SlideShare a Scribd company logo
1 of 72
Download to read offline
`
PIPING SYSTEM DESIGN I –
PIPING COMPONENTS, MATERIALS, CODES AND
STANDARDS - PART 1 - PIPE
Engineering and Management Solutions
REBIS ACADEMY
Presented By Alireza Niakani
REBIS ACADEMY OF TECHNOLOGY
We are a top-level Canadian Engineering Training Center in Toronto. We offers more than 300 career-focused training courses
form introductory to advanced in the key areas of engineering including Petroleum Engineering, Chemical Engineering, Piping
Engineering, Instrumentation & Control Engineering, Mechanical Engineering, Electrical Engineering, Civil & Structural
Engineering, Inspection & Maintenance Engineering, Safety Engineering and Project Management.
Our training programs and courses are useful to university or college graduates, entry-level engineers, technologists or technicians,
designers and drafters, experienced engineers and managers, who are willing to work in engineering consulting firms, construction
and operation, technical support and sales companies in the different industrial sectors, including oil, gas and petrochemical
companies, chemical and pharmaceutical plants, power, gas, water and waste water utilities, pulp and paper mills, food & beverage
processors, mining, metals and minerals companies.
We are constantly in touch with employers and strives to ensure that our training materials are consistent with what are required in
the marketplace. Our training programs and courses either help universities’ graduates to be more marketable and competitive in
the workforce or experienced engineers to update their professional skills to be as productive as possible in their work competitive
environment.
Our training programs and courses are delivered by instructors who have the knowledge and experience to understand your
challenges, ensuring content is relevant, up to date and practice wherever possible and are highly respected professionals in their
fields from all over the globe.
We are dedicated to preparing you to succeed in the global marketplace and business world.
We are sure, you will leave REBIS ACADEMY with the knowledge and skills that employers want.
1
PIPE
Engineering and Management Solutions
REBIS ACADEMY 2
MINIMUM REQUIREMENT FOR PIPE
• Pipe types
• Pipe manufacturing and fabrication
• Pipe size
• Pipe wall thickness, schedule and weight
• Pipe material
• Pipe End preparation (End furnished)
• Pipe length
• Pipe Insulation, Coating and lining
• Pipe Standards
Engineering and Management Solutions
REBIS ACADEMY 3
PIPE TYPES
Metallic Non‐Metallic
Ferrous Non‐FerrousCast Iron
Carbon Steel
Alloy Steel
Stainless Steel
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions
REBIS ACADEMY 4
PIPE MANUFACTURING AND FABRICATION
Rolled & Weld
Spiral (Helical) 
welded pipe
U & O
Seamless
pipe
Seam welded 
pipe
Steel pipe
Longitudinal (Straight) 
welded pipe
Engineering and Management Solutions
REBIS ACADEMY 5
PIPE MANUFACTURING AND FABRICATION
Seamless
Seam welded
Steel (Metallic) Pipe
Coal, Iron Ore, Coke and Scrap are melted to form
Ingots
Billets
Slabs
Blooms
Plate
Coil
Engineering and Management Solutions
REBIS ACADEMY 6
SEAMLESS PIPE MANUFACTURING 
Seamless pipe is made when steel in a solid, round cylindrical shape,
called a “billet” or a “tube round” is heated and then either pushed or
pulled (while being rapidly rotated) over a mandrel with a piercing point
positioned in the center of the billet. This activity produces a hollow tube
or “shell”. Seamless pipe is made in sizes from 1/8” to 26”.
Mandrel Mill Process is used to make smaller sizes of
seamless pipe form 1/8” to 26”.
Plug Mill Process is used to make larger sizes of
seamless pipe from 6” to 26” diameter.
Extrusion Process is used for tubes only.
Seamless pipes are stronger and more reliable,
however, expensive, in short supply and unavailable in
long lengths.
Engineering and Management Solutions
REBIS ACADEMY 7
SEAMLESS PIPES MANUFACTURING 
Engineering and Management Solutions
REBIS ACADEMY 8
WELDED PIPE MANUFACTURINGSeam welded pipe
Submerged Arc Weld Pipe
(SAW)
Electric Fusion Weld Pipe
(EFW)
Fusion weld (FW) Pipe
Or Continues Weld (CW)
Electric Resistance Weld Pipe
(ERW)
Longitudinal Submerged Arc Weld Pipe
(LSAW)
Spiral Submerged Arc Weld Pipe
(SSAW)
Engineering and Management Solutions
REBIS ACADEMY 9
FUSION WELD (FW) / CONTINUES WELD (CW)
FW or CW pipes is used in sizes 1/8” to 4‐1/2”. The ribbon of steel is fed
into a leveler and then into a gas furnace where it is heated to the
required temperature for forming and fusing. The forming rolls at the end
of the furnace shape the heated skelp into an oval.
The edges of the skelp are then firmly pressed together by rolls to obtain a
forged weld. The heat of the skelp, combined with the pressure exerted by
the rolls, form the weld.
Synchronized with the speed of the pipe as it emerges from the final rolls
is a rotary saw which cuts the pipe to its desired length. The pipe is then
cooled, descaled, straightened, inspected. tested hydrostatically, coated as
required and end finished. No metal is added into the operation.
Continuous weld pipe is commonly used for the conveyance of water. air.
gas, steam; for sprinkling systems, water wells. fencing. and a multitude of
structural applications.
These pipes are generally the lowest cost steel piping material available.
Engineering and Management Solutions
REBIS ACADEMY 10
ELECTRIC RESISTANCE WELD (ERW)
ERW pipes is used in sizes 2” to 24”. The coils of strip steel or skelp is
pulled through a series of rollers that gradually form it into a cylindrical
tube. As the edges of the now cylindrical plate come together, an electric
current is applied at the proper points to heat the edges so they can be
welded together.
As in CW pipe, no extraneous metal is added; in fact, due to the extreme
pressure of the rolls, steel is extruded on both the inside and outside of
the pipe at the point of the weld. This is called flash and is removed by
stationary cutters while still white hot. This process leads to coalescence
or merging. It produces uniform wall thicknesses and outside dimensions.
The High Frequency Induction Technology (HFI) welding process is used for
manufacturing ERW pipes as well. HFI is generally considered to be
technically superior to “ordinary” ERW when manufacturing pipes for
critical applications.
Engineering and Management Solutions
REBIS ACADEMY 11
ERW PIPE MANUFACTURING
Engineering and Management Solutions
REBIS ACADEMY 12
SUBMERGED ARC WELD (SAW)
SAW pipes is used in sizes 10” to up. Submerged Arc Welded (SAW) pipe
derives its name from the process wherein the welding arc is submerged
in flux while the welding takes place. The flux protects the steel in the
weld area from any impurities in the air when heated to welding
temperatures.
The two types of pipes produced through these technologies are
Longitudinal Submerged Arc Welded (LSAW) and Spiral Submerged Arc
Welded (SSAW) pipes.
Due to their high cost, LSAW pipes are seldom used in lower value non‐
energy applications such as water pipelines. SSAW pipes are produced by
spiral (helicoidal) welding of steel coil and have a cost advantage over
LSAW pipes as the process uses coils rather than steel plates.
Both LSAW pipes and SSAW pipes compete against ERW pipes and
seamless pipes in the diameter ranges of 16”‐24”.
Engineering and Management Solutions
REBIS ACADEMY 13
SAW PIPE MANUFACTURING 
Engineering and Management Solutions
REBIS ACADEMY 14
PIPE MANUFACTURING COMPARATIVE NOTES
Pipe size: 
Seamless < Spiral Welded Pipe < Longitudinal welded pipe
Wall Thickness:
Seamless < Spiral Welded Pipe < Longitudinal welded pipe
Length:
Seamless < Longitudinal welded pipe< Spiral Welded Pipe
Price:
Spiral Welded Pipe < Longitudinal welded pipe<Seamless
Joint efficiency E:
joint efficiency E used in pressure design equation, where for Seamless E = 1.0, and for 
Longitudinal Seam Welded E = 1.0 in case of full radiography and may be = 0.85 for other 
cases, and for spiral E = 0.65 or 0.60
Method:
Seamless used hot process, Spiral used cold rolling with extrusion process while 
longitudinal used cold process with bend and rolled.
Engineering and Management Solutions
REBIS ACADEMY 15
PIPE SIZE
IPS: Iron Pipe size = 1/8”, 3/8”, 1/2”, 3/4”, 1”, 1 1/2”, 2”, …. , 80”
NPS: Nominal Pipe size = 1/8, 3/8, 1/2, 3/4, 1, 1 1/2, 2, …. , 80
DN: Diametre Nominel = 6, 8, 10, 15, 20, 25, 32, 40, 50, …. , 2000
OD
Outside Diameter
ID
Inside Diameter
(Bore)
ODID
Wall thickness
Engineering and Management Solutions
REBIS ACADEMY
16
PIPE SIZE
NPS (in) 1/8 1/4 3/8 1/2 3/4 1 1‐1/4 1‐1/2 2 2‐1/2 3 3‐1/2 4 5 6 8 10 12
OD (in) 0.405 0.540 0.675 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.00 4.500 5.563 6.625 8.625 10.750 10.750
NPS (in) 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
OD (in) 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000 46.000 48.000
DN (mm) 6 8 10 15 20 25 32 40 50 65 80 90 100 125 150 200 250 300
OD (mm) 10.290 13.720 17.150 21.340 26.670 33.400 42.160 48.260 60.330 73.020 88.900 101.60 114.30 141.30 168.27 219.08 273.05 323.85
DN (mm) 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
OD (mm) 355.60 406.40 457.20 508.00 559.00 609.60 660.04 711.20 762.00 812.80 863.60 914.40 965.20 1016.0 1066.8 117.6 1168.4 1219.2
Nominal Pipe Size (NPS) is a American (ASA) set of standard sizes for pipes used
for high or low pressures and temperatures. The European designation equivalent
to NPS is DN (diamètre nominal/nominal diameter/Durchmesser nach Norm), in
which sizes are measured in millimetres.
• For NPS ⅛ to 12 inches, the NPS and OD values are different.
• For NPS 14 inches and up, the NPS and OD values are equal.
Engineering and Management Solutions
REBIS ACADEMY
17
PIPE SCHEDULE AND WALL THICKNESS
NPS
(in)
OD
(in)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 8.625 0.109 0.148 0.250 0.277 0.322 0.322 0.406 0.500 0.500 0.594 0.719 0.812 0.906 0.875
12 12.750 0.165 0.180 0.250 0.330 0.406 0.375 0.562 0.688 0.500 0.844 1.000 1.125 1.312 1.000
14 14.000 0.156 0.250 0.312 0.375 0.438 0.375 0.594 0.750 0.500 0.938 1.094 1.250 1.406
24 24.000 0.218 0.250 0.375 0.562 0.687 0.375 0.968 1.218 0.500 1.531 1.812 2.062 2.343
Imperial & Metric
• The ASME/ANSI B 36.10 is for Steel Pipe, ASME/ANSI B36.19 for Stainless Steel Pipe and
API 5L for line pipe.
• The formula to approximate calculate of Schedule Number = (1,000)(P/S)
Where, P = the internal working pressure, psig and S = the allowable stress (psi)
For example, the schedule number of ordinary steel pipe having an allowable stress of
10,000 psi for use at a working pressure of 350 psig would be:
Schedule Number = (1,000)(350/10,000) = 35 (approx. 40)
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225
12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400
14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712
24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512
Engineering and Management Solutions
REBIS ACADEMY
18
PIPE SCHEDULE VS. WEIGHT
Metric
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 15.09 20.37 33.31 36.81 42.55 42.55 64.4 64.4 107.92
10 273.100 23.08 28.34 41.77 51.03 60.31 60.31 83.19 81.55 155.15
12 323.850 31.89 36.73 49.73 65.20 79.73 73.88 132.08 97.46 186.97
14 355.600 35.06 54.69 67.90 81.33 94.55 93.27 158.10 107.39
The formula to approximate calculate of the steel pipe nominal weight per unit length is: 
Approx. weight per unit length (kg/m) = [O.D.(mm) – W.T(mm)] x W.T.(mm) x 0.02466 
Approx. weight per unit length (Ib/ft) = [O.D.(inch) – W.T(inch)] x W.T.(inch) x 10.69 for 
C.S. or 10.68 for S.S
Where, O.D. is Outside Diameter and W.T. is Wall Thickness
1 inch=25.4 mm  and        1Ib/ft=1.4895 kg/m
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225
12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400
14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712
24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512
Engineering and Management Solutions
REBIS ACADEMY
19
PIPE WALL THICKNESS CALCULATION
t= Pressure design thickness
d= Inside diameter of pipe
D= Outside diameter of pipe
P= Internal design pressure
E= Quality factor (Basic quality factor “E” for 
longitudinal weld joints in stainless steel 
pipes, tubes and fittings)
S= Stress value for material (Basic allowable 
stress “S”)
Y= Coefficient factor
Engineering and Management Solutions
REBIS ACADEMY 20
Engineering and Management Solutions
REBIS ACADEMY
PIPE WALL THICKNESS CALCULATION
21
Engineering and Management Solutions
REBIS ACADEMY
PIPE WALL THICKNESS CALCULATION
22
PIPE MATERIAL
The most comprehensive reference for material is ASTM. American
Society for Testing and Materials (ASTM), is an international standards
organization that develops and publishes technical standards for a wide
range of materials, products, systems, and services.
The ASTM Standards covers 15 sections:
1. Iron and Steel Products
2. Nonferrous Metal Products
3. Metals Test Methods and Analytical Procedures
4. Construction
5. Petroleum Products, Lubricants, and Fossil Fuels
6. Paints, Related Coatings, and Aromatics
7. Textiles
8. Plastics
9. Rubber
10. Electrical Insulation and Electronics
11. Water and Environmental Technology
12. Nuclear, Solar, and Geothermal Energy
13. Medical Devices and Services
14. General Methods and Instrumentation
15. General Products, Chemical Specialties
16. Index to all sections and volumes
Engineering and Management Solutions
REBIS ACADEMY 23
FLUID SERVICE CATEGORY (B31.3 DEFINITION)
B31.3 recognizes the following fluid service categories and a special
design consideration based on pressure. With the fluid service
category known, then the designer can make proper material and
component selection, as well as employ the code required
fabrication and inspection requirements.
These fluid categories and pressure concern are:
1. Normal Fluid Service (ASME B31.3 , Chapter 7)
2. Category D Fluid Service
3. Category M Fluid Service (ASME B31.3 , Chapter 8)
4. High Pressure Piping (ASME B31.3 , Chapter 9)
5. Severe Cyclic Conditions
Engineering and Management Solutions
REBIS ACADEMY 24
FLUID SERVICE CATEGORY
1. Normal Fluid Service (ASME B31.3 , Chapter 7)
A fluid service pertaining to most piping covered by this code,
not subject to the rules of Category D, M or High Pressure Fluid
Service.
Often characterized as “Process”
Engineering and Management Solutions
REBIS ACADEMY 25
FLUID SERVICE CATEGORY
2. Category D Fluid Service
The fluid handled is:
• nonflammable
• nontoxic
• not damaging to human tissue
• The design gage pressure does not exceed 150 psig
• The design temperature is greater than ‐20°F (‐29°C) and
dose not exceed 366°F (‐186°C). 366°F is the saturation
temperature of steam at 150 psig.
• Often characterized as “Utility”
Example: Steam condensate with max temp. 212°F (100°C) and
max press. 90 psig (6 bar)
Engineering and Management Solutions
REBIS ACADEMY 26
FLUID SERVICE CATEGORY
3. Category M Fluid Service (ASME B31.3 , Chapter VIII)
A fluid service in which the potential for personnel exposure is
judged to be significant and in which a single exposure to a very
small quantity of a toxic fluid, caused by leakage, can produce
serious irreversible harm to persons upon breathing or on bodily
contact, even when prompt restorative measures are taken.
Often characterized as “lethal”
Example:
Phosgene (Nerve Gas)
Hydrofluoric Acid
Hydrogen Sulfide Gas
Engineering and Management Solutions
REBIS ACADEMY 27
FLUID SERVICE CATEGORY
4. High Pressure Piping (ASME B31.3 , Chapter IX)
A service for which the owner specifies the use of Chapter IX of
ASME B31.3 for piping design and construction and etc.
considered to be in excess of class 2500 (PN 420).
Often characterized as “High Pressure”
Engineering and Management Solutions
REBIS ACADEMY 28
FLUID SERVICE CONTAINMENT SYSTEM
B31.3 Fluid Service Containment System
Category D [Utility] Lowest cost
Usually not fire resistant 
Usually not blow‐out resistant
Normal [Process] Moderate cost
May be fire resistant or not
May be not blow‐out resistant or not
Category M [Lathal]
High Pressure
High cost
Usually fire resistant 
Usually blow‐out resistant
Engineering and Management Solutions
REBIS ACADEMY 29
ASTM DESIGNATION SYSTEM
Example 1 ‐ ASTM A 582/A 582M‐95b (2000), Grade 303Se ‐Free‐Machining Stainless Steel
Bars:
‘A’ describes a ferrous metal, but does not sub classify it as cast iron, carbon steel, alloy
steel, tool steel, or stainless steel;
582 is a sequential number without any relationship to the metal’s properties;
M indicates that the standard A582M is written in rationalized SI units (the M comes from
the word Metric), hence together A582/A582M includes both inch‐pound and SI units;
95 indicates the year of adoption or last revision and a letter b following the year indicates
the third revision of the standard in1995;
(2000), a number in parentheses, indicates the year of last re‐approval;
Grade 300Se indicates the grade of the steel, and in this case, it has a Se (selenium)
addition.
Note: Grade is used to describe chemical composition; Type is used to define the
deoxidation practice; and Class is used to indicate other characteristics such as strength
level or surface finish.
Engineering and Management Solutions
REBIS ACADEMY 30
ASTM DESIGNATION SYSTEM
Example 2 ‐ ASTM A 106‐02a Grade A, Grade B, Grade C ‐ Seamless Carbon Steel Pipe for 
High‐Temperature Service: 
Typically an increase in alphabet (such as letters A, B, C) results in higher tensile or yield 
strength steels, and if it’s an unalloyed carbon steel, an increase in carbon content; 
In this case: Grade A:0.25%C (max), 48 ksi tensile strength (min); Grade B: 0.30%C (max), 
60 ksi tensile strength (min); Grade C 0.35%C (max), 70 ksi tensile strength (min). 
Example 3 ‐ ASTM A 276‐03, Type 304, 316, 410 – Stainless and Heat Resisting Steel Bars
and Shapes:
Types 304, 316, 410 and others are based on the SAE designation system for stainless
steels.
Engineering and Management Solutions
REBIS ACADEMY 31
SAE DESIGNATION SYSTEM
Carbon steels
10XX Plain carbon, Mn 1.00% max
11XX Resulfurized free machining
12XX Resulfurized/rephosphorized free machining
15XX Plain carbon, Mn 1.00-1.65%
Manganese steels 13XX Mn 1.75%
Nickel steels
23XX Ni 3.50%
25XX Ni 5.00%
Nickel-chromium steels
31XX Ni 1.25%, Cr 0.65-0.80%
32XX Ni 1.75%, Cr 1.07%
33XX Ni 3.50%, Cr 1.50-1.57%
34XX Ni 3.00%, Cr 0.77%
Molybdenum steels
40XX Mo 0.20-0.25%
44XX Mo 0.40-0.52%
Chromium-molybdenum steels 41XX Cr 0.50-0.95%, Mo 0.12-0.30%
Nickel-chromium-molybdenum steels
43XX Ni 1.82%, Cr 0.50-0.80%, Mo 0.25%
47XX Ni 1.05%, Cr 0.45%, Mo 0.20-0.35%
Nickel-molybdenum steels
46XX Ni 0.85-1.82%, Mo 0.20-0.25%
48XX Ni 3.50%, Mo 0.25%
Chromium steels
50XX Cr 0.27-0.65%
51XX Cr 0.80-1.05%
50XXX Cr 0.50%, C 1.00% min
51XXX Cr 1.02%, C 1.00% min
52XXX Cr 1.45%, C 1.00% min
Chromium-vanadium steels 61XX Cr 0.60-0.95%, V 0.10-0.015%
Tungsten-chromium steels 72XX W 1.75%, Cr 0.75%
Nickel-chromium-molybdenum steels
81XX Ni 0.30%, Cr 0.40%, Mo 0.12%
86XX Ni 0.55%, Cr 0.50%, Mo 0.20%
87XX Ni 0.55%, Cr 0.50%, Mo 0.25%
88XX Ni 0.55%, Cr 0.50%, Mo 0.35%
Silicon-manganese steels 92XX Si 1.40-2.00%, Mn 0.65-0.85%, Cr 0-0.65%
Nickel-chromium-molybdenum steels
93XX Ni 3.25%, Cr 1.20%, Mo 0.12%
94XX Ni 0.45%, Cr 0.40%, Mo 0.12%
97XX Ni 0.55%, Cr 0.20%, Mo 0.20%
98XX Ni 1.00%, Cr 0.80%, Mo 0.25%
1 ‐ Carbon Steel,
2 ‐ Nickel steels;
3 ‐ Nickel‐chromium steels;
4 ‐ Molybdenum steels;
5 ‐ Chromium steels;
6 ‐ Chromium‐vanadium steels;
7 ‐ Tungsten‐chromium steels;
9 ‐ Silicon‐manganese steels. 
Example:
SAE 5130 indicates a chromium 
steel alloy, containing 1% of 
chromium and 0.30% of carbon. 
Engineering and Management Solutions
REBIS ACADEMY 32
ASTM DESIGNATION SYSTEM
Example 4: Another use of ASTM grade designators is found in pipe, tube, and forging
products, where the first letter P refers to pipe, T refers to tube, TP may refer to tube or
pipe, and F refers to forging.
• ASTM A 335/A335‐03, Grade P22; Seamless Ferritic Alloy‐Steel Pipe for High
Temperature Service;
• ASTM A 213/A213M‐03a, Grade T22; Seamless Ferritic and Austenitic Alloy Steel Boiler,
Superheater and Heat‐Exchanger Tubes;
• ASTM A 312/A312M‐03, Grade TP304; Seamless and Welded Austenitic Stainless Steel
Pipe;
• ASTM A 336/A336M‐03a, Class F22‐Steel Forgings, Alloy, for Pressure and High‐
Temperature Parts.
Engineering and Management Solutions
REBIS ACADEMY 33
EFFECTS OF ALLOYING ELEMENTS IN STEEL
Steel is basically iron alloyed to carbon with certain additional elements to give
the required properties to the finished melt. Listed below is a summary of the
effects various alloying elements in steel.
‐ Carbon ‐ Tantalum 
‐ Manganese ‐ Selenium
‐ Chromium ‐ Niobium
‐ Nickel ‐ Nitrogen
‐ Molybdenum ‐ Silicon
‐ Titanium ‐ Cobalt
‐ Phosphorus ‐ Copper
‐ Sulfur
Engineering and Management Solutions
REBIS ACADEMY 34
EFFECTS OF ALLOYING ELEMENTS IN STEEL
• Carbon
Increases the hardness and strength by heat treatment
• Manganese
Improves hot working properties and increases strength, toughness and hardenability
• Chromium
Increases resistance to oxidation and also improve hardenability and strength
• Nickel
Improves resistance to oxidation, corrosion, toughness and temperature strengths
• Molybdenum
Improves resistance to pitting corrosion especially by chlorides and sulphur chemicals
• Titanium
Minimises the occurrence of inter‐granular corrosion by carbide stabilisation
• Phosphorus
Improves machinability and also strength and corrosion resistance
• Sulphur
Improves machinability
Engineering and Management Solutions
REBIS ACADEMY 35
EFFECTS OF ALLOYING ELEMENTS IN STEEL
• Tantalum
Stabilises carbon and also strengthens steels and alloys for high temperature service
• Selenium
Improves machinability
• Niobium (Columbium)
Chemically similar to Tantalum and has similar effects
• Nitrogen
Improves yield strength and also increases the austenitic stability of stainless steels 
• Silicon
Improve hardness  and silicon is used as a deoxidising (killing) agent in the melting of steel
• Cobalt
Cobalt becomes highly radioactive when exposed to the intense radiation of nuclear 
reactors, and as a result, any stainless steel that is in nuclear service will have a cobalt 
restriction, usually approximately 0.2% maximum. 
• Copper
Produces precipitation hardening properties
Engineering and Management Solutions
REBIS ACADEMY 36
HEAT TREATMENT
The purpose of heat treating carbon steel is to change the mechanical properties of steel, 
usually ductility, hardness, yield strength, or impact resistance. The following is a list of the 
types of heat treatments possible:
Spheroidizing:
The purpose is to soften higher carbon steels and allow more formability.
Full annealing:
Fully annealed steel is soft and ductile, with no internal stresses, which is often necessary
for cost‐effective forming.
Normalizing:
Normalized steel has a fine pearlitic structure, and a more‐uniform structure. it has a
higher strength than annealed steel and a relatively high strength and ductility.
Quenching:
This quenched steel is extremely hard but brittle, usually too brittle for practical purposes.
Martempering (Marquenching)and Austempering:
In industry, this is a process used to control the ductility and hardness of a material. With
longer marquenching, the ductility increases with a minimal loss in strength.
Engineering and Management Solutions
REBIS ACADEMY 37
PIPE MATERIAL
Metallic Non‐Metallic
Ferrous Non‐FerrousCast Iron
Fe+2‐4% C+1‐3%Si Fe+1.95% C Ni, Cu, Ti, Cr, Mo, Al
Inconel
Hastelloy
Monel
Carbon Steel
Alloy Steel
Stainless Steel
Fe+C
Fe+C+Cr< 10%
Fe+C+Cr> 10.5%
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions
REBIS ACADEMY 38
CAST IRON PIPE
It is usually made from pig iron. Cast iron tends to be brittle, except for malleable
cast irons. With its relatively low melting point, good fluidity, castability, excellent
machinability and resistance to deformation. Cast irons are used in pipes,
machines and automotive industry parts, such as cylinder heads, cylinder
blocks and gearbox cases. It is resistant to destruction and weakening
by oxidation (rust).
Hardness Tensile strength [ksi]
Nominal composition
[% by weight]
Name
26050C 3.4, Si 1.8, Mn 0.5Grey cast iron (ASTM A48)
45025C 3.4, Si 0.7, Mn 0.6White cast iron
13052C 2.5, Si 1.0, Mn 0.55Malleable iron (ASTM A47)
7070C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06Ductile or nodular iron (ASTM A339)
55055C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0Ni‐hard type 2
14027C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5Ni‐resist type 2
Engineering and Management Solutions
REBIS ACADEMY 39
CARBON STEEL PIPE
Carbon steel is steel in which the main  alloying constituent is carbon in the range 
of 0.12–2.0%. As the carbon percentage content rises, steel has the ability to 
become harder and stronger through heat treating, however it becomes 
less ductile with the lower melting point. It also reduces weldability.
Example: ASTM A53, A105 , A106
Medium carbon steel: 
0.30–0.59% carbon content. Balances ductility and strength and has good wear 
resistance; used for large parts, forging and automotive components.
High‐carbon steel: 
0.6–0.99% carbon content. Very strong, used for springs and high‐strength wires.
Ultra‐high‐carbon steel: 
1.0–2.0% carbon content. Steels that can be tempered to great hardness. Used 
for special purposes like knives, axles or punches. 
Engineering and Management Solutions
REBIS ACADEMY 40
CARBON STEEL PIPE
Composition, max, %
Element C Mn P S Cu (1) Ni (1) Cr (1) Mo (1) V (1)
Type S (Seamless Pipe)
Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08
Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
Type E (Electric-Resistance-Welded)
Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08
Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
Type F (Furnace-Welded Pipe)
Grade A 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
(1) The total composition for these five elements shall not exceed 1.00%.
ASTM A53
Specification for seamless and welded black and hot-dipped galvanized steel pipe
ASTM A105: Specification for Carbon Steel Forgings for Piping Applications
ASTM A106: Specification for Seamless Carbon Steel Pipe for High‐Temperature Service
Engineering and Management Solutions
REBIS ACADEMY 41
ALLOY STEEL PIPE
Composition, max, %
Element C Mn P S SI Cr Mo others
Grade P2 0.10-0.20 0.30-0.61 0.025 0.025 0.10-0.30 0.50-0.81 0.44-0.65 ….
Grade P5 0.15 max 0.30-0.60 0.025 0.025 0.5 max 4.00-6.00 0.45-0.65 ….
Grade P9 0.15 max 0.30-0.60 0.025 0.025 0.25-1.00 8.00-10.00 0.90-1.10 ….
Grade P911 0.09-0.13 0.30-0.60 0.020 0.010 0.10-0.50 8.50-9.50 0.90-1.10 V 0.18-0.25
Ni 0.40 max
Al 0.20 max
Ti 0.01 max
Zr 0.01 max
ASTM A335
Specification for seamless ferritic alloy-steel pipe for high-temperature service
All grades: P1, P2, P5, P5B, P5C, P9, P11,P12,P15,P21,P22,P23, P24,P36,P91,P92, P122, P911
Engineering and Management Solutions
REBIS ACADEMY 42
STAINLESS STEEL
Stainless steel is a name given to a group of steel alloys with many differences in
properties and behaviour having one property in common ‐ resistance to
corrosion.
When an Alloy of Steel contains more than approximately 10.5% Chromium it can
be classed as a stainless steel. The large group of stainless steels can be divided
into three major groups, namely:
• Austenitic
Chromium normally in the range 17‐25% and nickel in a range 8‐20%
• Ferritic
Minimum of 17% chrome and carbon in the range of 0.08% ‐ 2.00%
• Martensitic
Minimum of 12% chrome and usually a maximum of 14% with carbon in the range of
0.08% ‐ 2.00%.
• Duplex (Supper Alloy) (Austenitic + Ferritic)
Engineering and Management Solutions
REBIS ACADEMY 43
STAINLESS STEEL PIPE
• Austenitic
• A312 ‐ A312/A312M‐00 ‐ Specification for Seamless and Welded Austenitic Stainless Steel Pipes
• A813 ‐ A813/A813M‐95e2 ‐ Specification for Single‐ or Double‐Welded Austenitic Stainless Steel Pipe
• A814 ‐ A814/A814M‐96 (1998) ‐ Specification for Cold‐Worked Welded Austenitic Stainless Steel Pipe
Others: SAE: Type 201, 202,,205, 254, 301, 302, 302B, 303, 303Se, 304, 304L, 304Cu, 304N, 304, 308, 309,
309S, 310, 310S, 314, 316, 316L, 316F, 316N, 317, 317L, 321, 329, 330, 347, 348, 384
• Ferritic
• A790 ‐ A790/A790M‐99 ‐ Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
• A872 ‐ A872‐91 (1997) ‐ Specification for Centrifugally Cast Ferritic/Austenitic Stainless Steel Pipe for
Corrosive Environments
Others: SAE: 405, 409, 429, 430, 430F, 430FSe, 434, 436, 442, 446
• Martensitic
• ASTM A1053 / A1053M ‐ 12 Standard Specification for Welded Ferritic‐Martensitic Stainless Steel Pipe
Others: SAE: 403, 410, 414, 416, 416Se, 420, 420F, 422,431,440A, 440B, 440C
• Duplex (Supper Alloy)
Engineering and Management Solutions
REBIS ACADEMY 44
PIPE MATERIAL VS. OTHER PIPING COMPONENTS
ASTM Grades
Material Pipes Fittings Flanges Valves Bolts & Nuts
Carbon Steel
A106 Gr A A234 Gr WPA A105 A216 Gr WCB
A193 Gr B7
A194 Gr 2H
A106 Gr B A234 Gr WPB A105 A216 Gr WCB
A106 Gr C A234 Gr WPC A105 A216 Gr WCB
Carbon Alloy Steel
High‐Temp
A335 Gr P1 A234 Gr WP1 A182 Gr F1 A217 Gr WC1
A193 Gr B7
A194 Gr 2H
A335 Gr P11 A234 Gr WP11 A182 Gr F11 A217 Gr WC6
A335 Gr P12 A234 Gr WP12 A182 Gr F12 A217 Gr WC6
A335 Gr P22 A234 Gr WP22 A182 Gr F22 A217 Gr WC9
A335 Gr P5 A234 Gr WP5 A182 Gr F5 A217 Gr C5
A335 Gr P9 A234 Gr WP9 A182 Gr F9 A217 Gr C12
Carbon Alloy Steel
Low‐Temp
A333 GR 6 A420 Gr WPL6 A350 Gr LF2 A352 Gr LCB A320 Gr L7
A194 Gr 7A333 Gr 3 A420 Gr WPL3 A350 Gr LF3 A352 Gr LC3
Austenitic
Stainless Steel
A312 Gr TP304 A403 Gr WP304 A182 Gr F304 A182 Gr F304
A193 Gr B8
A194 Gr 8 
A312 Gr TP316 A403 Gr WP316 A182 Gr F316 A182 Gr F316
A312 Gr TP321 A403 Gr WP321 A182 Gr F321 A182 Gr F321
A312 Gr TP347 A403 Gr WP347 A182 Gr F347 A182 Gr F347
Engineering and Management Solutions
REBIS ACADEMY 45
Pipes
A106 = This specification covers carbon steel pipe for high‐temperature service.
A335 = This specification covers seamless ferritic alloy‐steel pipe for high‐temperature service.
A333 = This specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures.
A312 = Standard specification for seamless, straight‐seam welded, and cold worked welded austenitic stainless steel pipe intended for high‐
temperature and general corrosive service.
Fittings
A234 = This specification covers wrought carbon steel and alloy steel fittings of seamless and welded construction.
A420 = Standard specification for piping fittings of wrought carbon steel and alloy steel for low‐temperature service.
A403 = Standard specification for wrought austenitic stainless steel piping fittings.
Flanges
A105 = This specification covers standards for forged carbon steel piping components, that is, flanges, fittings, Valves, and similar parts, for use in 
pressure systems at ambient and higher‐temperature service conditions.
A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature 
service.
A350 = This specification covers several grades of carbon and low alloy steel forged or ring‐rolled flanges, forged fittings and Valves for low‐
temperature service.
Valves
A216 = This specification covers carbon steel castings for Valves, flanges, fittings, or other pressure‐containing parts for high‐temperature service and 
of quality suitable for assembly with other castings or wrought‐steel parts by fusion welding.
A217 = This specification covers steel castings, martensitic stainless steel and alloys steel castings for Valves, flanges, fittings, and other pressure‐
containing parts intended primarily for high‐temperature and corrosive service.
A352 = This specification covers steel castings for Valves, flanges, fittings, and other pressure‐containing parts intended primarily for low‐
temperature service.
A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature 
service.
Bolds & Nuts
A193 = This specification covers alloy and stainless steel bolting material for pressure vessels, Valves, flanges, and fittings for high temperature or 
high pressure service, or other special purpose applications.
A320 = Standard Specification for Alloy‐Steel and Stainless Steel Bolting Materials for Low‐Temperature Service.
A194 = Standard specification for nuts in many different material types.
Engineering and Management Solutions
REBIS ACADEMY
PIPE MATERIAL VS. OTHER PIPING COMPONENTS
46
PIPE ENDS
The three standard types of pipe ends used in the piping industries
are;
• Plain Ends (PE) Joint Type: Socket Weld
• Threaded Ends (TE) Joint Type: Thread or Screw
• Beveled Ends (BE) Joint Type: Butt Weld
The end type for piping components are based on the type of joint
used in that particular piping system. The are listed below;
‐ Threaded joint ‐ Grooved Joints
‐ Flange Joints ‐ Caulked Joints
‐ Butt Joints ‐ Bonded Joints
‐ Socket Joints
Engineering and Management Solutions
REBIS ACADEMY 47
PIPE ENDS ABBREVIATIONS
• Bevel End (BE) 
• Bevel Both Ends (BBE) 
• Bevel Large End (BLE) 
• Bevel One End (BOE) 
• Bevel Small End (BSE) 
• Bevel for Welding (BFW) 
• Butt‐weld End (BE) 
• End of Pipe (EOP) 
• Flange One End (FOE) 
• Plain End (PE) 
• Plain Both Ends (PBE) 
• Plain One End (POE) 
• Thread End (TE) 
• Thread Both Ends (TBE) 
• Thread Large End (TLE) 
• Thread One End (TOE) 
• Thread Small End (TSE) 
• Threads Only (TO) 
• Threads per Inch (TPI) 
Common abbreviations for the types of pipe ends are as follows:
Engineering and Management Solutions
REBIS ACADEMY 48
PIPE ENDS
• Plain Ends (PE)
A pain end pipe is a pipe that has been cut at 90° perpendicular to 
the pipe run. The reason pipe would be specified as plain end rather 
than beveled end is when the pipe will be used in a Socket Weld 
connection or for use with a Slip‐on Flange. 
Engineering and Management Solutions
REBIS ACADEMY 49
PIPE ENDS
• Bevel Ends (BE)
A bevel is a surface that is not at a right angle (perpendicular) to
another surface. The standard angle on a pipe bevel is 37.5° but
other non standard angles can be produced. Beveling of pipe or
tubing is to prepare the ends for welding.
Engineering and Management Solutions
REBIS ACADEMY 50
PIPE ENDS
• Threaded Ends (TE)
Typically used on pipe 3" and smaller, threaded connections are
referred to as screwed pipe. In the United States, the standard pipe
thread is National Pipe Thread (NPT).
Threaded fittings have threads that are either male or female. As
screwed pipe and fittings are assembled, two pieces are pulled
together. The distance that is pulled together is called the thread
engagement.
Engineering and Management Solutions
REBIS ACADEMY 51
PIPE ENDS
• Threaded Ends (TE)
Standards:
NPT ‐ National Pipe Thread Taper, ANSI/ASME B1.20.1
NPTF ‐ Dryseal American National Standard Taper Pipe Thread (ANSI B1.20.3)
Note: For NPT threads a sealant compound or Teflon tape must be used for a
leak‐free seal. For NPTF no sealant is needed for a sealing.
Characteristics:
• tapered thread 1o 47‘ (1.7899o)
• truncation of roots and crests are flat
• 60o thread angle
• pitch is measured in threads per inch
Engineering and Management Solutions
REBIS ACADEMY 52
PIPE ENDS
NPT ‐ American Standard Pipe Thread Taper 1)
Pipe Size
(inches)
Threads per Inch
TPI ‐ pitch
Approximate 
Length of Thread 
(inches)
Approximate 
Number of Threads 
to be Cut
Approximate Total 
thread Makeup, 
Hand and Wrench
(inches)
Nominal Outside 
Pipe Diameter
OD
(inches)
Tap Drill
(inches)
1/16" 27 0.313
1/8" 27 3/8 10 1/4 0.405 R
1/4" 18 5/8 11 3/8 0.540 7/16
3/8" 18 5/8 11 3/8 0.675 37/64
1/2" 14 3/4 10 7/16 0.840 23/32
3/4" 14 3/4 10 1/2 1.050 59/64
1" 11‐1/2 7/8 10 9/16 1.315 1‐5/32
1‐1/4" 11‐1/2 1 11 9/16 1.660 1‐1/2
1‐1/2" 11‐1/2 1 11 9/16 1.900 1‐47/64
2" 11‐1/2 1 11 5/8 2.375 2‐7/32
2‐1/2" 8 1 1/2 12 7/8 2.875 2‐5/8
3" 8 1 1/2 12 1 3.500 3‐1/4
3‐1/2" 8 1 5/8 13 1 1/16 4.000 3‐3/4
4" 8 1 5/8 13 1 1/16 4.500 4‐1/4
4 1/2" 8 5.000 4‐3/4
5" 8 1 3/4 14 1 3/16 5.563 5‐9/32
6" 8 1 3/4 14 1 3/16 6.625 6‐11/32
8" 8 1 7/8 15 1 5/16 8.625
10" 8 2 16 1 1/2 10.750
12" 8 2 1/8 17 1 5/8 12.750
14" 8 14.000
16" 8 16.000
Engineering and Management Solutions
REBIS ACADEMY 53
NON METALLIC PIPES
References:
Chapter VII:
Nonmetallic piping and piping lined with
nonmetals:
Design, Fabrication, Installation
and limitation
Appendix B:
Stress tables and allowable pressure
table for nonmetals
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions
REBIS ACADEMY 54
NON‐METALLIC PIPE ADVANTAGES
Advantages:
• Typically has a lower installed and maintenance cost and lower 
total cost of ownership. 
• Will not corrode if the correct material is selected. This means: 
• No cathodic protection or corrosion monitoring 
• No chemical inhibitors are required. 
• Corrosion allowance is avoided (Note: if the service is an 
erosive service, an erosion allowance may be required) 
• Flow properties are superior to steel pipe 
• Lower pumping costs 
• Consistent friction factor through the life of the pipe 
• More flexible than steel pipe. 
Engineering and Management Solutions
REBIS ACADEMY 55
NON‐METALLIC DISADVANTAGES
Disadvantages:
• Temperature limits are usually lower than steel pipe. As 
temperatures increase, the maximum pressure will decrease. 
• Maximum pressure is lower than steel pipe. 
• Material is very process dependent. That is, hydrocarbons cannot 
always flow through nonmetallic lines. 
• Non metallic lines will degrade in sunlight without a Ultraviolet 
inhibitor. 
• Very susceptible to mechanical damage. 
• More flexible than steel pipe. Requires more supporting than 
steel piping. 
Engineering and Management Solutions
REBIS ACADEMY 56
NON METALLIC PIPES
Thermoplastic:
Is a plastic which is thermoplastic in behavior, capable of being repeatedly
softened by increasing of temperature (heating) and hardened by decreasing of
temperature (cooling). Example: HDPE, PVC, ABS, PP
Manufacturing:
Pipe is extruded
Fittings are usually injection molded and sometimes fabricated
Valve parts are usually injection molded
Limitation:
Thermoplastics cannot be used when the service is a flammable service and when
the piping is above ground. Thermoplastics also must be safeguarded when in all
services (except in Category D fluids). While safeguarding is not defined, it could
mean that additional pressure & temperature protection is required. It could also
mean that physical barriers be installed to prevent unintentional rupture.
Engineering and Management Solutions
REBIS ACADEMY 57
THERMOPLASTICS PRESSURE DESIGN THICKNESS
T = PD / 2 (S + P)]
Where:
t = pressure design thickness
P= design pressure
D=outside pressure
S= HDS (Hydrostatic Design Stress) Value [Allowable stress]
HDS: this is defined as the maximum hoop stress in the pipe wall due to internal
hydrostatic pressure that can be applied continuously with great certainty that
failure of the pipe will not occur in a long period of time (50‐year period).
Example: HDS for material from Appendix B
CPVC 2.00 ksi 13.8 Mpa
PE 0.80 ksi 5.5 Mpa
PVC 2.00 ksi 13.8 Mpa
Engineering and Management Solutions
REBIS ACADEMY 58
THERMOPLASTICS PIPES ASSEMBLY
1. Butt fusion welding
Butt fusion or butt welding, which is a type of hot plate welding. This technique
involves heating two planed surfaces of thermoplastic material against a heated
surface. After a specified amount of time, the heating plate is removed and the
two pieces are pressed together and allowed to cool under pressure, forming the
desired bond.
Heater
Engineering and Management Solutions
REBIS ACADEMY 59
THERMOPLASTICS PIPES ASSEMBLY
2. Electrofusion welding
The pipes to be joined are cleaned, inserted into the electrofusion fitting (with a
temporary clamp if required) and a voltage (typically 40V) is applied for a fixed
time depending on the fitting in use. The built in heater coils then melt the inside
of the fitting and the outside of the pipe wall, which weld together producing a
very strong homogeneous joint.
Engineering and Management Solutions
REBIS ACADEMY 60
THERMOPLASTICS PIPES ASSEMBLY
3. Socket fusion welding
It is distinguished from butt‐welding by using custom‐shaped and ‐sized heating
plates rather than a basic flat surface. These heads allow for more surface
contact, reducing the time needed to heat and fuse the pipe. Socket fusion
joins pipe and fittings together, rather than simply joining pipe to pipe. It
requires less pressure than butt‐welding and is more commonly used on
smaller sizes of pipe (4" or less). Socket welding has additional advantages of
requiring less machinery and is more portable than the heavier equipment
required for butt fusion. PE, PP, PVDF are joined by this process.
Spigot
Heating Plate
Socket
Preparation of the welding Alignment and Pre‐heating Joining and Cooling
Fitting
Pipe
Engineering and Management Solutions
REBIS ACADEMY 61
THERMOPLASTICS PIPES ASSEMBLY
4. Hot Gas welding
Hot gas welding, also known as hot air welding, is a plastic welding technique
using heat. A specially designed heat gun, called a hot air welder, produces a jet
of hot air that softens both the parts to be joined and a plastic filler rod, all of
which must be of the same or a very similar plastic.
Welding Rod
Heat Gun
Engineering and Management Solutions
REBIS ACADEMY 62
THERMOPLASTICS PIPES ASSEMBLY
5. Solvent welding
Solvent welding, also known as solvent cementing or solvent bonding, is the
process of joining articles made of thermoplastic resins by applying a solvent
capable of softening the surfaces to be joined, and pressing the softened
surfaces together. Pipe and fittings are bonded together by means of chemical
fusion. ABS, CPVC, and PVC plastic pipes are primarily joined by solvent
cementing, though mechanical joints are also available. PE pipe cannot be
joined with solvent cements.
Engineering and Management Solutions
REBIS ACADEMY 63
NON METALLIC PIPES
SDR:
Many PE pipe manufacturers use the "Standard Dimension Ratio" ‐ SDR ‐ method
of rating pressure piping. Standard Dimension Ratio (SDR) is a method of rating a
pipe's durability against pressure.
SDR= D/s
D= Pipe outside diameter
s = Pipe wall thickness
Common nominations are SDR11, SDR17 and SDR34. Pipes with a lower SDR can
withstand higher pressures. A SDR 11 means that the outside diameter ‐ D ‐ of the
pipe is eleven times the thickness ‐ s ‐ of the wall.
with a high SDR ratio the pipe wall is thin compared to the pipe diameter
with a low SDR ratio the pipe wall is thick compared to the pipe diameter
Engineering and Management Solutions
REBIS ACADEMY 64
NON METALLIC PIPES
Thermosetting:
Material
Description Recommended Temperature limits
Minimum Maximum
ABS  Acrylonitrile butadiene styrene  ‐40 °F ‐40°C 176°F 80°C
CPVC  Chlorinated polyvinyl chloride  0 °F ‐18°C 210°F 99°C
FEP Fluorinated ethylene propylene  ‐325 °F ‐198°C 400°F 204°C
(HD)PE (High density) polyethylene  ‐30 °F ‐34°C 180°F 82°C
PFA Perfluoroalkoxy Alkane  ‐40 °F ‐40°C 450°F 250°C
PP Polypropylene  30 °F ‐1°C 210°F 99°C
PVC Polyvinyl chloride  0 °F ‐18°C 150°F 66°C
PVDF Polyvinylidene fluoride  0 °F ‐18°C 275°F 135°C
Thermoplastic: (B31.3 recommended temperature limits)
Material Recommended Temperature limits
Resin Reinforcing Minimum Maximum
Epoxy Glass Fiber ‐20 °F ‐29°C 300 °F 149°C
Furan Carbon ‐20 °F ‐29°C 200 °F 93°C
Furan Glass Fiber ‐20 °F ‐29°C 200 °F 93°C
Phenolic Glass Fiber ‐20 °F ‐29°C 300 °F 149°C
Polyester Glass Fiber ‐20 °F ‐29°C 200 °F 93°C
Vinylester Glass Fiber ‐20 °F ‐29°C 200 °F 93°C
Engineering and Management Solutions
REBIS ACADEMY 65
NON METALLIC PIPES
Thermosetting:
They are composed of plastic materials and are identified by being permanently
set, cured or hardened in to shape when heated and cannot be re‐melted. They
are combination of resins and reinforcing. Example: GRP, GRVE, GRE Pipes
Commonly used resins: Polyester, Vinyl ester, Epoxy and Furan
Commonly used reinforcements: Fiber glass and Carbon fiber
Manufacturing:
Pipe is filament wound, contact molded or centrifugally cast.
Fittings are filament wound, molded and sometimes fabricated.
Few valve are available.
Limitation:
Thermosets can be installed above ground if they are safeguarded when the
service is flammable or toxic.
Engineering and Management Solutions
REBIS ACADEMY 66
PIPES TEST
Hydrostatic test:
A hydrostatic test is a way in which pressure vessels such as pipelines, plumbing,
gas cylinders, boilers and fuel tanks can be tested for strength and leaks. Using
this test helps maintain safety standards and durability of a vessel or pipe over
time. Water is used mainly because it is cheap and easily available. Red or
fluorescent dyes may be added to the water to make leaks easier to see.
• This margin of safety is typically 166.66%, 143% or 150% of the designed
pressure, depending on the regulations that apply.
• Buried high pressure oil and gas pipelines are tested for strength by
pressurizing them to at least 125% of their maximum operating pressure
(MAOP) at any point along their length.
• Test pressures need not exceed a value that would produce a stress higher
than yield stress at test temperature. ASME B31.3 section 345.4.2 (c)
• The vessel or pipe is pressurized for a specified period, usually 10 to 30
seconds
Engineering and Management Solutions
REBIS ACADEMY 67
PIPES TEST
Yield strength:
The yield strength or yield point of a material is defined in engineering and
materials science as the stress at which a material begins to deform plastically.
Prior to the yield point the material will deform elastically and will return to its
original shape when the applied stress is removed. Once the yield point is passed,
some fraction of the deformation will be permanent and non‐reversible.
testing involves taking a small sample with a fixed cross‐section area, and then
pulling it with a controlled, gradually increasing force until the sample changes
shape or breaks.
Material Yield strength (Mpa) Material Yield strength (Mpa)
ASTM A36 steel 250 Cast iron 4.5% C, ASTM A‐48 172
Steel, API 5L X65 448 Titanium alloy (6% Al, 4% V) 830
Piano wire 2200 Aluminum alloy 2014‐T6 400
HDPE 26‐33 Copper 99.9% Cu 70
Engineering and Management Solutions
REBIS ACADEMY 68
ALLOY STEEL
ASTM A234
Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and
High Temperature Service
Composition, %
Grade C Mn
P
max
S
max
Si Cr Mo Ni Cu Others
WPB
(1,2,3,4,5)
0.30
max
0.29-1.06 0.050 0.058
0.10
min
0.40
max
0.15
max
0.40
max
0.40
max
V 0.08
max
WPC
(2,3,4,5)
0.35
max
0.29-1.06 0.050 0.058
0.10
min
0.40
max
0.15
max
0.40
max
0.40
max
V 0.08
max
WP11 CL1 0.05-0.15 0.30-0.60 0.030 0.030 0.50-1.00 1.00-1.50 0.44-0.65
WP11 CL2 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65
WP11 CL3 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65
WP22 CL1 0.05-0.15 0.30-0.60 0.040 0.040
0.50
max
1.90-2.60 0.87-1.13
WP5 CL1
0.15
max
0.30-0.60 0.040 0.030
0.50
max
4.0-6.0 0.44-0.65
WP9 CL1
0.15
max
0.30-0.60 0.030 0.030
1.00
max
8.0-10.0 0.90-1.10
(1) Fittings made from bar or plate may have 0.35 max carbon.
(2) Fittings made from forgings may have 0.35 max Carbon and 0.35 max Silicon with no minimum.
(3) For each reduction of 0.01% below the specified Carbon maximum, an increase of 0.06% Manganese above the
specified maximum will be permitted, up to a maximum of 1.35%.
(4) The sum of Copper, Nickel, Niobium, and Molybdenum shall not exceed 1.00%.
(5) The sum of Niobium and Molybdenum shall not exceed 0.32%.
(6) Applies both to heat and product analyses.
Engineering and Management Solutions
REBIS ACADEMY 69
70
Engineering and Management Solutions
REBIS ACADEMY
SESSION SUMMARY
71
Engineering and Management Solutions
REBIS ACADEMY
QUESTIONS AND FEEDBACK
REBIS ACADEMY OF TECHNOLOGY
1 Dundas Street West, Suite 2500
Toronto, ON, Canada M5g 1z3
Tel: +1 416 365 5685
Website: http://rebisacademy.com/
Email: info@rebisacademy.com
Fallow us on:
https://www.linkedin.com/company/rebis-academy-of-technology
https://www.facebook.com/RebisAcademy/
https://twitter.com/RebisAcademy

More Related Content

What's hot

fundamentals of Piping engineering
fundamentals of Piping engineeringfundamentals of Piping engineering
fundamentals of Piping engineeringMobinVarghese8
 
Introduction to piping.......PLEASE give your valuable comments if you like t...
Introduction to piping.......PLEASE give your valuable comments if you like t...Introduction to piping.......PLEASE give your valuable comments if you like t...
Introduction to piping.......PLEASE give your valuable comments if you like t...Madhur Mahajan
 
B31.3 process piping course 02 metallic pipe &amp; fitting selection
B31.3 process piping course   02 metallic pipe &amp; fitting selectionB31.3 process piping course   02 metallic pipe &amp; fitting selection
B31.3 process piping course 02 metallic pipe &amp; fitting selectionAhmedhelal_Metito Helal
 
what is process piping
what is process pipingwhat is process piping
what is process pipingVarun Patel
 
piping design engineering by hamed motlagh
piping design engineering by hamed motlaghpiping design engineering by hamed motlagh
piping design engineering by hamed motlaghHamed Motlagh
 
Fundamental of Pipes for Oil & Gas Engineer
Fundamental of Pipes for Oil & Gas EngineerFundamental of Pipes for Oil & Gas Engineer
Fundamental of Pipes for Oil & Gas EngineerVarun Patel
 
Piping engineering guide
Piping engineering guidePiping engineering guide
Piping engineering guideram111eg
 
Simple Piping design
Simple Piping designSimple Piping design
Simple Piping designMusa Sabri
 
Codes and standards by madhur mahajan
Codes and standards by madhur mahajanCodes and standards by madhur mahajan
Codes and standards by madhur mahajanMadhur Mahajan
 
Piping fundamentals bfl
Piping fundamentals bflPiping fundamentals bfl
Piping fundamentals bflMN Raghu
 
Piping sample report
Piping sample reportPiping sample report
Piping sample reportram111eg
 

What's hot (20)

fundamentals of Piping engineering
fundamentals of Piping engineeringfundamentals of Piping engineering
fundamentals of Piping engineering
 
Piping interview
Piping interviewPiping interview
Piping interview
 
Introduction to piping design
Introduction to piping designIntroduction to piping design
Introduction to piping design
 
Ppt on pipe
Ppt on pipePpt on pipe
Ppt on pipe
 
Piping materials lhk
Piping materials lhkPiping materials lhk
Piping materials lhk
 
Introduction to piping.......PLEASE give your valuable comments if you like t...
Introduction to piping.......PLEASE give your valuable comments if you like t...Introduction to piping.......PLEASE give your valuable comments if you like t...
Introduction to piping.......PLEASE give your valuable comments if you like t...
 
B31.3 process piping course 02 metallic pipe &amp; fitting selection
B31.3 process piping course   02 metallic pipe &amp; fitting selectionB31.3 process piping course   02 metallic pipe &amp; fitting selection
B31.3 process piping course 02 metallic pipe &amp; fitting selection
 
what is process piping
what is process pipingwhat is process piping
what is process piping
 
piping design engineering by hamed motlagh
piping design engineering by hamed motlaghpiping design engineering by hamed motlagh
piping design engineering by hamed motlagh
 
Fundamental of Pipes for Oil & Gas Engineer
Fundamental of Pipes for Oil & Gas EngineerFundamental of Pipes for Oil & Gas Engineer
Fundamental of Pipes for Oil & Gas Engineer
 
Basic piping
Basic pipingBasic piping
Basic piping
 
Piping Material Specification
Piping Material Specification Piping Material Specification
Piping Material Specification
 
Piping engineering guide
Piping engineering guidePiping engineering guide
Piping engineering guide
 
Simple Piping design
Simple Piping designSimple Piping design
Simple Piping design
 
Piping basics knowledge
Piping basics knowledgePiping basics knowledge
Piping basics knowledge
 
Piping Design ppt.pdf
Piping Design ppt.pdfPiping Design ppt.pdf
Piping Design ppt.pdf
 
Codes and standards by madhur mahajan
Codes and standards by madhur mahajanCodes and standards by madhur mahajan
Codes and standards by madhur mahajan
 
Piping fundamentals bfl
Piping fundamentals bflPiping fundamentals bfl
Piping fundamentals bfl
 
Piping Fundamentals .pdf
Piping Fundamentals .pdfPiping Fundamentals .pdf
Piping Fundamentals .pdf
 
Piping sample report
Piping sample reportPiping sample report
Piping sample report
 

Viewers also liked

Piping training-course
Piping training-coursePiping training-course
Piping training-coursepdmsguy
 
HPLC - Peak integration for chromatography
HPLC - Peak integration for chromatographyHPLC - Peak integration for chromatography
HPLC - Peak integration for chromatographySathish Vemula
 
New forever clean 9 booklet
New forever clean 9 bookletNew forever clean 9 booklet
New forever clean 9 bookletKatalin Hidvegi
 
Casting and its types
Casting and its typesCasting and its types
Casting and its typesWaqas Ahmed
 
BCG Matrix of Engro foods
BCG Matrix of Engro foodsBCG Matrix of Engro foods
BCG Matrix of Engro foodsMutahir Bilal
 
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)Savita Marwal
 
People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)Eric Weaver
 
GMAT Math Flashcards
GMAT Math FlashcardsGMAT Math Flashcards
GMAT Math FlashcardsGMAT Prep Now
 
Fintech and Transformation of the Financial Services Industry
Fintech and Transformation of the Financial Services IndustryFintech and Transformation of the Financial Services Industry
Fintech and Transformation of the Financial Services IndustryRobin Teigland
 
Human Resource planning
Human Resource planningHuman Resource planning
Human Resource planningAnything Group
 
Cell block and liquid based cytology
Cell block and liquid based cytologyCell block and liquid based cytology
Cell block and liquid based cytologyDr Neha Mahajan
 
Pakistan Education Plan
Pakistan Education PlanPakistan Education Plan
Pakistan Education PlanMinhaaj Rehman
 
Autonomic nervous system Physiology
Autonomic nervous system PhysiologyAutonomic nervous system Physiology
Autonomic nervous system PhysiologyRaghu Veer
 
Assembly language programming(unit 4)
Assembly language programming(unit 4)Assembly language programming(unit 4)
Assembly language programming(unit 4)Ashim Saha
 
Analysing Smart City Development in india
Analysing Smart City Development in indiaAnalysing Smart City Development in india
Analysing Smart City Development in indiaOmkar Parishwad
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Emiland
 

Viewers also liked (19)

Piping training-course
Piping training-coursePiping training-course
Piping training-course
 
HPLC - Peak integration for chromatography
HPLC - Peak integration for chromatographyHPLC - Peak integration for chromatography
HPLC - Peak integration for chromatography
 
New forever clean 9 booklet
New forever clean 9 bookletNew forever clean 9 booklet
New forever clean 9 booklet
 
Casting and its types
Casting and its typesCasting and its types
Casting and its types
 
BCG Matrix of Engro foods
BCG Matrix of Engro foodsBCG Matrix of Engro foods
BCG Matrix of Engro foods
 
100 esl-games
100 esl-games100 esl-games
100 esl-games
 
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)
Payment and Settlement Systems(SWIFT,NEFT and Securities Cycle)
 
Cardiac cycle ppt (2)
Cardiac cycle ppt (2)Cardiac cycle ppt (2)
Cardiac cycle ppt (2)
 
People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)People are the Media (DDB Edmonton Edition)
People are the Media (DDB Edmonton Edition)
 
GMAT Math Flashcards
GMAT Math FlashcardsGMAT Math Flashcards
GMAT Math Flashcards
 
⼤企業で実現するイマドキの内製開発
⼤企業で実現するイマドキの内製開発⼤企業で実現するイマドキの内製開発
⼤企業で実現するイマドキの内製開発
 
Fintech and Transformation of the Financial Services Industry
Fintech and Transformation of the Financial Services IndustryFintech and Transformation of the Financial Services Industry
Fintech and Transformation of the Financial Services Industry
 
Human Resource planning
Human Resource planningHuman Resource planning
Human Resource planning
 
Cell block and liquid based cytology
Cell block and liquid based cytologyCell block and liquid based cytology
Cell block and liquid based cytology
 
Pakistan Education Plan
Pakistan Education PlanPakistan Education Plan
Pakistan Education Plan
 
Autonomic nervous system Physiology
Autonomic nervous system PhysiologyAutonomic nervous system Physiology
Autonomic nervous system Physiology
 
Assembly language programming(unit 4)
Assembly language programming(unit 4)Assembly language programming(unit 4)
Assembly language programming(unit 4)
 
Analysing Smart City Development in india
Analysing Smart City Development in indiaAnalysing Smart City Development in india
Analysing Smart City Development in india
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.
 

Similar to Piping components, materials, codes and standards part 1- pipe

2376 robor ductile_iron_brochure5
2376 robor ductile_iron_brochure52376 robor ductile_iron_brochure5
2376 robor ductile_iron_brochure5Joshua Ting
 
Tw general brochure
Tw general brochureTw general brochure
Tw general brochureGinny Hurst
 
Instrumentation Tubes fittings manufacturer and supplier in india
Instrumentation Tubes fittings manufacturer and supplier in indiaInstrumentation Tubes fittings manufacturer and supplier in india
Instrumentation Tubes fittings manufacturer and supplier in indiaM METAL TUBES INDIA PVT LTD
 
Concept steels re run
Concept steels re runConcept steels re run
Concept steels re runConceptSteels
 
Esab world pipelines
Esab world pipelinesEsab world pipelines
Esab world pipelinesJorg Eichhorn
 
TWM_General_Brochure
TWM_General_BrochureTWM_General_Brochure
TWM_General_BrochureMark Brewer
 
Copper Fittings Manufacturer India
Copper Fittings Manufacturer IndiaCopper Fittings Manufacturer India
Copper Fittings Manufacturer Indiamgpsaccessories
 
Stainless Steel 904 l bars in mumbai
Stainless Steel 904 l bars in mumbaiStainless Steel 904 l bars in mumbai
Stainless Steel 904 l bars in mumbaiMetal Trading
 
PVC Casing Pipes & Ribbed Strainers
 PVC Casing Pipes & Ribbed Strainers PVC Casing Pipes & Ribbed Strainers
PVC Casing Pipes & Ribbed Strainersutkarshindialimited
 
TEK.FS.MED-004-M1.ppt
TEK.FS.MED-004-M1.pptTEK.FS.MED-004-M1.ppt
TEK.FS.MED-004-M1.pptGopa Krishnan
 
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512Puneet Sharma
 

Similar to Piping components, materials, codes and standards part 1- pipe (20)

2376 robor ductile_iron_brochure5
2376 robor ductile_iron_brochure52376 robor ductile_iron_brochure5
2376 robor ductile_iron_brochure5
 
UKF_BROCHURE
UKF_BROCHUREUKF_BROCHURE
UKF_BROCHURE
 
Pipeline brochure (1)
Pipeline brochure (1)Pipeline brochure (1)
Pipeline brochure (1)
 
Tw general brochure
Tw general brochureTw general brochure
Tw general brochure
 
FESCOR International
FESCOR InternationalFESCOR International
FESCOR International
 
PIPES AND BARS By Vessco Overseas
PIPES AND BARS By Vessco OverseasPIPES AND BARS By Vessco Overseas
PIPES AND BARS By Vessco Overseas
 
Instrumentation Tubes fittings manufacturer and supplier in india
Instrumentation Tubes fittings manufacturer and supplier in indiaInstrumentation Tubes fittings manufacturer and supplier in india
Instrumentation Tubes fittings manufacturer and supplier in india
 
Stainless steel tubes manufacturers in india
Stainless steel tubes manufacturers in india Stainless steel tubes manufacturers in india
Stainless steel tubes manufacturers in india
 
Stainless steel fittings catalog.pdf
Stainless steel fittings catalog.pdfStainless steel fittings catalog.pdf
Stainless steel fittings catalog.pdf
 
Instrumention fittings supplier
Instrumention fittings supplier Instrumention fittings supplier
Instrumention fittings supplier
 
Instrumentation valves Fittings.pdf
Instrumentation valves Fittings.pdfInstrumentation valves Fittings.pdf
Instrumentation valves Fittings.pdf
 
AWS Profile EN IR
AWS Profile EN IRAWS Profile EN IR
AWS Profile EN IR
 
Concept steels re run
Concept steels re runConcept steels re run
Concept steels re run
 
Esab world pipelines
Esab world pipelinesEsab world pipelines
Esab world pipelines
 
TWM_General_Brochure
TWM_General_BrochureTWM_General_Brochure
TWM_General_Brochure
 
Copper Fittings Manufacturer India
Copper Fittings Manufacturer IndiaCopper Fittings Manufacturer India
Copper Fittings Manufacturer India
 
Stainless Steel 904 l bars in mumbai
Stainless Steel 904 l bars in mumbaiStainless Steel 904 l bars in mumbai
Stainless Steel 904 l bars in mumbai
 
PVC Casing Pipes & Ribbed Strainers
 PVC Casing Pipes & Ribbed Strainers PVC Casing Pipes & Ribbed Strainers
PVC Casing Pipes & Ribbed Strainers
 
TEK.FS.MED-004-M1.ppt
TEK.FS.MED-004-M1.pptTEK.FS.MED-004-M1.ppt
TEK.FS.MED-004-M1.ppt
 
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512
ZOLLERN COMPANY PROFILE IMAGE PRODUCT DIVISIONS Z512
 

Recently uploaded

complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

Piping components, materials, codes and standards part 1- pipe

  • 1. ` PIPING SYSTEM DESIGN I – PIPING COMPONENTS, MATERIALS, CODES AND STANDARDS - PART 1 - PIPE Engineering and Management Solutions REBIS ACADEMY Presented By Alireza Niakani
  • 2. REBIS ACADEMY OF TECHNOLOGY We are a top-level Canadian Engineering Training Center in Toronto. We offers more than 300 career-focused training courses form introductory to advanced in the key areas of engineering including Petroleum Engineering, Chemical Engineering, Piping Engineering, Instrumentation & Control Engineering, Mechanical Engineering, Electrical Engineering, Civil & Structural Engineering, Inspection & Maintenance Engineering, Safety Engineering and Project Management. Our training programs and courses are useful to university or college graduates, entry-level engineers, technologists or technicians, designers and drafters, experienced engineers and managers, who are willing to work in engineering consulting firms, construction and operation, technical support and sales companies in the different industrial sectors, including oil, gas and petrochemical companies, chemical and pharmaceutical plants, power, gas, water and waste water utilities, pulp and paper mills, food & beverage processors, mining, metals and minerals companies. We are constantly in touch with employers and strives to ensure that our training materials are consistent with what are required in the marketplace. Our training programs and courses either help universities’ graduates to be more marketable and competitive in the workforce or experienced engineers to update their professional skills to be as productive as possible in their work competitive environment. Our training programs and courses are delivered by instructors who have the knowledge and experience to understand your challenges, ensuring content is relevant, up to date and practice wherever possible and are highly respected professionals in their fields from all over the globe. We are dedicated to preparing you to succeed in the global marketplace and business world. We are sure, you will leave REBIS ACADEMY with the knowledge and skills that employers want. 1
  • 3. PIPE Engineering and Management Solutions REBIS ACADEMY 2
  • 4. MINIMUM REQUIREMENT FOR PIPE • Pipe types • Pipe manufacturing and fabrication • Pipe size • Pipe wall thickness, schedule and weight • Pipe material • Pipe End preparation (End furnished) • Pipe length • Pipe Insulation, Coating and lining • Pipe Standards Engineering and Management Solutions REBIS ACADEMY 3
  • 8. SEAMLESS PIPE MANUFACTURING  Seamless pipe is made when steel in a solid, round cylindrical shape, called a “billet” or a “tube round” is heated and then either pushed or pulled (while being rapidly rotated) over a mandrel with a piercing point positioned in the center of the billet. This activity produces a hollow tube or “shell”. Seamless pipe is made in sizes from 1/8” to 26”. Mandrel Mill Process is used to make smaller sizes of seamless pipe form 1/8” to 26”. Plug Mill Process is used to make larger sizes of seamless pipe from 6” to 26” diameter. Extrusion Process is used for tubes only. Seamless pipes are stronger and more reliable, however, expensive, in short supply and unavailable in long lengths. Engineering and Management Solutions REBIS ACADEMY 7
  • 11. FUSION WELD (FW) / CONTINUES WELD (CW) FW or CW pipes is used in sizes 1/8” to 4‐1/2”. The ribbon of steel is fed into a leveler and then into a gas furnace where it is heated to the required temperature for forming and fusing. The forming rolls at the end of the furnace shape the heated skelp into an oval. The edges of the skelp are then firmly pressed together by rolls to obtain a forged weld. The heat of the skelp, combined with the pressure exerted by the rolls, form the weld. Synchronized with the speed of the pipe as it emerges from the final rolls is a rotary saw which cuts the pipe to its desired length. The pipe is then cooled, descaled, straightened, inspected. tested hydrostatically, coated as required and end finished. No metal is added into the operation. Continuous weld pipe is commonly used for the conveyance of water. air. gas, steam; for sprinkling systems, water wells. fencing. and a multitude of structural applications. These pipes are generally the lowest cost steel piping material available. Engineering and Management Solutions REBIS ACADEMY 10
  • 12. ELECTRIC RESISTANCE WELD (ERW) ERW pipes is used in sizes 2” to 24”. The coils of strip steel or skelp is pulled through a series of rollers that gradually form it into a cylindrical tube. As the edges of the now cylindrical plate come together, an electric current is applied at the proper points to heat the edges so they can be welded together. As in CW pipe, no extraneous metal is added; in fact, due to the extreme pressure of the rolls, steel is extruded on both the inside and outside of the pipe at the point of the weld. This is called flash and is removed by stationary cutters while still white hot. This process leads to coalescence or merging. It produces uniform wall thicknesses and outside dimensions. The High Frequency Induction Technology (HFI) welding process is used for manufacturing ERW pipes as well. HFI is generally considered to be technically superior to “ordinary” ERW when manufacturing pipes for critical applications. Engineering and Management Solutions REBIS ACADEMY 11
  • 14. SUBMERGED ARC WELD (SAW) SAW pipes is used in sizes 10” to up. Submerged Arc Welded (SAW) pipe derives its name from the process wherein the welding arc is submerged in flux while the welding takes place. The flux protects the steel in the weld area from any impurities in the air when heated to welding temperatures. The two types of pipes produced through these technologies are Longitudinal Submerged Arc Welded (LSAW) and Spiral Submerged Arc Welded (SSAW) pipes. Due to their high cost, LSAW pipes are seldom used in lower value non‐ energy applications such as water pipelines. SSAW pipes are produced by spiral (helicoidal) welding of steel coil and have a cost advantage over LSAW pipes as the process uses coils rather than steel plates. Both LSAW pipes and SSAW pipes compete against ERW pipes and seamless pipes in the diameter ranges of 16”‐24”. Engineering and Management Solutions REBIS ACADEMY 13
  • 16. PIPE MANUFACTURING COMPARATIVE NOTES Pipe size:  Seamless < Spiral Welded Pipe < Longitudinal welded pipe Wall Thickness: Seamless < Spiral Welded Pipe < Longitudinal welded pipe Length: Seamless < Longitudinal welded pipe< Spiral Welded Pipe Price: Spiral Welded Pipe < Longitudinal welded pipe<Seamless Joint efficiency E: joint efficiency E used in pressure design equation, where for Seamless E = 1.0, and for  Longitudinal Seam Welded E = 1.0 in case of full radiography and may be = 0.85 for other  cases, and for spiral E = 0.65 or 0.60 Method: Seamless used hot process, Spiral used cold rolling with extrusion process while  longitudinal used cold process with bend and rolled. Engineering and Management Solutions REBIS ACADEMY 15
  • 17. PIPE SIZE IPS: Iron Pipe size = 1/8”, 3/8”, 1/2”, 3/4”, 1”, 1 1/2”, 2”, …. , 80” NPS: Nominal Pipe size = 1/8, 3/8, 1/2, 3/4, 1, 1 1/2, 2, …. , 80 DN: Diametre Nominel = 6, 8, 10, 15, 20, 25, 32, 40, 50, …. , 2000 OD Outside Diameter ID Inside Diameter (Bore) ODID Wall thickness Engineering and Management Solutions REBIS ACADEMY 16
  • 18. PIPE SIZE NPS (in) 1/8 1/4 3/8 1/2 3/4 1 1‐1/4 1‐1/2 2 2‐1/2 3 3‐1/2 4 5 6 8 10 12 OD (in) 0.405 0.540 0.675 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.00 4.500 5.563 6.625 8.625 10.750 10.750 NPS (in) 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 OD (in) 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000 46.000 48.000 DN (mm) 6 8 10 15 20 25 32 40 50 65 80 90 100 125 150 200 250 300 OD (mm) 10.290 13.720 17.150 21.340 26.670 33.400 42.160 48.260 60.330 73.020 88.900 101.60 114.30 141.30 168.27 219.08 273.05 323.85 DN (mm) 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 OD (mm) 355.60 406.40 457.20 508.00 559.00 609.60 660.04 711.20 762.00 812.80 863.60 914.40 965.20 1016.0 1066.8 117.6 1168.4 1219.2 Nominal Pipe Size (NPS) is a American (ASA) set of standard sizes for pipes used for high or low pressures and temperatures. The European designation equivalent to NPS is DN (diamètre nominal/nominal diameter/Durchmesser nach Norm), in which sizes are measured in millimetres. • For NPS ⅛ to 12 inches, the NPS and OD values are different. • For NPS 14 inches and up, the NPS and OD values are equal. Engineering and Management Solutions REBIS ACADEMY 17
  • 19. PIPE SCHEDULE AND WALL THICKNESS NPS (in) OD (in) Pipe Schedule (SCH) 5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS 8 8.625 0.109 0.148 0.250 0.277 0.322 0.322 0.406 0.500 0.500 0.594 0.719 0.812 0.906 0.875 12 12.750 0.165 0.180 0.250 0.330 0.406 0.375 0.562 0.688 0.500 0.844 1.000 1.125 1.312 1.000 14 14.000 0.156 0.250 0.312 0.375 0.438 0.375 0.594 0.750 0.500 0.938 1.094 1.250 1.406 24 24.000 0.218 0.250 0.375 0.562 0.687 0.375 0.968 1.218 0.500 1.531 1.812 2.062 2.343 Imperial & Metric • The ASME/ANSI B 36.10 is for Steel Pipe, ASME/ANSI B36.19 for Stainless Steel Pipe and API 5L for line pipe. • The formula to approximate calculate of Schedule Number = (1,000)(P/S) Where, P = the internal working pressure, psig and S = the allowable stress (psi) For example, the schedule number of ordinary steel pipe having an allowable stress of 10,000 psi for use at a working pressure of 350 psig would be: Schedule Number = (1,000)(350/10,000) = 35 (approx. 40) NPS (in) OD (mm) Pipe Schedule (SCH) 5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS 8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225 12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400 14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712 24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512 Engineering and Management Solutions REBIS ACADEMY 18
  • 20. PIPE SCHEDULE VS. WEIGHT Metric NPS (in) OD (mm) Pipe Schedule (SCH) 5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS 8 219.080 15.09 20.37 33.31 36.81 42.55 42.55 64.4 64.4 107.92 10 273.100 23.08 28.34 41.77 51.03 60.31 60.31 83.19 81.55 155.15 12 323.850 31.89 36.73 49.73 65.20 79.73 73.88 132.08 97.46 186.97 14 355.600 35.06 54.69 67.90 81.33 94.55 93.27 158.10 107.39 The formula to approximate calculate of the steel pipe nominal weight per unit length is:  Approx. weight per unit length (kg/m) = [O.D.(mm) – W.T(mm)] x W.T.(mm) x 0.02466  Approx. weight per unit length (Ib/ft) = [O.D.(inch) – W.T(inch)] x W.T.(inch) x 10.69 for  C.S. or 10.68 for S.S Where, O.D. is Outside Diameter and W.T. is Wall Thickness 1 inch=25.4 mm  and        1Ib/ft=1.4895 kg/m NPS (in) OD (mm) Pipe Schedule (SCH) 5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS 8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225 12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400 14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712 24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512 Engineering and Management Solutions REBIS ACADEMY 19
  • 22. Engineering and Management Solutions REBIS ACADEMY PIPE WALL THICKNESS CALCULATION 21
  • 23. Engineering and Management Solutions REBIS ACADEMY PIPE WALL THICKNESS CALCULATION 22
  • 24. PIPE MATERIAL The most comprehensive reference for material is ASTM. American Society for Testing and Materials (ASTM), is an international standards organization that develops and publishes technical standards for a wide range of materials, products, systems, and services. The ASTM Standards covers 15 sections: 1. Iron and Steel Products 2. Nonferrous Metal Products 3. Metals Test Methods and Analytical Procedures 4. Construction 5. Petroleum Products, Lubricants, and Fossil Fuels 6. Paints, Related Coatings, and Aromatics 7. Textiles 8. Plastics 9. Rubber 10. Electrical Insulation and Electronics 11. Water and Environmental Technology 12. Nuclear, Solar, and Geothermal Energy 13. Medical Devices and Services 14. General Methods and Instrumentation 15. General Products, Chemical Specialties 16. Index to all sections and volumes Engineering and Management Solutions REBIS ACADEMY 23
  • 25. FLUID SERVICE CATEGORY (B31.3 DEFINITION) B31.3 recognizes the following fluid service categories and a special design consideration based on pressure. With the fluid service category known, then the designer can make proper material and component selection, as well as employ the code required fabrication and inspection requirements. These fluid categories and pressure concern are: 1. Normal Fluid Service (ASME B31.3 , Chapter 7) 2. Category D Fluid Service 3. Category M Fluid Service (ASME B31.3 , Chapter 8) 4. High Pressure Piping (ASME B31.3 , Chapter 9) 5. Severe Cyclic Conditions Engineering and Management Solutions REBIS ACADEMY 24
  • 26. FLUID SERVICE CATEGORY 1. Normal Fluid Service (ASME B31.3 , Chapter 7) A fluid service pertaining to most piping covered by this code, not subject to the rules of Category D, M or High Pressure Fluid Service. Often characterized as “Process” Engineering and Management Solutions REBIS ACADEMY 25
  • 27. FLUID SERVICE CATEGORY 2. Category D Fluid Service The fluid handled is: • nonflammable • nontoxic • not damaging to human tissue • The design gage pressure does not exceed 150 psig • The design temperature is greater than ‐20°F (‐29°C) and dose not exceed 366°F (‐186°C). 366°F is the saturation temperature of steam at 150 psig. • Often characterized as “Utility” Example: Steam condensate with max temp. 212°F (100°C) and max press. 90 psig (6 bar) Engineering and Management Solutions REBIS ACADEMY 26
  • 28. FLUID SERVICE CATEGORY 3. Category M Fluid Service (ASME B31.3 , Chapter VIII) A fluid service in which the potential for personnel exposure is judged to be significant and in which a single exposure to a very small quantity of a toxic fluid, caused by leakage, can produce serious irreversible harm to persons upon breathing or on bodily contact, even when prompt restorative measures are taken. Often characterized as “lethal” Example: Phosgene (Nerve Gas) Hydrofluoric Acid Hydrogen Sulfide Gas Engineering and Management Solutions REBIS ACADEMY 27
  • 29. FLUID SERVICE CATEGORY 4. High Pressure Piping (ASME B31.3 , Chapter IX) A service for which the owner specifies the use of Chapter IX of ASME B31.3 for piping design and construction and etc. considered to be in excess of class 2500 (PN 420). Often characterized as “High Pressure” Engineering and Management Solutions REBIS ACADEMY 28
  • 30. FLUID SERVICE CONTAINMENT SYSTEM B31.3 Fluid Service Containment System Category D [Utility] Lowest cost Usually not fire resistant  Usually not blow‐out resistant Normal [Process] Moderate cost May be fire resistant or not May be not blow‐out resistant or not Category M [Lathal] High Pressure High cost Usually fire resistant  Usually blow‐out resistant Engineering and Management Solutions REBIS ACADEMY 29
  • 31. ASTM DESIGNATION SYSTEM Example 1 ‐ ASTM A 582/A 582M‐95b (2000), Grade 303Se ‐Free‐Machining Stainless Steel Bars: ‘A’ describes a ferrous metal, but does not sub classify it as cast iron, carbon steel, alloy steel, tool steel, or stainless steel; 582 is a sequential number without any relationship to the metal’s properties; M indicates that the standard A582M is written in rationalized SI units (the M comes from the word Metric), hence together A582/A582M includes both inch‐pound and SI units; 95 indicates the year of adoption or last revision and a letter b following the year indicates the third revision of the standard in1995; (2000), a number in parentheses, indicates the year of last re‐approval; Grade 300Se indicates the grade of the steel, and in this case, it has a Se (selenium) addition. Note: Grade is used to describe chemical composition; Type is used to define the deoxidation practice; and Class is used to indicate other characteristics such as strength level or surface finish. Engineering and Management Solutions REBIS ACADEMY 30
  • 32. ASTM DESIGNATION SYSTEM Example 2 ‐ ASTM A 106‐02a Grade A, Grade B, Grade C ‐ Seamless Carbon Steel Pipe for  High‐Temperature Service:  Typically an increase in alphabet (such as letters A, B, C) results in higher tensile or yield  strength steels, and if it’s an unalloyed carbon steel, an increase in carbon content;  In this case: Grade A:0.25%C (max), 48 ksi tensile strength (min); Grade B: 0.30%C (max),  60 ksi tensile strength (min); Grade C 0.35%C (max), 70 ksi tensile strength (min).  Example 3 ‐ ASTM A 276‐03, Type 304, 316, 410 – Stainless and Heat Resisting Steel Bars and Shapes: Types 304, 316, 410 and others are based on the SAE designation system for stainless steels. Engineering and Management Solutions REBIS ACADEMY 31
  • 33. SAE DESIGNATION SYSTEM Carbon steels 10XX Plain carbon, Mn 1.00% max 11XX Resulfurized free machining 12XX Resulfurized/rephosphorized free machining 15XX Plain carbon, Mn 1.00-1.65% Manganese steels 13XX Mn 1.75% Nickel steels 23XX Ni 3.50% 25XX Ni 5.00% Nickel-chromium steels 31XX Ni 1.25%, Cr 0.65-0.80% 32XX Ni 1.75%, Cr 1.07% 33XX Ni 3.50%, Cr 1.50-1.57% 34XX Ni 3.00%, Cr 0.77% Molybdenum steels 40XX Mo 0.20-0.25% 44XX Mo 0.40-0.52% Chromium-molybdenum steels 41XX Cr 0.50-0.95%, Mo 0.12-0.30% Nickel-chromium-molybdenum steels 43XX Ni 1.82%, Cr 0.50-0.80%, Mo 0.25% 47XX Ni 1.05%, Cr 0.45%, Mo 0.20-0.35% Nickel-molybdenum steels 46XX Ni 0.85-1.82%, Mo 0.20-0.25% 48XX Ni 3.50%, Mo 0.25% Chromium steels 50XX Cr 0.27-0.65% 51XX Cr 0.80-1.05% 50XXX Cr 0.50%, C 1.00% min 51XXX Cr 1.02%, C 1.00% min 52XXX Cr 1.45%, C 1.00% min Chromium-vanadium steels 61XX Cr 0.60-0.95%, V 0.10-0.015% Tungsten-chromium steels 72XX W 1.75%, Cr 0.75% Nickel-chromium-molybdenum steels 81XX Ni 0.30%, Cr 0.40%, Mo 0.12% 86XX Ni 0.55%, Cr 0.50%, Mo 0.20% 87XX Ni 0.55%, Cr 0.50%, Mo 0.25% 88XX Ni 0.55%, Cr 0.50%, Mo 0.35% Silicon-manganese steels 92XX Si 1.40-2.00%, Mn 0.65-0.85%, Cr 0-0.65% Nickel-chromium-molybdenum steels 93XX Ni 3.25%, Cr 1.20%, Mo 0.12% 94XX Ni 0.45%, Cr 0.40%, Mo 0.12% 97XX Ni 0.55%, Cr 0.20%, Mo 0.20% 98XX Ni 1.00%, Cr 0.80%, Mo 0.25% 1 ‐ Carbon Steel, 2 ‐ Nickel steels; 3 ‐ Nickel‐chromium steels; 4 ‐ Molybdenum steels; 5 ‐ Chromium steels; 6 ‐ Chromium‐vanadium steels; 7 ‐ Tungsten‐chromium steels; 9 ‐ Silicon‐manganese steels.  Example: SAE 5130 indicates a chromium  steel alloy, containing 1% of  chromium and 0.30% of carbon.  Engineering and Management Solutions REBIS ACADEMY 32
  • 34. ASTM DESIGNATION SYSTEM Example 4: Another use of ASTM grade designators is found in pipe, tube, and forging products, where the first letter P refers to pipe, T refers to tube, TP may refer to tube or pipe, and F refers to forging. • ASTM A 335/A335‐03, Grade P22; Seamless Ferritic Alloy‐Steel Pipe for High Temperature Service; • ASTM A 213/A213M‐03a, Grade T22; Seamless Ferritic and Austenitic Alloy Steel Boiler, Superheater and Heat‐Exchanger Tubes; • ASTM A 312/A312M‐03, Grade TP304; Seamless and Welded Austenitic Stainless Steel Pipe; • ASTM A 336/A336M‐03a, Class F22‐Steel Forgings, Alloy, for Pressure and High‐ Temperature Parts. Engineering and Management Solutions REBIS ACADEMY 33
  • 35. EFFECTS OF ALLOYING ELEMENTS IN STEEL Steel is basically iron alloyed to carbon with certain additional elements to give the required properties to the finished melt. Listed below is a summary of the effects various alloying elements in steel. ‐ Carbon ‐ Tantalum  ‐ Manganese ‐ Selenium ‐ Chromium ‐ Niobium ‐ Nickel ‐ Nitrogen ‐ Molybdenum ‐ Silicon ‐ Titanium ‐ Cobalt ‐ Phosphorus ‐ Copper ‐ Sulfur Engineering and Management Solutions REBIS ACADEMY 34
  • 36. EFFECTS OF ALLOYING ELEMENTS IN STEEL • Carbon Increases the hardness and strength by heat treatment • Manganese Improves hot working properties and increases strength, toughness and hardenability • Chromium Increases resistance to oxidation and also improve hardenability and strength • Nickel Improves resistance to oxidation, corrosion, toughness and temperature strengths • Molybdenum Improves resistance to pitting corrosion especially by chlorides and sulphur chemicals • Titanium Minimises the occurrence of inter‐granular corrosion by carbide stabilisation • Phosphorus Improves machinability and also strength and corrosion resistance • Sulphur Improves machinability Engineering and Management Solutions REBIS ACADEMY 35
  • 37. EFFECTS OF ALLOYING ELEMENTS IN STEEL • Tantalum Stabilises carbon and also strengthens steels and alloys for high temperature service • Selenium Improves machinability • Niobium (Columbium) Chemically similar to Tantalum and has similar effects • Nitrogen Improves yield strength and also increases the austenitic stability of stainless steels  • Silicon Improve hardness  and silicon is used as a deoxidising (killing) agent in the melting of steel • Cobalt Cobalt becomes highly radioactive when exposed to the intense radiation of nuclear  reactors, and as a result, any stainless steel that is in nuclear service will have a cobalt  restriction, usually approximately 0.2% maximum.  • Copper Produces precipitation hardening properties Engineering and Management Solutions REBIS ACADEMY 36
  • 38. HEAT TREATMENT The purpose of heat treating carbon steel is to change the mechanical properties of steel,  usually ductility, hardness, yield strength, or impact resistance. The following is a list of the  types of heat treatments possible: Spheroidizing: The purpose is to soften higher carbon steels and allow more formability. Full annealing: Fully annealed steel is soft and ductile, with no internal stresses, which is often necessary for cost‐effective forming. Normalizing: Normalized steel has a fine pearlitic structure, and a more‐uniform structure. it has a higher strength than annealed steel and a relatively high strength and ductility. Quenching: This quenched steel is extremely hard but brittle, usually too brittle for practical purposes. Martempering (Marquenching)and Austempering: In industry, this is a process used to control the ductility and hardness of a material. With longer marquenching, the ductility increases with a minimal loss in strength. Engineering and Management Solutions REBIS ACADEMY 37
  • 39. PIPE MATERIAL Metallic Non‐Metallic Ferrous Non‐FerrousCast Iron Fe+2‐4% C+1‐3%Si Fe+1.95% C Ni, Cu, Ti, Cr, Mo, Al Inconel Hastelloy Monel Carbon Steel Alloy Steel Stainless Steel Fe+C Fe+C+Cr< 10% Fe+C+Cr> 10.5% Thermosetting Thermoplastic Concrete Vitrified Clay Glass Engineering and Management Solutions REBIS ACADEMY 38
  • 40. CAST IRON PIPE It is usually made from pig iron. Cast iron tends to be brittle, except for malleable cast irons. With its relatively low melting point, good fluidity, castability, excellent machinability and resistance to deformation. Cast irons are used in pipes, machines and automotive industry parts, such as cylinder heads, cylinder blocks and gearbox cases. It is resistant to destruction and weakening by oxidation (rust). Hardness Tensile strength [ksi] Nominal composition [% by weight] Name 26050C 3.4, Si 1.8, Mn 0.5Grey cast iron (ASTM A48) 45025C 3.4, Si 0.7, Mn 0.6White cast iron 13052C 2.5, Si 1.0, Mn 0.55Malleable iron (ASTM A47) 7070C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06Ductile or nodular iron (ASTM A339) 55055C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0Ni‐hard type 2 14027C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5Ni‐resist type 2 Engineering and Management Solutions REBIS ACADEMY 39
  • 41. CARBON STEEL PIPE Carbon steel is steel in which the main  alloying constituent is carbon in the range  of 0.12–2.0%. As the carbon percentage content rises, steel has the ability to  become harder and stronger through heat treating, however it becomes  less ductile with the lower melting point. It also reduces weldability. Example: ASTM A53, A105 , A106 Medium carbon steel:  0.30–0.59% carbon content. Balances ductility and strength and has good wear  resistance; used for large parts, forging and automotive components. High‐carbon steel:  0.6–0.99% carbon content. Very strong, used for springs and high‐strength wires. Ultra‐high‐carbon steel:  1.0–2.0% carbon content. Steels that can be tempered to great hardness. Used  for special purposes like knives, axles or punches.  Engineering and Management Solutions REBIS ACADEMY 40
  • 42. CARBON STEEL PIPE Composition, max, % Element C Mn P S Cu (1) Ni (1) Cr (1) Mo (1) V (1) Type S (Seamless Pipe) Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08 Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08 Type E (Electric-Resistance-Welded) Grade A 0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08 Grade B 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08 Type F (Furnace-Welded Pipe) Grade A 0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08 (1) The total composition for these five elements shall not exceed 1.00%. ASTM A53 Specification for seamless and welded black and hot-dipped galvanized steel pipe ASTM A105: Specification for Carbon Steel Forgings for Piping Applications ASTM A106: Specification for Seamless Carbon Steel Pipe for High‐Temperature Service Engineering and Management Solutions REBIS ACADEMY 41
  • 43. ALLOY STEEL PIPE Composition, max, % Element C Mn P S SI Cr Mo others Grade P2 0.10-0.20 0.30-0.61 0.025 0.025 0.10-0.30 0.50-0.81 0.44-0.65 …. Grade P5 0.15 max 0.30-0.60 0.025 0.025 0.5 max 4.00-6.00 0.45-0.65 …. Grade P9 0.15 max 0.30-0.60 0.025 0.025 0.25-1.00 8.00-10.00 0.90-1.10 …. Grade P911 0.09-0.13 0.30-0.60 0.020 0.010 0.10-0.50 8.50-9.50 0.90-1.10 V 0.18-0.25 Ni 0.40 max Al 0.20 max Ti 0.01 max Zr 0.01 max ASTM A335 Specification for seamless ferritic alloy-steel pipe for high-temperature service All grades: P1, P2, P5, P5B, P5C, P9, P11,P12,P15,P21,P22,P23, P24,P36,P91,P92, P122, P911 Engineering and Management Solutions REBIS ACADEMY 42
  • 44. STAINLESS STEEL Stainless steel is a name given to a group of steel alloys with many differences in properties and behaviour having one property in common ‐ resistance to corrosion. When an Alloy of Steel contains more than approximately 10.5% Chromium it can be classed as a stainless steel. The large group of stainless steels can be divided into three major groups, namely: • Austenitic Chromium normally in the range 17‐25% and nickel in a range 8‐20% • Ferritic Minimum of 17% chrome and carbon in the range of 0.08% ‐ 2.00% • Martensitic Minimum of 12% chrome and usually a maximum of 14% with carbon in the range of 0.08% ‐ 2.00%. • Duplex (Supper Alloy) (Austenitic + Ferritic) Engineering and Management Solutions REBIS ACADEMY 43
  • 45. STAINLESS STEEL PIPE • Austenitic • A312 ‐ A312/A312M‐00 ‐ Specification for Seamless and Welded Austenitic Stainless Steel Pipes • A813 ‐ A813/A813M‐95e2 ‐ Specification for Single‐ or Double‐Welded Austenitic Stainless Steel Pipe • A814 ‐ A814/A814M‐96 (1998) ‐ Specification for Cold‐Worked Welded Austenitic Stainless Steel Pipe Others: SAE: Type 201, 202,,205, 254, 301, 302, 302B, 303, 303Se, 304, 304L, 304Cu, 304N, 304, 308, 309, 309S, 310, 310S, 314, 316, 316L, 316F, 316N, 317, 317L, 321, 329, 330, 347, 348, 384 • Ferritic • A790 ‐ A790/A790M‐99 ‐ Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe • A872 ‐ A872‐91 (1997) ‐ Specification for Centrifugally Cast Ferritic/Austenitic Stainless Steel Pipe for Corrosive Environments Others: SAE: 405, 409, 429, 430, 430F, 430FSe, 434, 436, 442, 446 • Martensitic • ASTM A1053 / A1053M ‐ 12 Standard Specification for Welded Ferritic‐Martensitic Stainless Steel Pipe Others: SAE: 403, 410, 414, 416, 416Se, 420, 420F, 422,431,440A, 440B, 440C • Duplex (Supper Alloy) Engineering and Management Solutions REBIS ACADEMY 44
  • 46. PIPE MATERIAL VS. OTHER PIPING COMPONENTS ASTM Grades Material Pipes Fittings Flanges Valves Bolts & Nuts Carbon Steel A106 Gr A A234 Gr WPA A105 A216 Gr WCB A193 Gr B7 A194 Gr 2H A106 Gr B A234 Gr WPB A105 A216 Gr WCB A106 Gr C A234 Gr WPC A105 A216 Gr WCB Carbon Alloy Steel High‐Temp A335 Gr P1 A234 Gr WP1 A182 Gr F1 A217 Gr WC1 A193 Gr B7 A194 Gr 2H A335 Gr P11 A234 Gr WP11 A182 Gr F11 A217 Gr WC6 A335 Gr P12 A234 Gr WP12 A182 Gr F12 A217 Gr WC6 A335 Gr P22 A234 Gr WP22 A182 Gr F22 A217 Gr WC9 A335 Gr P5 A234 Gr WP5 A182 Gr F5 A217 Gr C5 A335 Gr P9 A234 Gr WP9 A182 Gr F9 A217 Gr C12 Carbon Alloy Steel Low‐Temp A333 GR 6 A420 Gr WPL6 A350 Gr LF2 A352 Gr LCB A320 Gr L7 A194 Gr 7A333 Gr 3 A420 Gr WPL3 A350 Gr LF3 A352 Gr LC3 Austenitic Stainless Steel A312 Gr TP304 A403 Gr WP304 A182 Gr F304 A182 Gr F304 A193 Gr B8 A194 Gr 8  A312 Gr TP316 A403 Gr WP316 A182 Gr F316 A182 Gr F316 A312 Gr TP321 A403 Gr WP321 A182 Gr F321 A182 Gr F321 A312 Gr TP347 A403 Gr WP347 A182 Gr F347 A182 Gr F347 Engineering and Management Solutions REBIS ACADEMY 45
  • 47. Pipes A106 = This specification covers carbon steel pipe for high‐temperature service. A335 = This specification covers seamless ferritic alloy‐steel pipe for high‐temperature service. A333 = This specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures. A312 = Standard specification for seamless, straight‐seam welded, and cold worked welded austenitic stainless steel pipe intended for high‐ temperature and general corrosive service. Fittings A234 = This specification covers wrought carbon steel and alloy steel fittings of seamless and welded construction. A420 = Standard specification for piping fittings of wrought carbon steel and alloy steel for low‐temperature service. A403 = Standard specification for wrought austenitic stainless steel piping fittings. Flanges A105 = This specification covers standards for forged carbon steel piping components, that is, flanges, fittings, Valves, and similar parts, for use in  pressure systems at ambient and higher‐temperature service conditions. A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature  service. A350 = This specification covers several grades of carbon and low alloy steel forged or ring‐rolled flanges, forged fittings and Valves for low‐ temperature service. Valves A216 = This specification covers carbon steel castings for Valves, flanges, fittings, or other pressure‐containing parts for high‐temperature service and  of quality suitable for assembly with other castings or wrought‐steel parts by fusion welding. A217 = This specification covers steel castings, martensitic stainless steel and alloys steel castings for Valves, flanges, fittings, and other pressure‐ containing parts intended primarily for high‐temperature and corrosive service. A352 = This specification covers steel castings for Valves, flanges, fittings, and other pressure‐containing parts intended primarily for low‐ temperature service. A182 = This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for high‐temperature  service. Bolds & Nuts A193 = This specification covers alloy and stainless steel bolting material for pressure vessels, Valves, flanges, and fittings for high temperature or  high pressure service, or other special purpose applications. A320 = Standard Specification for Alloy‐Steel and Stainless Steel Bolting Materials for Low‐Temperature Service. A194 = Standard specification for nuts in many different material types. Engineering and Management Solutions REBIS ACADEMY PIPE MATERIAL VS. OTHER PIPING COMPONENTS 46
  • 48. PIPE ENDS The three standard types of pipe ends used in the piping industries are; • Plain Ends (PE) Joint Type: Socket Weld • Threaded Ends (TE) Joint Type: Thread or Screw • Beveled Ends (BE) Joint Type: Butt Weld The end type for piping components are based on the type of joint used in that particular piping system. The are listed below; ‐ Threaded joint ‐ Grooved Joints ‐ Flange Joints ‐ Caulked Joints ‐ Butt Joints ‐ Bonded Joints ‐ Socket Joints Engineering and Management Solutions REBIS ACADEMY 47
  • 49. PIPE ENDS ABBREVIATIONS • Bevel End (BE)  • Bevel Both Ends (BBE)  • Bevel Large End (BLE)  • Bevel One End (BOE)  • Bevel Small End (BSE)  • Bevel for Welding (BFW)  • Butt‐weld End (BE)  • End of Pipe (EOP)  • Flange One End (FOE)  • Plain End (PE)  • Plain Both Ends (PBE)  • Plain One End (POE)  • Thread End (TE)  • Thread Both Ends (TBE)  • Thread Large End (TLE)  • Thread One End (TOE)  • Thread Small End (TSE)  • Threads Only (TO)  • Threads per Inch (TPI)  Common abbreviations for the types of pipe ends are as follows: Engineering and Management Solutions REBIS ACADEMY 48
  • 50. PIPE ENDS • Plain Ends (PE) A pain end pipe is a pipe that has been cut at 90° perpendicular to  the pipe run. The reason pipe would be specified as plain end rather  than beveled end is when the pipe will be used in a Socket Weld  connection or for use with a Slip‐on Flange.  Engineering and Management Solutions REBIS ACADEMY 49
  • 51. PIPE ENDS • Bevel Ends (BE) A bevel is a surface that is not at a right angle (perpendicular) to another surface. The standard angle on a pipe bevel is 37.5° but other non standard angles can be produced. Beveling of pipe or tubing is to prepare the ends for welding. Engineering and Management Solutions REBIS ACADEMY 50
  • 52. PIPE ENDS • Threaded Ends (TE) Typically used on pipe 3" and smaller, threaded connections are referred to as screwed pipe. In the United States, the standard pipe thread is National Pipe Thread (NPT). Threaded fittings have threads that are either male or female. As screwed pipe and fittings are assembled, two pieces are pulled together. The distance that is pulled together is called the thread engagement. Engineering and Management Solutions REBIS ACADEMY 51
  • 53. PIPE ENDS • Threaded Ends (TE) Standards: NPT ‐ National Pipe Thread Taper, ANSI/ASME B1.20.1 NPTF ‐ Dryseal American National Standard Taper Pipe Thread (ANSI B1.20.3) Note: For NPT threads a sealant compound or Teflon tape must be used for a leak‐free seal. For NPTF no sealant is needed for a sealing. Characteristics: • tapered thread 1o 47‘ (1.7899o) • truncation of roots and crests are flat • 60o thread angle • pitch is measured in threads per inch Engineering and Management Solutions REBIS ACADEMY 52
  • 54. PIPE ENDS NPT ‐ American Standard Pipe Thread Taper 1) Pipe Size (inches) Threads per Inch TPI ‐ pitch Approximate  Length of Thread  (inches) Approximate  Number of Threads  to be Cut Approximate Total  thread Makeup,  Hand and Wrench (inches) Nominal Outside  Pipe Diameter OD (inches) Tap Drill (inches) 1/16" 27 0.313 1/8" 27 3/8 10 1/4 0.405 R 1/4" 18 5/8 11 3/8 0.540 7/16 3/8" 18 5/8 11 3/8 0.675 37/64 1/2" 14 3/4 10 7/16 0.840 23/32 3/4" 14 3/4 10 1/2 1.050 59/64 1" 11‐1/2 7/8 10 9/16 1.315 1‐5/32 1‐1/4" 11‐1/2 1 11 9/16 1.660 1‐1/2 1‐1/2" 11‐1/2 1 11 9/16 1.900 1‐47/64 2" 11‐1/2 1 11 5/8 2.375 2‐7/32 2‐1/2" 8 1 1/2 12 7/8 2.875 2‐5/8 3" 8 1 1/2 12 1 3.500 3‐1/4 3‐1/2" 8 1 5/8 13 1 1/16 4.000 3‐3/4 4" 8 1 5/8 13 1 1/16 4.500 4‐1/4 4 1/2" 8 5.000 4‐3/4 5" 8 1 3/4 14 1 3/16 5.563 5‐9/32 6" 8 1 3/4 14 1 3/16 6.625 6‐11/32 8" 8 1 7/8 15 1 5/16 8.625 10" 8 2 16 1 1/2 10.750 12" 8 2 1/8 17 1 5/8 12.750 14" 8 14.000 16" 8 16.000 Engineering and Management Solutions REBIS ACADEMY 53
  • 55. NON METALLIC PIPES References: Chapter VII: Nonmetallic piping and piping lined with nonmetals: Design, Fabrication, Installation and limitation Appendix B: Stress tables and allowable pressure table for nonmetals Thermosetting Thermoplastic Concrete Vitrified Clay Glass Engineering and Management Solutions REBIS ACADEMY 54
  • 56. NON‐METALLIC PIPE ADVANTAGES Advantages: • Typically has a lower installed and maintenance cost and lower  total cost of ownership.  • Will not corrode if the correct material is selected. This means:  • No cathodic protection or corrosion monitoring  • No chemical inhibitors are required.  • Corrosion allowance is avoided (Note: if the service is an  erosive service, an erosion allowance may be required)  • Flow properties are superior to steel pipe  • Lower pumping costs  • Consistent friction factor through the life of the pipe  • More flexible than steel pipe.  Engineering and Management Solutions REBIS ACADEMY 55
  • 57. NON‐METALLIC DISADVANTAGES Disadvantages: • Temperature limits are usually lower than steel pipe. As  temperatures increase, the maximum pressure will decrease.  • Maximum pressure is lower than steel pipe.  • Material is very process dependent. That is, hydrocarbons cannot  always flow through nonmetallic lines.  • Non metallic lines will degrade in sunlight without a Ultraviolet  inhibitor.  • Very susceptible to mechanical damage.  • More flexible than steel pipe. Requires more supporting than  steel piping.  Engineering and Management Solutions REBIS ACADEMY 56
  • 58. NON METALLIC PIPES Thermoplastic: Is a plastic which is thermoplastic in behavior, capable of being repeatedly softened by increasing of temperature (heating) and hardened by decreasing of temperature (cooling). Example: HDPE, PVC, ABS, PP Manufacturing: Pipe is extruded Fittings are usually injection molded and sometimes fabricated Valve parts are usually injection molded Limitation: Thermoplastics cannot be used when the service is a flammable service and when the piping is above ground. Thermoplastics also must be safeguarded when in all services (except in Category D fluids). While safeguarding is not defined, it could mean that additional pressure & temperature protection is required. It could also mean that physical barriers be installed to prevent unintentional rupture. Engineering and Management Solutions REBIS ACADEMY 57
  • 59. THERMOPLASTICS PRESSURE DESIGN THICKNESS T = PD / 2 (S + P)] Where: t = pressure design thickness P= design pressure D=outside pressure S= HDS (Hydrostatic Design Stress) Value [Allowable stress] HDS: this is defined as the maximum hoop stress in the pipe wall due to internal hydrostatic pressure that can be applied continuously with great certainty that failure of the pipe will not occur in a long period of time (50‐year period). Example: HDS for material from Appendix B CPVC 2.00 ksi 13.8 Mpa PE 0.80 ksi 5.5 Mpa PVC 2.00 ksi 13.8 Mpa Engineering and Management Solutions REBIS ACADEMY 58
  • 60. THERMOPLASTICS PIPES ASSEMBLY 1. Butt fusion welding Butt fusion or butt welding, which is a type of hot plate welding. This technique involves heating two planed surfaces of thermoplastic material against a heated surface. After a specified amount of time, the heating plate is removed and the two pieces are pressed together and allowed to cool under pressure, forming the desired bond. Heater Engineering and Management Solutions REBIS ACADEMY 59
  • 61. THERMOPLASTICS PIPES ASSEMBLY 2. Electrofusion welding The pipes to be joined are cleaned, inserted into the electrofusion fitting (with a temporary clamp if required) and a voltage (typically 40V) is applied for a fixed time depending on the fitting in use. The built in heater coils then melt the inside of the fitting and the outside of the pipe wall, which weld together producing a very strong homogeneous joint. Engineering and Management Solutions REBIS ACADEMY 60
  • 62. THERMOPLASTICS PIPES ASSEMBLY 3. Socket fusion welding It is distinguished from butt‐welding by using custom‐shaped and ‐sized heating plates rather than a basic flat surface. These heads allow for more surface contact, reducing the time needed to heat and fuse the pipe. Socket fusion joins pipe and fittings together, rather than simply joining pipe to pipe. It requires less pressure than butt‐welding and is more commonly used on smaller sizes of pipe (4" or less). Socket welding has additional advantages of requiring less machinery and is more portable than the heavier equipment required for butt fusion. PE, PP, PVDF are joined by this process. Spigot Heating Plate Socket Preparation of the welding Alignment and Pre‐heating Joining and Cooling Fitting Pipe Engineering and Management Solutions REBIS ACADEMY 61
  • 63. THERMOPLASTICS PIPES ASSEMBLY 4. Hot Gas welding Hot gas welding, also known as hot air welding, is a plastic welding technique using heat. A specially designed heat gun, called a hot air welder, produces a jet of hot air that softens both the parts to be joined and a plastic filler rod, all of which must be of the same or a very similar plastic. Welding Rod Heat Gun Engineering and Management Solutions REBIS ACADEMY 62
  • 64. THERMOPLASTICS PIPES ASSEMBLY 5. Solvent welding Solvent welding, also known as solvent cementing or solvent bonding, is the process of joining articles made of thermoplastic resins by applying a solvent capable of softening the surfaces to be joined, and pressing the softened surfaces together. Pipe and fittings are bonded together by means of chemical fusion. ABS, CPVC, and PVC plastic pipes are primarily joined by solvent cementing, though mechanical joints are also available. PE pipe cannot be joined with solvent cements. Engineering and Management Solutions REBIS ACADEMY 63
  • 65. NON METALLIC PIPES SDR: Many PE pipe manufacturers use the "Standard Dimension Ratio" ‐ SDR ‐ method of rating pressure piping. Standard Dimension Ratio (SDR) is a method of rating a pipe's durability against pressure. SDR= D/s D= Pipe outside diameter s = Pipe wall thickness Common nominations are SDR11, SDR17 and SDR34. Pipes with a lower SDR can withstand higher pressures. A SDR 11 means that the outside diameter ‐ D ‐ of the pipe is eleven times the thickness ‐ s ‐ of the wall. with a high SDR ratio the pipe wall is thin compared to the pipe diameter with a low SDR ratio the pipe wall is thick compared to the pipe diameter Engineering and Management Solutions REBIS ACADEMY 64
  • 66. NON METALLIC PIPES Thermosetting: Material Description Recommended Temperature limits Minimum Maximum ABS  Acrylonitrile butadiene styrene  ‐40 °F ‐40°C 176°F 80°C CPVC  Chlorinated polyvinyl chloride  0 °F ‐18°C 210°F 99°C FEP Fluorinated ethylene propylene  ‐325 °F ‐198°C 400°F 204°C (HD)PE (High density) polyethylene  ‐30 °F ‐34°C 180°F 82°C PFA Perfluoroalkoxy Alkane  ‐40 °F ‐40°C 450°F 250°C PP Polypropylene  30 °F ‐1°C 210°F 99°C PVC Polyvinyl chloride  0 °F ‐18°C 150°F 66°C PVDF Polyvinylidene fluoride  0 °F ‐18°C 275°F 135°C Thermoplastic: (B31.3 recommended temperature limits) Material Recommended Temperature limits Resin Reinforcing Minimum Maximum Epoxy Glass Fiber ‐20 °F ‐29°C 300 °F 149°C Furan Carbon ‐20 °F ‐29°C 200 °F 93°C Furan Glass Fiber ‐20 °F ‐29°C 200 °F 93°C Phenolic Glass Fiber ‐20 °F ‐29°C 300 °F 149°C Polyester Glass Fiber ‐20 °F ‐29°C 200 °F 93°C Vinylester Glass Fiber ‐20 °F ‐29°C 200 °F 93°C Engineering and Management Solutions REBIS ACADEMY 65
  • 67. NON METALLIC PIPES Thermosetting: They are composed of plastic materials and are identified by being permanently set, cured or hardened in to shape when heated and cannot be re‐melted. They are combination of resins and reinforcing. Example: GRP, GRVE, GRE Pipes Commonly used resins: Polyester, Vinyl ester, Epoxy and Furan Commonly used reinforcements: Fiber glass and Carbon fiber Manufacturing: Pipe is filament wound, contact molded or centrifugally cast. Fittings are filament wound, molded and sometimes fabricated. Few valve are available. Limitation: Thermosets can be installed above ground if they are safeguarded when the service is flammable or toxic. Engineering and Management Solutions REBIS ACADEMY 66
  • 68. PIPES TEST Hydrostatic test: A hydrostatic test is a way in which pressure vessels such as pipelines, plumbing, gas cylinders, boilers and fuel tanks can be tested for strength and leaks. Using this test helps maintain safety standards and durability of a vessel or pipe over time. Water is used mainly because it is cheap and easily available. Red or fluorescent dyes may be added to the water to make leaks easier to see. • This margin of safety is typically 166.66%, 143% or 150% of the designed pressure, depending on the regulations that apply. • Buried high pressure oil and gas pipelines are tested for strength by pressurizing them to at least 125% of their maximum operating pressure (MAOP) at any point along their length. • Test pressures need not exceed a value that would produce a stress higher than yield stress at test temperature. ASME B31.3 section 345.4.2 (c) • The vessel or pipe is pressurized for a specified period, usually 10 to 30 seconds Engineering and Management Solutions REBIS ACADEMY 67
  • 69. PIPES TEST Yield strength: The yield strength or yield point of a material is defined in engineering and materials science as the stress at which a material begins to deform plastically. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non‐reversible. testing involves taking a small sample with a fixed cross‐section area, and then pulling it with a controlled, gradually increasing force until the sample changes shape or breaks. Material Yield strength (Mpa) Material Yield strength (Mpa) ASTM A36 steel 250 Cast iron 4.5% C, ASTM A‐48 172 Steel, API 5L X65 448 Titanium alloy (6% Al, 4% V) 830 Piano wire 2200 Aluminum alloy 2014‐T6 400 HDPE 26‐33 Copper 99.9% Cu 70 Engineering and Management Solutions REBIS ACADEMY 68
  • 70. ALLOY STEEL ASTM A234 Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service Composition, % Grade C Mn P max S max Si Cr Mo Ni Cu Others WPB (1,2,3,4,5) 0.30 max 0.29-1.06 0.050 0.058 0.10 min 0.40 max 0.15 max 0.40 max 0.40 max V 0.08 max WPC (2,3,4,5) 0.35 max 0.29-1.06 0.050 0.058 0.10 min 0.40 max 0.15 max 0.40 max 0.40 max V 0.08 max WP11 CL1 0.05-0.15 0.30-0.60 0.030 0.030 0.50-1.00 1.00-1.50 0.44-0.65 WP11 CL2 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65 WP11 CL3 0.05-0.20 0.30-0.80 0.040 0.040 0.50-1.00 1.00-1.50 0.44-0.65 WP22 CL1 0.05-0.15 0.30-0.60 0.040 0.040 0.50 max 1.90-2.60 0.87-1.13 WP5 CL1 0.15 max 0.30-0.60 0.040 0.030 0.50 max 4.0-6.0 0.44-0.65 WP9 CL1 0.15 max 0.30-0.60 0.030 0.030 1.00 max 8.0-10.0 0.90-1.10 (1) Fittings made from bar or plate may have 0.35 max carbon. (2) Fittings made from forgings may have 0.35 max Carbon and 0.35 max Silicon with no minimum. (3) For each reduction of 0.01% below the specified Carbon maximum, an increase of 0.06% Manganese above the specified maximum will be permitted, up to a maximum of 1.35%. (4) The sum of Copper, Nickel, Niobium, and Molybdenum shall not exceed 1.00%. (5) The sum of Niobium and Molybdenum shall not exceed 0.32%. (6) Applies both to heat and product analyses. Engineering and Management Solutions REBIS ACADEMY 69
  • 71. 70 Engineering and Management Solutions REBIS ACADEMY SESSION SUMMARY
  • 72. 71 Engineering and Management Solutions REBIS ACADEMY QUESTIONS AND FEEDBACK REBIS ACADEMY OF TECHNOLOGY 1 Dundas Street West, Suite 2500 Toronto, ON, Canada M5g 1z3 Tel: +1 416 365 5685 Website: http://rebisacademy.com/ Email: info@rebisacademy.com Fallow us on: https://www.linkedin.com/company/rebis-academy-of-technology https://www.facebook.com/RebisAcademy/ https://twitter.com/RebisAcademy