SlideShare a Scribd company logo
1 of 7
Download to read offline
 
Alexis Diaz 
Alexis Diaz 
SPCS 2015 ­ Frontiers of Physics  
Research Paper 
30 July 2015 
______________________________________________________________________________ 
 
Quantum Entanglement Isn’t so Spooky! 
 
In the 1930s, Albert Einstein was upset with quantum mechanics, he proposed a thought                           
experiment, where according to the theory an event at one point in the universe could                             
instantaneously affect another event arbitrarily far away. He called this spooky action at a                           
distance because he believed it to be absurd. It seemed to imply faster than the speed of light                                   
communication. Now this superluminal communication result did not correspond with any of the                         
works circulating at the time and was not supported by the concepts that defined Quantum                             
Mechanics. Something his theory of relativity ruled out. This spooky action at a distance stood                             
alone.  
The Einstein­Podolsky­Rosen Paradox 
The EPR Paradox is a thought experiment intended to demonstrate an inherent paradox in the                             
early formulations of ​quantum theory​. It is among the best­known examples of ​quantum                         
entanglement​. The paradox involves ​two particles which are entangled with each other according                         
to quantum mechanics. Under the Copenhagen interpretation of quantum mechanics, each                     
particle is individually in an uncertain state until it is measured, at which point the state of that                                   
particle becomes certain. 
But nowadays we can perform this experiment and see this apparent spookiness. In order to                             
understand it, we must first understand spin. All fundamental particles have a property called                           
spin. It is an analogy used to convey its angular momentum, or the propensity and orientation in                                 
space, rather than action. The spin of a particle can be measured in accordance with its direction.                                 
This measurement can have only one of two outputs. Either the particle spin is aligned with the                                 
 
Alexis Diaz 
direction of measurement, which is known as spin up. Or it is opposite the measurement, which                               
is known as spin down. After the measurement, the particle retains its spin.  
The experiment Einstein proposed can be carried out using two particles . However; these need                             
to be prepared in a certain way. For example, generated spontaneously from energy. 
 
The Results  
Conservation laws state that the total angular momentum of the universe must remain constant, it                             
is easy to follow that if one particle is measured with spin up, the other measured in the same                                     
direction must have spin down. Emphasis put upon the fact this works only when the two                               
particles are measured in the same direction that their spins must be opposite.  
Einstein was a proponent for the idea that each particle was created with a clearly defined spin.                                 
However; this would not work. Imagine their spins were vertical and opposite. If they are both                               
measured each particle has fifty­fifty chance for spin up. There would thus exist a fifty percent                               
probability that both measurements would yield the same result and this would violate the law of                               
conservation of angular momentum. According to quantum mechanics, these particles do not                       
have a well defined spin. They are entangled, which means their spin is opposite that of each                                 
 
Alexis Diaz 
other. At the point of which the particle and its spin is measured, the other entangled particle’s                                 
measurements immediately become known and clearly defined. This was checked thoroughly                     
and repeatedly by experiments. The angle of the detectors or the distance between them does not                               
affect the experiment. This is especially peculiar given the nature of locality. The principle of                             
locality is violated when it states that an object is only directly influenced by its immediate                               
surroundings.Therefore, the principle of locality implies that an event at one point cannot cause a                             
simultaneous result at another point. If these fundamental principles hold true for the rest of the                               
quantum mechanic world it would seem fair to assume that no two particles can relay an                               
immediate effect on one another across vast distances.  
 
Quantum Entanglement: A Description  
This phenomenon occurs in what can be described               
as quantum entanglement. Two particles light years             
away with undefined spins, where the           
measurement of one particle instantaneously         
influences the other to have the opposite spin. An                 
anomaly that suggests that information has been             
relayed faster than the speed of light. Though some theorists interpreted the results this way,                             
Einstein did not. Einstein was a big proponent of predictability and determinism and proposed                           
that the information of what the spin’s direction would take was always there, but the hidden                               
information was not previously known until it was measured. There is an analogy ​suggested by                             
Dr. Brian Greene, of Columbia University to describe this alternate explanation. “Pretend ​that                         
you and a friend buy a pair of gloves. You place one glove inside one box and the other glove                                       
inside another box. You take one box and travel to one side of the universe. Your friend takes the                                     
other box and travels to the other side. You open your box, and find the left glove. You know                                     
immediately that your friend is going to open the box and find the right glove. You don’t need to                                     
call your friend on the telephone. Nor do you need to see inside the second box to confirm this                                     
fact. The gloves are, in a sense, entangled. One glove can tell you all you need to know about the                                       
other.” (Maliszewski, 2014)  
 
Alexis Diaz 
A similar analogy is that of what Bohr suggests. Given two spinning wheels with a fifty percent                                 
of landing on two different colors. The wheels would land on opposing colors in each instant.                               
The event is described to represent the “spooky” aspect of quantum entanglement.  
Take Away Points 
Although Bohr is correct in asserting that their is no predictability factor in quantum                           
entanglement, his representation of how quantum entanglement works is misleading. ​There is no                         
information transmitted or signal is sent. When the box was opened, you knew the information of                               
the other. The opening of the box alters the description of the “quantum state,” the math                               
describing the entangled system containing the two particles. The math is the collapse of the                             
wave function by the act of measurement. The wave function for the system of particles is a                                 
nonseparable wave function, so interfering with particle y through measurement modifies the                       
wave function for particle x as well. Two entangled particles share the one wave function. It is                                 
nonseparable because the two particles share at least one fundamental property, for example                         
mass, spin, energy, momentum, etc. There is no “spooky” action at a distance, rather it is                               
entanglement. 
Real­Life Applications:  Namely Teleportation 
Quantum entanglement has applications in the emerging technologies of today. Among these                       
quantum teleportation seems most enticing for its allure and convenience. The concept of                         
quantum teleportation uses entangled particles to transmit information. Quantum teleportation                   
can be achieved through the use of three photons:   
Photon A​: The photon to be teleported 
Photon B​: The transporting photon 
Photon C​: The photon that is entangled with photon ​B 
“If researchers tried to look too closely at photon ​A ​without entanglement, they'd bump it, and                               
thereby change it. By entangling photons ​B ​and ​C​, researchers can extract some information                           
about photon ​A​, and the remaining information would pass on to ​B ​by way of entanglement, and                                 
then on to photon ​C​. When researchers apply the information from photon ​A ​to photon ​C​, they                                 
create an exact replica of photon ​A​. However, photon ​A ​no longer exists as it did before the                                   
information was sent to photon ​C​.” (Bonsor, 2015) 
 
Alexis Diaz 
In practice, physicists at the University of Geneva have succeeded in teleporting the quantum                           
state of a photon to a crystal over 25 kilometers of optical fiber.  
This is only skimming the surface of the potential for quantum entanglement. The technology is                             
already underway and results are promising considering they follow predictions. I urge the                         
populus to put effort towards exploring this idea as it may well be our next best means of                                   
conventional transportation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alexis Diaz 
Bibliography 
 
Afp. "Physicists Make Big Leap In Quantum Teleportation." Business Insider. ​Business Insider, 
Inc, 21 Sept. 2014. Web. 31 July 2015. 
<http://www.businessinsider.com/physicists­make­huge­leap­in­quantum­teleportation­2014­9>. 
 
Bonsor, Kevin, and Robert Lamb. "How Teleportation Will Work."​HowStuffWorks. 
HowStuffWorks.com, n.d. Web. 31 July 2015. 
<http://science.howstuffworks.com/science­vs­myth/everyday­myths/teleportation1.htm>. 
 
Clegg, Brian. "Chapter 7: Mirror, Mirror." ​The God Effect: Quantum Entanglement, Science's 
Strangest Phenomenon.​ New York: St. Martin's, 2006. 208­11. Print. 
 
Dickerson, Kelly. "Longer Distance Quantum Teleportation Achieved."​Longer Distance 
Quantum Teleportation Achieved​. Live Science, 8 Dec. 2014. Web. 31 July 2015. 
<http://phys.org/news/2014­09­quantum­teleportation.html>. 
 
"SEVERAL FAILED ATTEMPTS TO EXPLAIN QUANTUM ENTANGLEMENT." Interview 
by Paul Maliszewski. ​TIMOTHYMcSWEENEY’S ​31 July 2014: 13­15. Web. 31 July 2015. 
<http://www.mcsweeneys.net/articles/several­failed­attempts­to­explain­quantum­entanglement
>. 
 
Vergano, Dan. ""Spooky" Quantum Entanglement Reveals Invisible Objects."​ National 
Geographic News.​ National Geographic, 27 Aug. 2014. Web. 31 July 2015. 
<http%3A%2F%2Fnews.nationalgeographic.com%2Fnews%2F2014%2F08%2F140827­quantu
m­imaging­cats­undetected­photon­science%2F>. 
 
 
 
 
Alexis Diaz 
 
 

More Related Content

What's hot

Quantum Computers
Quantum ComputersQuantum Computers
Quantum Computerskathan
 
Quantum superposition | Overview
Quantum superposition | OverviewQuantum superposition | Overview
Quantum superposition | OverviewEmanuel Di Nardo
 
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Professor Lili Saghafi
 
Many Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintyMany Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintySean Carroll
 
Dark matter and Dark energy
Dark matter and Dark energyDark matter and Dark energy
Dark matter and Dark energypiero scaruffi
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and CosmologyPratik Tarafdar
 
Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityStefano Franco
 
Gravitational wave
Gravitational waveGravitational wave
Gravitational waveSuhaa Chine
 
Gravitational wave astronomy
Gravitational wave astronomyGravitational wave astronomy
Gravitational wave astronomyKaushik Ghosh
 
Time Travelling, Parallel Universe and Paradox
Time Travelling, Parallel Universe and ParadoxTime Travelling, Parallel Universe and Paradox
Time Travelling, Parallel Universe and Paradoxsourabhsinghal13
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativitySmithDaisy
 
Quantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsQuantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsMelanie Swan
 
What We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseWhat We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseSean Carroll
 

What's hot (20)

Quantum Computers
Quantum ComputersQuantum Computers
Quantum Computers
 
Quantum superposition | Overview
Quantum superposition | OverviewQuantum superposition | Overview
Quantum superposition | Overview
 
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
 
Teleportation
TeleportationTeleportation
Teleportation
 
Many Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintyMany Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating Uncertainty
 
Dark matter and Dark energy
Dark matter and Dark energyDark matter and Dark energy
Dark matter and Dark energy
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
 
Wormholes and Hyperspace
Wormholes and HyperspaceWormholes and Hyperspace
Wormholes and Hyperspace
 
Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's Inequality
 
Dark matter
Dark matterDark matter
Dark matter
 
Special Theory of Relativity
Special Theory of RelativitySpecial Theory of Relativity
Special Theory of Relativity
 
Gravitational wave
Gravitational waveGravitational wave
Gravitational wave
 
Relativity
RelativityRelativity
Relativity
 
Gravitational wave astronomy
Gravitational wave astronomyGravitational wave astronomy
Gravitational wave astronomy
 
Neutrino
NeutrinoNeutrino
Neutrino
 
Time Travelling, Parallel Universe and Paradox
Time Travelling, Parallel Universe and ParadoxTime Travelling, Parallel Universe and Paradox
Time Travelling, Parallel Universe and Paradox
 
Einstein's theory of general relativity
Einstein's theory of general relativityEinstein's theory of general relativity
Einstein's theory of general relativity
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
Quantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic ConceptsQuantum Computing Lecture 1: Basic Concepts
Quantum Computing Lecture 1: Basic Concepts
 
What We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the UniverseWhat We (Don't) Know About the Beginning of the Universe
What We (Don't) Know About the Beginning of the Universe
 

Viewers also liked

Spooky action from a distance
Spooky action from a distanceSpooky action from a distance
Spooky action from a distanceEran Sinbar
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationswtyru1989
 
Design Fiction: A short slideshow on design, science, fact and fiction
Design Fiction: A short slideshow on design, science, fact and fictionDesign Fiction: A short slideshow on design, science, fact and fiction
Design Fiction: A short slideshow on design, science, fact and fictionJulian Bleecker
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptographySukhdeep Kaur
 
Quantam cryptogrphy ppt (1)
Quantam cryptogrphy ppt (1)Quantam cryptogrphy ppt (1)
Quantam cryptogrphy ppt (1)deepu427
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptographyPriya Winsome
 
Quantum Cryptography presentation
Quantum Cryptography presentationQuantum Cryptography presentation
Quantum Cryptography presentationKalluri Madhuri
 

Viewers also liked (9)

Spooky action from a distance
Spooky action from a distanceSpooky action from a distance
Spooky action from a distance
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
 
Design Fiction: A short slideshow on design, science, fact and fiction
Design Fiction: A short slideshow on design, science, fact and fictionDesign Fiction: A short slideshow on design, science, fact and fiction
Design Fiction: A short slideshow on design, science, fact and fiction
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantam cryptogrphy ppt (1)
Quantam cryptogrphy ppt (1)Quantam cryptogrphy ppt (1)
Quantam cryptogrphy ppt (1)
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
 
Quantum cryptography
Quantum cryptographyQuantum cryptography
Quantum cryptography
 
Quantum Cryptography presentation
Quantum Cryptography presentationQuantum Cryptography presentation
Quantum Cryptography presentation
 

Similar to Quantum Entanglement

Sci 116: Relativity
Sci 116: RelativitySci 116: Relativity
Sci 116: Relativityprofbruckner
 
Quantum Theory And Reality
Quantum  Theory And  RealityQuantum  Theory And  Reality
Quantum Theory And Realityzakir2012
 
Quantum Mechanics and Computing
Quantum Mechanics and ComputingQuantum Mechanics and Computing
Quantum Mechanics and ComputingAntoniousIskander
 
Dozier presentation
Dozier presentationDozier presentation
Dozier presentationlgdozier
 
Einsteinin Trouble
Einsteinin TroubleEinsteinin Trouble
Einsteinin TroubleMarkClemens
 
Short Review of the Unitary Quantum Theory
Short Review of the Unitary Quantum TheoryShort Review of the Unitary Quantum Theory
Short Review of the Unitary Quantum Theorytheijes
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011Gary Stilwell
 
Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21andreatorrieri
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”Pushkar Purohit
 
Presentation WEEK 8 PHIL.pptx
Presentation WEEK 8 PHIL.pptxPresentation WEEK 8 PHIL.pptx
Presentation WEEK 8 PHIL.pptxChristyBonefont
 
General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.trageshthedon
 
The Hidden Secrets of General Relativity Revealed
The Hidden Secrets of General Relativity RevealedThe Hidden Secrets of General Relativity Revealed
The Hidden Secrets of General Relativity RevealedJohn47Wind
 
Science of idol worship
Science of idol worshipScience of idol worship
Science of idol worshipVishnu Prakash
 
Relativity in Easy Steps
Relativity in Easy StepsRelativity in Easy Steps
Relativity in Easy StepsJohn47Wind
 

Similar to Quantum Entanglement (20)

Sci 116: Relativity
Sci 116: RelativitySci 116: Relativity
Sci 116: Relativity
 
Quantum Theory And Reality
Quantum  Theory And  RealityQuantum  Theory And  Reality
Quantum Theory And Reality
 
String theory of particle physics
String theory of particle physicsString theory of particle physics
String theory of particle physics
 
WAVE-VISUALIZATION
WAVE-VISUALIZATIONWAVE-VISUALIZATION
WAVE-VISUALIZATION
 
ICP.000524.pdf
ICP.000524.pdfICP.000524.pdf
ICP.000524.pdf
 
project draft.pdf
project draft.pdfproject draft.pdf
project draft.pdf
 
Quantum Mechanics and Computing
Quantum Mechanics and ComputingQuantum Mechanics and Computing
Quantum Mechanics and Computing
 
Dozier presentation
Dozier presentationDozier presentation
Dozier presentation
 
A new weapon for a new war
A new weapon for a new warA new weapon for a new war
A new weapon for a new war
 
Einsteinin Trouble
Einsteinin TroubleEinsteinin Trouble
Einsteinin Trouble
 
The New Theory of Everything.
The New Theory of Everything.The New Theory of Everything.
The New Theory of Everything.
 
Short Review of the Unitary Quantum Theory
Short Review of the Unitary Quantum TheoryShort Review of the Unitary Quantum Theory
Short Review of the Unitary Quantum Theory
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011
 
Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21Elaborato torrieri andrea_5_e_esame di stato 20.21
Elaborato torrieri andrea_5_e_esame di stato 20.21
 
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”“MISSING HIGGS BIGBANG & PARTICLE STUDY”
“MISSING HIGGS BIGBANG & PARTICLE STUDY”
 
Presentation WEEK 8 PHIL.pptx
Presentation WEEK 8 PHIL.pptxPresentation WEEK 8 PHIL.pptx
Presentation WEEK 8 PHIL.pptx
 
General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.t
 
The Hidden Secrets of General Relativity Revealed
The Hidden Secrets of General Relativity RevealedThe Hidden Secrets of General Relativity Revealed
The Hidden Secrets of General Relativity Revealed
 
Science of idol worship
Science of idol worshipScience of idol worship
Science of idol worship
 
Relativity in Easy Steps
Relativity in Easy StepsRelativity in Easy Steps
Relativity in Easy Steps
 

More from Alexis Diaz

Alexis Blue Belt
Alexis Blue BeltAlexis Blue Belt
Alexis Blue BeltAlexis Diaz
 
Alexis Recommedation Derek Sato
Alexis Recommedation Derek SatoAlexis Recommedation Derek Sato
Alexis Recommedation Derek SatoAlexis Diaz
 
Alexis Diaz Rotary
Alexis Diaz RotaryAlexis Diaz Rotary
Alexis Diaz RotaryAlexis Diaz
 
Alexis Diaz Nomination
Alexis Diaz NominationAlexis Diaz Nomination
Alexis Diaz NominationAlexis Diaz
 
Alexis Diaz FOrensic
Alexis Diaz FOrensicAlexis Diaz FOrensic
Alexis Diaz FOrensicAlexis Diaz
 
Alexis Physics Paper
Alexis Physics PaperAlexis Physics Paper
Alexis Physics PaperAlexis Diaz
 

More from Alexis Diaz (9)

Scan0037
Scan0037Scan0037
Scan0037
 
Scan0036
Scan0036Scan0036
Scan0036
 
Alexis
AlexisAlexis
Alexis
 
Alexis Blue Belt
Alexis Blue BeltAlexis Blue Belt
Alexis Blue Belt
 
Alexis Recommedation Derek Sato
Alexis Recommedation Derek SatoAlexis Recommedation Derek Sato
Alexis Recommedation Derek Sato
 
Alexis Diaz Rotary
Alexis Diaz RotaryAlexis Diaz Rotary
Alexis Diaz Rotary
 
Alexis Diaz Nomination
Alexis Diaz NominationAlexis Diaz Nomination
Alexis Diaz Nomination
 
Alexis Diaz FOrensic
Alexis Diaz FOrensicAlexis Diaz FOrensic
Alexis Diaz FOrensic
 
Alexis Physics Paper
Alexis Physics PaperAlexis Physics Paper
Alexis Physics Paper
 

Quantum Entanglement

  • 1.   Alexis Diaz  Alexis Diaz  SPCS 2015 ­ Frontiers of Physics   Research Paper  30 July 2015  ______________________________________________________________________________    Quantum Entanglement Isn’t so Spooky!    In the 1930s, Albert Einstein was upset with quantum mechanics, he proposed a thought                            experiment, where according to the theory an event at one point in the universe could                              instantaneously affect another event arbitrarily far away. He called this spooky action at a                            distance because he believed it to be absurd. It seemed to imply faster than the speed of light                                    communication. Now this superluminal communication result did not correspond with any of the                          works circulating at the time and was not supported by the concepts that defined Quantum                              Mechanics. Something his theory of relativity ruled out. This spooky action at a distance stood                              alone.   The Einstein­Podolsky­Rosen Paradox  The EPR Paradox is a thought experiment intended to demonstrate an inherent paradox in the                              early formulations of ​quantum theory​. It is among the best­known examples of ​quantum                          entanglement​. The paradox involves ​two particles which are entangled with each other according                          to quantum mechanics. Under the Copenhagen interpretation of quantum mechanics, each                      particle is individually in an uncertain state until it is measured, at which point the state of that                                    particle becomes certain.  But nowadays we can perform this experiment and see this apparent spookiness. In order to                              understand it, we must first understand spin. All fundamental particles have a property called                            spin. It is an analogy used to convey its angular momentum, or the propensity and orientation in                                  space, rather than action. The spin of a particle can be measured in accordance with its direction.                                  This measurement can have only one of two outputs. Either the particle spin is aligned with the                                 
  • 2.   Alexis Diaz  direction of measurement, which is known as spin up. Or it is opposite the measurement, which                                is known as spin down. After the measurement, the particle retains its spin.   The experiment Einstein proposed can be carried out using two particles . However; these need                              to be prepared in a certain way. For example, generated spontaneously from energy.    The Results   Conservation laws state that the total angular momentum of the universe must remain constant, it                              is easy to follow that if one particle is measured with spin up, the other measured in the same                                      direction must have spin down. Emphasis put upon the fact this works only when the two                                particles are measured in the same direction that their spins must be opposite.   Einstein was a proponent for the idea that each particle was created with a clearly defined spin.                                  However; this would not work. Imagine their spins were vertical and opposite. If they are both                                measured each particle has fifty­fifty chance for spin up. There would thus exist a fifty percent                                probability that both measurements would yield the same result and this would violate the law of                                conservation of angular momentum. According to quantum mechanics, these particles do not                        have a well defined spin. They are entangled, which means their spin is opposite that of each                                 
  • 3.   Alexis Diaz  other. At the point of which the particle and its spin is measured, the other entangled particle’s                                  measurements immediately become known and clearly defined. This was checked thoroughly                      and repeatedly by experiments. The angle of the detectors or the distance between them does not                                affect the experiment. This is especially peculiar given the nature of locality. The principle of                              locality is violated when it states that an object is only directly influenced by its immediate                                surroundings.Therefore, the principle of locality implies that an event at one point cannot cause a                              simultaneous result at another point. If these fundamental principles hold true for the rest of the                                quantum mechanic world it would seem fair to assume that no two particles can relay an                                immediate effect on one another across vast distances.     Quantum Entanglement: A Description   This phenomenon occurs in what can be described                as quantum entanglement. Two particles light years              away with undefined spins, where the            measurement of one particle instantaneously          influences the other to have the opposite spin. An                  anomaly that suggests that information has been              relayed faster than the speed of light. Though some theorists interpreted the results this way,                              Einstein did not. Einstein was a big proponent of predictability and determinism and proposed                            that the information of what the spin’s direction would take was always there, but the hidden                                information was not previously known until it was measured. There is an analogy ​suggested by                              Dr. Brian Greene, of Columbia University to describe this alternate explanation. “Pretend ​that                          you and a friend buy a pair of gloves. You place one glove inside one box and the other glove                                        inside another box. You take one box and travel to one side of the universe. Your friend takes the                                      other box and travels to the other side. You open your box, and find the left glove. You know                                      immediately that your friend is going to open the box and find the right glove. You don’t need to                                      call your friend on the telephone. Nor do you need to see inside the second box to confirm this                                      fact. The gloves are, in a sense, entangled. One glove can tell you all you need to know about the                                        other.” (Maliszewski, 2014)  
  • 4.   Alexis Diaz  A similar analogy is that of what Bohr suggests. Given two spinning wheels with a fifty percent                                  of landing on two different colors. The wheels would land on opposing colors in each instant.                                The event is described to represent the “spooky” aspect of quantum entanglement.   Take Away Points  Although Bohr is correct in asserting that their is no predictability factor in quantum                            entanglement, his representation of how quantum entanglement works is misleading. ​There is no                          information transmitted or signal is sent. When the box was opened, you knew the information of                                the other. The opening of the box alters the description of the “quantum state,” the math                                describing the entangled system containing the two particles. The math is the collapse of the                              wave function by the act of measurement. The wave function for the system of particles is a                                  nonseparable wave function, so interfering with particle y through measurement modifies the                        wave function for particle x as well. Two entangled particles share the one wave function. It is                                  nonseparable because the two particles share at least one fundamental property, for example                          mass, spin, energy, momentum, etc. There is no “spooky” action at a distance, rather it is                                entanglement.  Real­Life Applications:  Namely Teleportation  Quantum entanglement has applications in the emerging technologies of today. Among these                        quantum teleportation seems most enticing for its allure and convenience. The concept of                          quantum teleportation uses entangled particles to transmit information. Quantum teleportation                    can be achieved through the use of three photons:    Photon A​: The photon to be teleported  Photon B​: The transporting photon  Photon C​: The photon that is entangled with photon ​B  “If researchers tried to look too closely at photon ​A ​without entanglement, they'd bump it, and                                thereby change it. By entangling photons ​B ​and ​C​, researchers can extract some information                            about photon ​A​, and the remaining information would pass on to ​B ​by way of entanglement, and                                  then on to photon ​C​. When researchers apply the information from photon ​A ​to photon ​C​, they                                  create an exact replica of photon ​A​. However, photon ​A ​no longer exists as it did before the                                    information was sent to photon ​C​.” (Bonsor, 2015) 
  • 5.   Alexis Diaz  In practice, physicists at the University of Geneva have succeeded in teleporting the quantum                            state of a photon to a crystal over 25 kilometers of optical fiber.   This is only skimming the surface of the potential for quantum entanglement. The technology is                              already underway and results are promising considering they follow predictions. I urge the                          populus to put effort towards exploring this idea as it may well be our next best means of                                    conventional transportation.                                            
  • 6.   Alexis Diaz  Bibliography    Afp. "Physicists Make Big Leap In Quantum Teleportation." Business Insider. ​Business Insider,  Inc, 21 Sept. 2014. Web. 31 July 2015.  <http://www.businessinsider.com/physicists­make­huge­leap­in­quantum­teleportation­2014­9>.    Bonsor, Kevin, and Robert Lamb. "How Teleportation Will Work."​HowStuffWorks.  HowStuffWorks.com, n.d. Web. 31 July 2015.  <http://science.howstuffworks.com/science­vs­myth/everyday­myths/teleportation1.htm>.    Clegg, Brian. "Chapter 7: Mirror, Mirror." ​The God Effect: Quantum Entanglement, Science's  Strangest Phenomenon.​ New York: St. Martin's, 2006. 208­11. Print.    Dickerson, Kelly. "Longer Distance Quantum Teleportation Achieved."​Longer Distance  Quantum Teleportation Achieved​. Live Science, 8 Dec. 2014. Web. 31 July 2015.  <http://phys.org/news/2014­09­quantum­teleportation.html>.    "SEVERAL FAILED ATTEMPTS TO EXPLAIN QUANTUM ENTANGLEMENT." Interview  by Paul Maliszewski. ​TIMOTHYMcSWEENEY’S ​31 July 2014: 13­15. Web. 31 July 2015.  <http://www.mcsweeneys.net/articles/several­failed­attempts­to­explain­quantum­entanglement >.    Vergano, Dan. ""Spooky" Quantum Entanglement Reveals Invisible Objects."​ National  Geographic News.​ National Geographic, 27 Aug. 2014. Web. 31 July 2015.  <http%3A%2F%2Fnews.nationalgeographic.com%2Fnews%2F2014%2F08%2F140827­quantu m­imaging­cats­undetected­photon­science%2F>.