑠2⁄ HYDRAULIC EFFICIENCY OF DRAFT TUBE: πœ‚β„Žπ‘¦π‘‘ = π»π‘’π‘Žπ‘‘ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘’π‘‘ 𝑏𝑦 π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ π»π‘’π‘Žπ‘‘ 𝐼𝑛𝑙𝑒𝑑 π‘œπ‘“ π‘‡π‘’π‘Ÿπ‘π‘–π‘›π‘’ πœ‚β„Žπ‘¦π‘‘ = 𝐻 βˆ’ β„Ž 𝑓𝑑 βˆ’ β„Ž 𝑓𝑑 βˆ’ 𝑉2 2 2𝑔 𝑃1 πœŒπ‘” + 𝑉1 2 2𝑔 + 𝑧1 Symbol Description Unit 𝑃1 Pressure at Inlet of Draft Tube 𝑁 π‘š2⁄ 𝑉1 & 𝑉2 Velocity at Inlet & Outlet of Draft Tube π‘š 𝑠⁄ 𝑧1 Datum Head Inlet of Draft Tube π‘š β„Ž 𝑓 Head Loss π‘š 𝜌 Density of Liquid π‘˜π‘” π‘š3⁄ 𝑔 Acceleration due to gravity π‘š 𝑠2⁄