SlideShare a Scribd company logo
1 of 72
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
FUNDAMENTALS OF
REFRIGERATIONS
Prof. Aniket Suryawanshi
Asst. Prof. Automobile Engg. Dept.
R. I. T. Rajaramnagar
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Outline
• Applications of Refrigeration.
• Reversed Carnot Cycle.
• COP and Power Calculations
• Vapour – Compression Refrigeration System.
• Presentation on T-S and P-h diagram.
• Vapour – Absorption System.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Refrigeration
REFRIGERATION – Cooling of or removal of heat from a system.
Refrigerated System – System which is kept at lower temperature.
Refrigeration – 1) By melting of a solid,
2) By sublimation of a solid,
3) By evaporation of a liquid.
Most of the commercial refrigeration production : Evaporation of liquid.
This liquid is known as Refrigerant.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Refrigeration Circuit
Refrigeration Circuit
Evaporator Compressor
CondenserExpansion
Valve
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Refrigeration - Elements
Compressor
Condenser
Evaporator
Expansion
Valve
Wnet, in
Surrounding Air
Refrigerated Space
QH
QL
High Temp
Source
Low Temp
Sink
QH
QL
Wnet, in
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Refrigeration Systems
1. Ice Refrigeration System.
2. Air Refrigeration System.
3. Vapour Compression Refrigeration System.
4. Vapour Absorption Refrigeration System.
5. Adsorption Refrigeration System.
6. Cascade Refrigeration System.
7. Mixed Refrigeration System.
8. Thermoelectric Refrigeration System.
9. Steam Jet Refrigeration System.
10. Vortex Tube Refrigeration System.
Refrigeration Systems :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Refrigeration - Applications
1. Ice making.
2. Transportation of food items above and below freezing.
3. Chemical and related industries.
4. Medical and Surgical instruments.
5. Processing food products and beverages.
6. Oil Refining.
7. Synthetic Rubber Manufacturing.
8. Freezing food products.
9. Manufacturing Solid Carbon Dioxide.
Applications :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Performance - COP
COP – Ratio of Heat absorbed by the Refrigerant while passing through the Evaporator
to the Work Input required to compress the Refrigerant in the Compressor.
Performance of Refrigeration System :
- Measured in terms of COP (Coefficient of Performance).
If; Rn = Net Refrigerating Effect. W = Work required by the machine.
Then;
W
R
COP n

COPlTheoretica
COPActual
COPlative Re
Actual COP = Ratio of Rn and W actually measured.
Theoretical COP = Ratio of Theoretical values of Rn and W obtained by applying
Laws of Thermodynamics to the Refrigerating Cycle.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Performance - Rating
Rating of Refrigeration System :
- Refrigeration Effect / Amount of Heat extracted from a body in a given time.
Unit :
- Standard commercial Tonne of Refrigeration / TR Capacity
Definition :
- Refrigeration Effect produced by melting 1 tonne of ice from and at 0 ºC in 24 hours.
Latent Heat of ice = 336 kJ/kg.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Reverse Carnot Cycle
3
2
1
4
Isotherms
Adiabatic
T2
Expansion
Compression
T1
Pressure
Volume
P –V Diagram
3 2
14T1
Expansion Compression
T2
Temperature Entropy
1’4’
T –s Diagram
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
3 2
14T1
Expansion Compression
T2
Temperature
Entropy
1’4’
Operation :
3 – 4 : Adiabatic Expansion.
Temp. falls from T2 to T1.
Cylinder in contact with Cold Body at T1.
4 – 1 : Isothermal Expansion.
Heat Extraction from Cold Body.
1 – 2 : Adiabatic Compression.
Requires external power.
Temp. rises from T1 to T2.
Cylinder in contact with Hot Body at T2
2 – 3 : Isothermal Compression.
Heat Rejection to Hot Body.
Reverse Carnot Cycle
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
3 2
14T1
Expansion Compression
T2
Temperature
Entropy
1’4’
Heat extracted from cold Body : Area 1-1’-4’-4
= T1 X 1-4
Work done per cycle : Area 1-2-3-4
= (T2 – T1) X 1-4
12
1
12
1
)41()(
)41(
4321
4'4'11
TT
T
XTT
XT
Area
Area
DoneWork
ExtractedHeat
COP









Reverse Carnot Cycle
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 1
A Carnot Refrigerator requires 1.3 kW per tonne of refrigeration to maintain a region at
low temperature of -38 ºC. Determine:
i) COP of Carnot Refrigerator.
ii) Higher temperature of the cycle.
iii) Heat delivered and COP, if the same device is used Heat Pump.
99.2
)sec/3600()3.1(
/000,14
3.1
1

hrkW
hrkJ
kW
tonne
doneWork
absorbedHeat
COPrefrig ….ANS
KT
KT
K
TT
T
COPrefrig 6.313
235
235
99.2 1
212
1




 ….ANS
Heat Delivered as Heat Pump ;
sec/189.53.1
3600
/000,14
3.11 kJ
hrkJ
kWtonne
doneWorkabsorbedHeat


….ANS
99.3
3.1
sec/189.5

kW
kJ
doneWork
deliveredHeat
COPHP ….ANS
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 2
A refrigerating system works on reverse Carnot cycle. The higher temperature in the
system is 35 ºC and the lower temperature is -15 ºC. The capacity is to be 12 tonnes.
Determine :
i) COP of Carnot Refrigerator.
ii) Heat rejected from the system per hour.
iii) Power required.
18.5
258308
258
12
1





KK
K
TT
T
COPrefrig ….ANS
hrkJInputWork
InputWork
hrkJX
InputWork
tonne
InputWork
Effectfrig
COPrefrig
/32558
/000,141212
16.5
.Re


….ANSkW
hrkJhrInputWork
Power 04.9
3600
/32558
3600
/

Heat Rejected / hr = Refrig. Effect / hr + Work Input / hr
= 12 x 14,000 (kJ/hr) + 32,558 (kJ/hr) = 2,00,558 kJ/hr. ….ANS
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 3
Ice is formed at 0 ºC from water at 20 ºC. The temperature of the brine is -8 ºC. Find out
the kg of ice per kWh. Assume that the system operates on reversed Carnot cycle. Take
latent heat of ice as 335 kJ/kg.
46.9
265293
265
12
1





KK
K
TT
T
COPrefrig
Heat to be extracted per kg of water ( to from ice at 0 ºC)
Rn = 1 (kg) x Cpw (kJ/kg.K) x (293– 273) (K) + Latent Heat (kJ/kg) of ice
= 1 (kg) x 4.18 (kJ/kg.K) x 20 (K) + 335 (kJ/kg)
= 418.6 kJ/kg.
Also, 1 kWh = 1 (kJ) x 3600 (sec/hr) = 3600 kJ.
kgm
kJ
kgkJXkgm
kJdoneWork
kJEffectfrig
W
R
COP
ice
ice
n
refrig
35.81
3600
)/(6.418)(
46.9
)(
)(.Re


….ANS
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System
Elements of this system :
1. Compressor.
2. Condenser.
3. Expansion Valve.
4. Evaporator.
Vapour @ ↓ Pr. and ↓ Temp. (State 1)
Isentropic Compression :
↑ Pr. and ↑ Temp. (State 2)
Condenser : ↑ Pr. Liquid (State 3)
Throttling : ↓ Pr. ↓ Temp. (State 4)
Evaporator : Heat Extraction from surrounding;
↓ Pr. vapour (State 1).
1
2
3
4
1
23
4
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System
Merits :
1. High COP; as very close to Reverse Carnot Cycle.
2. Running Cost is 1/5th of that of Air Refrigeration Cycle.
3. Size of Evaporator is small; for same Refrigeration Effect.
Demerits :
1. Initial cost is high.
2. Inflammability.
4. Evaporator temperature adjustment is simple; by adjusting Throttle Valve.
3. Leakage.
4. Toxicity.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System : T-s Diagram
Case A. Dry and Saturated Vapour after Compression :
Work done by Compressor
= W = Area 1-2-3-4-1
Heat Absorbed
= W = Area 1-4-g-f-1
Entropy, s
Temperature,T
Condensation
Compression
Evaporation
Expansion
T2
T1
3
4
2
1
Compressor Work,
(W)
Net Refrig. Effect,
(Rn)
Sat. Vapour Line
Sat. Liq. Line
fg
12
41
14321
141
hh
hh
Area
fgArea
DoneWork
AbsorbedHeat
COP







AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System : T-s Diagram
Case B. Superheated Vapour after Compression :
Work done by Compressor
= W = Area 1-2-2’-3-4-1
Heat Absorbed
= W = Area 1-4-g-f-1
12
41
143'221
141
hh
hh
Area
fgArea
DoneWork
AbsorbedHeat
COP







Entropy, s
Temperature,T
Condensation
Compression
Evaporation
Expansion
T2
T1
3
4
2
1
Compressor Work,
(W)
Net Refrig. Effect,
(Rn)
Sat. Vapour Line
Sat. Liq. Line
fg
2’
NOTE : h2 = h2’ + Cp (Tsup – Tsat)
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System : T-s Diagram
Case C. Wet Vapour after Compression :
Work done by Compressor
= W = Area 1-2-3-4-1
Heat Absorbed
= W = Area 1-4-g-f-1
Entropy, s
Temperature,T
Condensation
Compression
Evaporation
Expansion
T2
T1
3
4
2
1
Compressor Work,
(W)
Net Refrig. Effect,
(Rn)
Sat. Vapour Line
Sat. Liq. Line
fg
12
41
14321
141
hh
hh
Area
fgArea
DoneWork
AbsorbedHeat
COP







NOTE : h2 = (hf + x.hfg)2
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System : P-h Diagram
Enthalpy, h
Pressure,Pr
Isothermal,
T=Const
Isenthalpic,
h=Const.
Isobaric,
P = Const
Sub-cooled
Liq. region
2 – phase
region
Superheated
region
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System : P-h Diagram
Enthalpy, h
Pressure,Pr
1
23
4
Evaporation
Condensation
Compression
12
41
hhW
hhRn


12
41
hh
hh
W
R
COP n




AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System – Mathematical Analysis
A. Refrigerating Effect :
  )/(41 kgkJHeatdSuperheateHeatLatenthhQevap 
= Amount of Heat absorbed in Evaporator.
B. Mass of Refrigerant :
= Amount of Heat absorbed / Refrigerating Effect.
 
)sec/(
3600
000,14
41
tonnekg
hh
m 


1 TR = 14,000 kJ/hr
C. Theoretical Piston Displacement :
= Mass of Refrigerant X Sp. Vol. of Refrigerant Gas (vg)1.
 
  )sec/(
3600
000,14
.. 3
1
41
tonnemv
hh
DisplPistonTh g 


AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression System – Mathematical Analysis
 
  )(
)/(
12
12
kWhhmP
kgkJhhW
theor
comp


a) Isentropic Compression :
D. Theoretical Power Required :
 
  )(
1
)/(
1
1122
1122
kWVPVP
n
n
mP
kgkJVPVP
n
n
W
theor
comp






a) Polytropic Compression :
E. Heat removed through Condenser :
  )/(32 kgkJhhmQcond 
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 4
A refrigeration machine is required to produce ice at 0º C from water at 20 ºC. The
machine has a condenser temperature of 298 K while the evaporator temperature is 268
K. The relative efficiency of the machine is 50 % and 6 kg of Freon-12 refrigerant is
circulated through the system per minute. The refrigerant enters the compressor with a
dryness fraction of 0.6. Specific heat of water is 4.187 kJ/kg.K and the latent heat of ice is
335 kJ/kg. Calculate the amount of ice produced on 24 hours. The table of properties if
Freon-12 is given below:
Temperature
(K)
Liquid Heat
(kJ/kg)
Latent Heat
(kJ/kg)
Entropy of Liquid
(kJ/kg)
298 59.7 138.0 0.2232
268 31.4 154.0 0.1251
hf1 = 31.4 kJ/kg
hfg1 = 154.0 kJ/kg
hf2 = 59.7 kJ/kg
hfg2 = 138.0 kJ/kg
hf3 = h4 = 59.7 kJ/kg
m = 6 kg/min
ηrel = 50 %
x2 = 0.6
Cpw = 4.187 kJ/kg.K
Latent Heat of ice = 335.7 kJ/kg
Given :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 4….contd
Entropy, s
Temperature,T
298 K
268 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
kgkJhxhh fgf /8.1230.154)6.0(4.31111 
kgkJhxhh fgf /2.1330.138)5325.0(7.5922 22 
 
5325.0
268
0.154
6.01251.0
298
0.138
2232.0
2
2
1
1
11
2
2
22
111222
12





























x
x
T
h
xs
T
h
xs
sxssxs
ss
fg
f
fg
f
fgffgf
Isentropic Compression : 1-2
kgkJhh f /7.5934 
COP of Original Cycle :
 
 
82.6
/8.1232.133
/7.598.123
12
41







kgkJ
kgkJ
hh
hh
W
R
COP n
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 4….contd
Actual COP = ηrel X COPtheor = 0.5 X 6.82 = 3.41
Heat extracted from 1 kg of water at 20 ºC to form 1 kg of ice at 0 ºC :
kgkJ
kgkJ
CXKkgkJXkg
/74.418
)/(335
)()020()./(187.4)(1



Entropy, s
Temperature,T
298 K
268 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
Now;
….ANS
 
 
hrsintonne
XX
kg
kgkJ
kgkJXkg
m
hhm
Xm
W
R
COP
ice
iceactualn
actual
24661.0
1000
2460459.0
min/459.0
41.3
/74.418
)/(8.1232.133)(6
74.418
41.3
12
)(







AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 5
28 tonnes of ice from and at 0 ºC is produced per day in an ammonia refrigerator. The
temperature range in the compressor is from 25ºC to -15ºC. The vapor is dry and
saturated at the end of compression and an expansion valve is used. Assuming a
co-efficient of performance of 62% of the theoretical, calculate the power required to
drive the compressor. Take latent heat of ice = 335 kJ/kg.
Temp
(ºC)
Enthalpy (kJ/kg) Entropy of
Liquid
(kJ/kg.K)
Entropy of Vapour
(kJ/kg.K)Liquid Vapour
25 100.04 1319.22 0.3473 4.4852
-15 -54.56 1304.99 -2.1338 5.0585
hf1 = -54.56 kJ/kg
hg1 = 1304.99kJ/kg
hf2 = 100.04 kJ/kg
hg2 = 1319.22 kJ/kg
hf3 = h4 = 100.04 kJ/kg
Tcond = 25 ºC
Tevap = -15 ºC
x2 = 1….dry saturated vapour
COPactual = 0.62 (COPtheor)
Latent Heat of ice = 335.7 kJ/kg
Given :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
 
 
91.8
23.119622.1319
04.10023.1196
12
41







hh
hh
COP ltheoreticaCOP of the Cycle :
Entropy, s
Temperature,T
298 K
258 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
Example 5….contd
processcIsenthalpikgkJhh ...../04.10043 
 
kgkJ
hxhh fgf
/23.1196
)56.54(99.1304)92.0()56.54(
)( 1111



    
92.0
1338.20585.5)1338.2(4852.4
1
1
1112
12




x
x
sxss
ss
fgfg
Isentropic Compression : 1-2
kgkJhh g /22.131922 
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 5….contd
Actual COP = ηrel X COPtheor
= 0.62 X 8.91
= 5.52
Entropy, s
Temperature,T
298 K
258 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
Actual Rn = COPactual X Work done
= 5.52 X (h2 – h1)
= 5.52 X (1319.22 – 1196.23)
= 678.9 kJ/kg
Heat extracted from 28 tonnes of water at 0 ºC to form ice at 0 ºC :
)(sec/56.108
)(sec/3600)(24
)/(335)/(1000)(28
kWkJ
hrXhr
kgkJXtonnekgXkg


Mass of refrigerant : kg
kgkJ
kJ
1599.0
)/(9.678
sec)/(56.108

Total Work done by Compressor :
 
)(sec/67.19
/)23.119622.1319()(1599.012
kWkJ
kgkJXkghhXmrefrig


….ANS
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 6
In a standard vapour compression refrigeration cycle, operating between an evaporator
temperature of -10 ºC and a condenser temperature of 40 ºC, the enthalpy of the
refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on
T-s plane. Calculate:
1. The C.O.P. of the cycle.
2. The refrigerating capacity and the compressor power assuming a refrigerant flow
rate of 1 kg/min.
You may use the extract of Freon-12 property table given below:
Temp (ºC) Pr (MPa) hf (kJ/kg) hg (kJ/kg)
-10 0.2191 26.85 183.1
40 0.9607 74.53 203.1
hf1 = 26.85 kJ/kg
hg1 = h1 = 183.1 kJ/kg
hf2 = 74.53 kJ/kg
hg2 = 203.1 kJ/kg
hf3 = h4 = 74.53 kJ/kg
Tcond = 40 ºC
Tevap = -10 ºC
x1 = 1….dry saturated vapour
h2 = 220 kJ/kg
Given :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 6….contd
COP of Original Cycle :
 
 
94.2
/1.1830.220
/53.741.183
12
41







kgkJ
kgkJ
hh
hh
W
R
COP n
….ANS
Refrigerating Capacity :
   
min/57.108
/53.741.183)(141
kJ
kgkJXkghhm


….ANS
Compressor Power :
   
kW
kJ
kgkJXkghhm
615.0
min/9.36
/1.1830.220)(112



….ANS
Entropy, s
Temperature,T
40 ºC
-10 ºC
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
2’
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 7
A Freon-12 refrigerator producing a cooling effect of 20 kJ/sec operates on a simple
cycle with pressure limits of 1.509 bar and 9.607 bar. The vapour leaves the evaporator
dry saturated and there is no undercooling. Determine the power required by the
machine. If the compressor operates at 300 rpm and has a clearance volume of 3% of
stroke volume, determine the piston displacement of the compressor. For compressor
assume that the expansion following the law PV1.3 = Constant.
Temp
(oC)
Ps
(bar)
vg
(m3/kg)
Enthalpy
hf
(kJ/kg)
Enthalpy
hg
(kJ/kg)
Entropy
sf
(kJ/kg)
Entropy
sg
(kJ/kg)
Specific
heat
(kJ/kg.K)
-20 1.509 0.1088 17.8 178.61 0.073 0.7082 ---
40 9.607 --- 74.53 203.05 0.2716 0.682 0.747
hf1 = 17.8 kJ/kg
hg1 = h1 = 178.61 kJ/kg
hf2 = 74.53 kJ/kg
hg2’ = 203.05 kJ/kg
hf3 = h4 = 74.53 kJ/kg
Tcond = 40 ºC
Tevap = -20 ºC
x1 = 1….dry saturated vapour
h2 = 220 kJ/kg
Given :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 7….contd
Refrigerating Capacity :    
sec/192.0
/53.7461.1782041
kgm
kgkJXmkWhhm




 
KT
T
T
T
Css
ss
P
2.324
313
ln747.0682.07082.0
ln
2
2
'2
2
'21
21
















Isentropic Compression : 1-2
 
  
kgkJ
KKkgkJkgkJ
TTChh P
/4.211
0.3132.324./747.0)/(05.203
'22'22



Entropy, s
Temperature,T
313 K
253 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
2’
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 7
….ANS
Power Required :    
kW
kgkJXkghhm
29.6
/61.1784.211sec)/(192.012



Vol. Efficiency :
%6.87
509.1
607.9
03.003.01
1
13.1/1
/1















bar
bar
P
P
kk
n
S
d
vol
Vol of Refrigerant
at Intake :
sec/02089.0
)/(1088.0sec)/(192.0
3
3
m
kgmXkg
vm g




Piston Displ. Vol. :
  3
3
00477.0
)(300876.0
min)(sec/60sec)/(02089.0
)(
.
m
rpm
m
rpm
VolActual
vol






 ….ANS
Entropy, s
Temperature,T
313 K
253 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
2’
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 8
A food storage locker requires a refrigeration capacity of 50 kW. It works between a
condenser temperature of 35 ºC and an evaporator temperature of -10 ºC. The refrigerator
is ammonia. It is sub-cooled by 5 ºC before entering the expansion valve. By the dry
saturated vapour leaving the evaporator. Assuming a single-cylinder, single-acting
compressor operating at 1000 rpm with stroke equal to 1.2 times the bore, determine :
1. The power required.
2. The cylinder dimensions.
Properties of ammonia are :
Sat.
Temp.
(oC)
Pr.
(bar)
Enthalpy
(kJ/kg)
Entropy
(kJ/kg)
Sp. Vol.
(m3/kg)
Sp. Heat
(kJ/kg.K)
Liquid Vapour Liquid Vapour Liquid Vapour Liquid Vapour
-10 2.9157 154.056 1450.22 0.82965 5.7550 --- 0.417477 --- 2.492
35 13.522 366.072 1488.57 1.56605 5.2086 1.7023 0.095629 4.556 2.903
h1 = 1450.22 kJ/kg
h2’ = 1488.57 kJ/kg
hf3 = 366.072 kJ/kg
Tcond = 35 ºC
Tevap = -10 ºC
x1 = 1….dry saturated vapour
State 3 = Sub-cooled by 5 ºC
Given :
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 8….contd
 
 
kgkJ
kgkJkgkJ
TTChhh subcoolsatliqPf
/29.343
)/(30330856.405)/(07.366
34'3



 
KT
T
T
T
Cssss P
8.371
308
ln903.22086.5755.5
ln
2
2
'2
2
'2121















Isentropic Compression : 1-2
 
  
kgkJ
KKkgkJkgkJ
TTChh P
/8.1673
0.3088.371./903.2)/(57.1488
'22'22



Entropy, s
Temperature,T
308 K
263 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
2’
3’
303 K
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Example 8….contd
   
sec/04517.0
/29.34322.1450
)(50
/
)(50
41
kg
kgkJ
kW
kgkJhh
kW
m






Mass of Refrigerant :
Compressor Power :
 
 
kW
kgkJXkg
hhm
1.10
/22.14508.1673)(04517.0
12




….ANS
Cylinder Dimensions :
 
mmL
mD
kgm
rpm
DD
v
N
LD
kgm
g
228.0)19.0(2.1
19.0
/417477.0
60
)(1000
)2.1(
4604
sec)/(04517.0 3
22


















….ANS
….ANS
Entropy, s
Temperature,T
308 K
263 K
3
4
2
1
Sat. Vapour Line
Sat. Liq. Line
fg
2’
3’
303 K
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Simple Theoretical Vapour Absorption System
Evaporator Absorber
GeneratorCondenser
Weak
Solution
Refrig.
Vapour Strong
Solution
PUMP
QE
QA
WP
Expn.
Valve
QC
QG
(2)
(1)
(3)
(4)
(5)
(6)
(7)
(8)
Assumption :
Absorbent does not vaporise in the
Generator.
State (1) : Vapour leaving
the Evaporator
+ Weak Liq. Solution in
the Absorber
Removal of Heat :
Refrig. Vapour be absorbed
by Weak Liq. Solution.
Strong Liq. Solution.
Pressure of Liq. Solution ↑ by pump to
Generator Pressure.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Evaporator Absorber
GeneratorCondenser
Weak
Solution
Refrig.
Vapour Strong
Solution
PUMP
QE
QA
WP
Expn.
Valve
QC
QG
(2)
(1)
(3)
(4)
(5)
(6)
(7)
(8)
Heat Addition in Generator :
Refrig. Vapour be driven out
of the Liq. Solution.
Heat Exchanger in Liq. Solution
Circuit, between Generator and
Absorber.
Generator + Condenser : HP Side.
Evaporator + Absorber : LP Side.
Simple Theoretical Vapour Absorption System
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Absorption
Fluid
System
TE
TG
Pump
TO
WP
QO
QG
QE
Generator
Refrig. Space Environment
Energy Transfer to & from
the Fluid of Absorption System :
Generator : Heating Medium
Heat Addition, QG
Pump :
Work Addition, WP
Substance to be cooled :
Heat Addition, QE
Absorber :
Heat Rejection,
QO = QA (Absorber) + QC (Condensor)
to environment through cooling water.
Simple Theoretical Vapour Absorption System
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Absorption
Fluid
System
TE
TG
Pump
TO
WP
QO
QG
QE
Generator
Refrig. Space Environment
CAO QQQ 
First Law of Thermodynamics :
PEGO WQQQ 
Assumptions :
Generator Heating Med. Temp, TG
Refrig. Substance Temp, TE
Environmental Temp, TO
Const.
Simple Theoretical Vapour Absorption System
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Absorption System
1
2
4
3
Solubility of NH3 in water @ ↓ Temp and Pr. is MORE than that @ ↑ Temp. and Pr.
NH3 vapour from Evaporator (State 1) is readily absorbed in Absorber. Heat Rejection
This solution is then pumped to ↑ Temp. and Pr. @ Generator.
Reduction in stability of solution Vapour removed from Solution.
Vapour passes to Condenser.
Weak Solution returns to Absorber.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Absorption System
Merits :
2. Work done on Compression is LESS.
1. Pumping work is much less than work for Compressing vapour.
Demerits :
2. Low COP.
1. Heat input to the Generator is required.
COP :
PumpLiquidondoneWorkGeneratorinpliedHeat
EvaporatorinextractedHeat
COP


sup
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Vapour Compression Vs. Vapour Absorption
Sr.
No.
Particulars Vapour Compression Systems Vapour Absorption Systems
1. Type of Energy Supplied Mechanical – High Grade Heat – Low Grade
2. Energy Supply Rate Low High
3. Wear & Tear More Less
4. Performance of Part Load Poor Not affected at Part Load
5. Suitability Used where High Grade Mechanical
Energy is available
Can be used at Remote Places, as
can be used with simple Kerosene
lamp
6. Charging of Refrigerant Simple Difficult
7. Leakage More chances No chances, as no Compressor or
Reciprocating Part
8. Damage Liquid traces in Suction Line may
damage Compressor
No danger
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Thermodynamic Properties
A. Critical Temp. & Pressure
1. Highest Temp at which liquid can be condensed.
2. Condenser Pressure : well below Critical Pressure.
3. Otherwise ↑ Power Consumption…!!!
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. High Vaporisation Enthalpy.
Enthalpy, hPressure,Pr
Vaporization
Enthalpy
B. Enthalpy of Vaporization
2. More Refrigerating Effect
per unit mass of refrigerant.
3. ↓ Size of Equipment.
Thermodynamic Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. As HIGH as possible.
Enthalpy, h
Pressure,Pr
1
23
4
Evaporation
Condensation
Expansion
C. Specific Heat
Vapour : ↑ value is desired.
Liquid : ↓ value is desired.
D. Thermal Conductivity
2. ↑ Heat Transfer Rates.
3. Use of Low Conductivity Materials.
Thermodynamic Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
• Both should be + ve.
E. Evaporator & Condenser Pressures
• + ve Pressure :
Refrigerant flows out , if leak…!!
• – ve Pressure :
Air and Moisture enters into system…!!! Enthalpy, h
Pressure,Pr
1
23
4
Evaporation
Condensation
Expansion
Thermodynamic Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. Chemical Stability – Important as Working Substance.
A. Stability & Inertness
2. Should Not decompose in operating range of temperatures.
3. Inertness – Should Not react with equipment material.
e.g. Ammonia (NH3) attacks on Copper and Cuprous alloys.
Chemical Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. As low as possible
B. Flammability
C. Water Solubility
1. Less solubility for water.
inflammable
2. Straight Hydrocarbons : ↑ flammable
2. Presence of moisture can be detected…!!!
Chemical Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. Ability to mix with oil.
D. Miscibility
E. Toxicity
2. Need Oil Separators.
2. Toxic Refrigerants :
1. As low as possible Non - Toxic
DANGER for Domestic and Comfort Air Conditioning
Chemical Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
1. Non – Corrosive.
F. Corrosive Properties
G. Viscosity
1. Low Viscosity
2. Better Refrigerant Flow
↑ Heat Transfer
H. Dielectric Strength
1. High Dielectric Strength for Hermetically Sealed Compressors.
Chemical Properties
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
• Boiling Temperature of refrigerant should be quite low at atmospheric conditions for effective
refrigeration. For refrigerants having higher boiling temperatures at atmospheric
conditions the compressor is run at higher vacuum.
• For an ideal refrigerant the freezing temperature of refrigerant should be quite low so as to
prevent its freezing at evaporative temperature. Freezing point temperature should be less
than evaporative temperature. For example, R-22 has freezing point of -160ºC and normally
most of refrigerants have freezing point below -30ºC.
• Critical temperature of the ideal refrigerant should be higher than the condenser temperature
for the ease of condensation.
• Refrigerant should have large latent heat at evaporative temperature as this shall increase the
refrigerant capacity per kg of refrigerant.
• Refrigerant should have small specific volume at inlet to compressor as this reduces
compressor size for the same refrigeration capacity.
Desired Properties of Refrigerants
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
• Specific heat of refrigerant in liquid form should be small and it should large for refrigerant in
vapor form, since these increase the refrigerating capacity per kg of refrigerant.
• Thermal conductivity of refrigerant should be high.
• Viscosity of refrigerant should be small for the ease of better heat transfer and small
pumping work requirement.
• Refrigerant should be chemically inert and non-toxic.
• Refrigerant should be non-flammable, non- explosive and do not have any harmful effect upon
coming in contact with material stored in refrigeration space.
• Refrigerant may have pleasant distinct odour so as to know about its leakage.
• Refrigerant should be readily available at lesser price.
Desired Properties of Refrigerants
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Classification
Refrigerants
Primary Secondary
1. Halocarbon Refrigerants
2. Inorganic Refrigerants
3. Azeotrope Refrigerants
4. Hydrocarbon Refrigerants
 Usually liquids.
 Transfer heat from the substance
being cooled to a Heat Exchanger
where the heat is absorbed by a
Primary Refrigerant.
 e.g. In an air conditioning system,
air acts as a secondary refrigerant.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Halocarbon Refrigerants
42 identified halocarbons by ASHRAE
• Designated by ‘R’ followed by a Numerical.
• First digit from right ≡ No. of C atoms -1
• Second digit from right ≡ No. of H atoms +1
• Third digit from right ≡ No. of Fluorine (F) atoms
Nomenclature :
e.g. : R 114 – dichloro-tetrafluoro-ethane
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R – 11 ( C-Cl3-F )
• Operating Pressures – 0.3 bar (Evaporator)
– 1.25 bar (Condenser)
• Suitable with Centrifugal Compressor.
• Also used as Secondary Refrigerant.
• Safe and Non – Toxic
• One of the Highest Ozone Destruction Potential .
C
Cl
Cl
Cl
F
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R – 12 ( C-Cl2-F2 )
• Most widely used.
• Non – Toxic, Non – Flammable.
• Miscible with oil.
• Comparably Lower Latent Heat.
• High Vapour Density.
• High Ozone Depletion Potential .
C
F
Cl
Cl
F
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R – 12 ( C-Cl-F3 )
• Used in Ultra Low Temperature applications.
• Boiling Temp. = (-98) ˚C
• Suitable for all types of compressors.
• High Ozone Depletion Potential.
C
F
F
Cl
F
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R – 22 ( C-H-Cl-F2 )
• High Discharge Temp. Thus suction superheat should be minimum.
• Smaller Compressor Displacement is required than R 12.
• Low Ozone Depletion Potential.
• Similar Properties as of R 12.
C
F
Cl
H
F
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R – 134a
• Leading candidate to Replace R 12.
• Zero Ozone Depletion Potential.
• Non – Flammable, Non – Toxic.
• High Heat Transfer Coefficient.
• Miscibility Problems.
C
F
F
F C
F
H
H
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Inorganic Refrigerants
Before Halocarbons, these were used extensively…!!
• Designated by ‘R’ followed by a Numerical.
• Number ≡ 700 + Mole. Weight of the compound.
Nomenclature :
e.g. : Ammonia ≡ 700 + 17 ≡ R 717.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Ammonia ( NH3 – R 717 )
• Extensively used other than Halocarbons.
• Excellent Thermal Properties.
• Highest Refrigerating Effect per unit mass.
• Operating Pressures – 2.37 bar (Evaporator)
– 11.67 bar (Condenser)
• Not Miscible with oil.
• It attacks on Copper & Cuprous alloys.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Carbon Dioxide ( CO2 – R 744 )
• Excellent for Low Temperature Refrigeration.
• Boiling Point = (-73.6) ˚C.
• Operating Pressures – 20.7 bar (Evaporator, -15 ºC)
– 11.67 bar (Condenser, 70 ºC)
• Low Efficiency.
• Immiscible with oil, Non – Flammable.
• High Global Warming Potential.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Azeotropic Refrigerants
• Azeotrope :
• Designated by 500 Series.
Mixture of two / more components in exact proportion.
To form Low / High Pressure Boiling Mixture .
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R 500
• Blend of R 12 + R 152a
: R 12 (73.8 %) + R 152a (26.2 %) by weight.
• Good substitute for R 12.
• Compressor Capacity ↑ by 18 %.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
R 502
• Blend of R 22 + R 115
: R 22 (48.8 %) + R 115 (51.2 %) by mass.
• Low Compressor Discharge Temp. than R 22.
• Non – Flammable, Non – Toxic.
• Low Oil Miscibility.
• Replacement of R 22.
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Straight Hydrocarbons
• Highly Flammable.
• Miscible with oil.
• Ethane ( C2H6 ) , Methane ( CH4 ) & Ethylene ( C2H5 )
: Low Temperature Refrigeration
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
ASHRAE Designation for Refrigerants
No. Chemical Name Formulae Mole. Weight
Halocarbons :
11 Trichloro-monofloro methane C-Cl3-F 137.4
12 Dichloro-difloro methane C-Cl2-F2 120.9
13 Monochloro-trifloro methane C-Cl-F3 104.5
14 Carbon tetrachloride C-F4 88.0
21 Dichloro-monofloro methane C-H-Cl2-F 102.9
22 Monochloro-difloro methane C-H-Cl-F2 86.5
113 Trichloro-trifloro ethane C-Cl2-F-C-Cl-F2 187.4
114 Dichloro-tetrafloro ethane C-Cl-F2-C-Cl-F2 170.9
Hydrocarbons :
50 Methane Ch4 16.0
170 Ethane C-H3-C-H3 30.0
290 Propane C-H3-C-H2-C-H3 44.0
Inorganic Compounds :
717 Ammonia NH3 17.0
718 Water H2O 18.0
729 Air --- 29.0
744 Carbon dioxide CO2 44.0
764 Sulphur dioxide SO2 64.0
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Comparative Refrigerant Data
Refrigerant Boiling Temp.@
1 atm ( ºC)
Freezing
Temp. (ºC)
Critical
Temp. (ºC)
Critical Pr.
(bar)
11 23.83 -111.11 198.00 44.09
12 -29.78 -157.78 112.00 41.15
13 -81.40 -181.10 28.83 38.68
14 -128.00 -183.89 -45.50 37.37
21 8.89 -135.00 177.94 51.71
22 -40.78 -160.00 96.00 49.77
113 47.55 -35.00 214.11 34.13
114 3.56 -94.27 145.72 32.68
717 -33.33 -77.72 133.00 114.25
718 100.00 0.00 374.50 222.42
729 -194.33 --- -140.55 37.71
744 -78.50 -56.61 31.00 73.85
764 -10.00 -75.50 157.11 78.70
AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.
Thank You !

More Related Content

What's hot

Vapor compression refrigeration cycle
Vapor compression refrigeration cycleVapor compression refrigeration cycle
Vapor compression refrigeration cyclepradosh a c
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systemsVishu Sharma
 
Air refrigerationsystem
Air refrigerationsystemAir refrigerationsystem
Air refrigerationsystemnaphis ahamad
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning pptShubham Hadadare
 
Refrigeration & air conditioning
Refrigeration & air conditioningRefrigeration & air conditioning
Refrigeration & air conditioningNirav Jadav
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioningmahe49
 
Reversed carnot cycle
Reversed carnot cycle   Reversed carnot cycle
Reversed carnot cycle Ihsan Wassan
 
Refrigeration cycle
Refrigeration cycleRefrigeration cycle
Refrigeration cyclezubi0585
 
Vapour Absorption Refrigeration System
Vapour Absorption Refrigeration SystemVapour Absorption Refrigeration System
Vapour Absorption Refrigeration SystemJaswanth Gejjala
 
Basic refrigeration cycle
Basic refrigeration cycleBasic refrigeration cycle
Basic refrigeration cycleKYAW SAN OO -
 
Refrigeration And Air Conditioning
Refrigeration And Air ConditioningRefrigeration And Air Conditioning
Refrigeration And Air ConditioningSaurabh Jain
 
Seminar presentation on Vapour Compression Refrigeration
Seminar presentation on Vapour Compression RefrigerationSeminar presentation on Vapour Compression Refrigeration
Seminar presentation on Vapour Compression RefrigerationUjjwal Nautiyal
 
refrigerator and Air Condition
refrigerator and Air Conditionrefrigerator and Air Condition
refrigerator and Air ConditionShowhanur Rahman
 
REFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONINGREFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONINGDivakar Ketha
 
Basics of Refrigerartion
Basics of RefrigerartionBasics of Refrigerartion
Basics of RefrigerartionKonal Singh
 

What's hot (20)

Vapor compression refrigeration cycle
Vapor compression refrigeration cycleVapor compression refrigeration cycle
Vapor compression refrigeration cycle
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systems
 
Air refrigerationsystem
Air refrigerationsystemAir refrigerationsystem
Air refrigerationsystem
 
Refrigeration and air conditioning ppt
Refrigeration and air conditioning pptRefrigeration and air conditioning ppt
Refrigeration and air conditioning ppt
 
Refrigeration & air conditioning
Refrigeration & air conditioningRefrigeration & air conditioning
Refrigeration & air conditioning
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioning
 
Reversed carnot cycle
Reversed carnot cycle   Reversed carnot cycle
Reversed carnot cycle
 
Refrigeration cycle
Refrigeration cycleRefrigeration cycle
Refrigeration cycle
 
Vapour Absorption Refrigeration System
Vapour Absorption Refrigeration SystemVapour Absorption Refrigeration System
Vapour Absorption Refrigeration System
 
Basic refrigeration cycle
Basic refrigeration cycleBasic refrigeration cycle
Basic refrigeration cycle
 
Refrigeration And Air Conditioning
Refrigeration And Air ConditioningRefrigeration And Air Conditioning
Refrigeration And Air Conditioning
 
Refrigerants and designation
Refrigerants and designationRefrigerants and designation
Refrigerants and designation
 
Seminar presentation on Vapour Compression Refrigeration
Seminar presentation on Vapour Compression RefrigerationSeminar presentation on Vapour Compression Refrigeration
Seminar presentation on Vapour Compression Refrigeration
 
Refrigerant
RefrigerantRefrigerant
Refrigerant
 
Regrigeratio cycle
Regrigeratio cycleRegrigeratio cycle
Regrigeratio cycle
 
vapour compression cycle
vapour compression cyclevapour compression cycle
vapour compression cycle
 
Refrigeration systems
Refrigeration systemsRefrigeration systems
Refrigeration systems
 
refrigerator and Air Condition
refrigerator and Air Conditionrefrigerator and Air Condition
refrigerator and Air Condition
 
REFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONINGREFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONING
 
Basics of Refrigerartion
Basics of RefrigerartionBasics of Refrigerartion
Basics of Refrigerartion
 

Similar to Chapter 5 Fundamentals of Refrigeration

Se prod thermo_chapter_5_refrigeration
Se prod thermo_chapter_5_refrigerationSe prod thermo_chapter_5_refrigeration
Se prod thermo_chapter_5_refrigerationVJTI Production
 
Refrigeration vtu atd notes pdf download
Refrigeration vtu atd notes pdf downloadRefrigeration vtu atd notes pdf download
Refrigeration vtu atd notes pdf downloadkiran555555
 
Refrigeration and Heat Pump Systems
Refrigeration and Heat Pump SystemsRefrigeration and Heat Pump Systems
Refrigeration and Heat Pump SystemsSalman Jailani
 
5022-RAC MODULE-1.pdf
5022-RAC MODULE-1.pdf5022-RAC MODULE-1.pdf
5022-RAC MODULE-1.pdfAthulUdayan2
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Yuri Melliza
 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANTCharltonInao1
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermalcdtpv
 
Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Sijal Ahmed
 
Sessional 2 solutions
Sessional 2 solutionsSessional 2 solutions
Sessional 2 solutionsHammad Tariq
 
Thermodynamics Examples and Class test
Thermodynamics Examples and Class testThermodynamics Examples and Class test
Thermodynamics Examples and Class testVJTI Production
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioningEagle .
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
 
refrigeration-air-conditioning-training ppt
refrigeration-air-conditioning-training pptrefrigeration-air-conditioning-training ppt
refrigeration-air-conditioning-training pptnagendran25
 
Introduction to Air Refrigeration for 3/4 B.Tech
Introduction to Air Refrigeration for 3/4 B.TechIntroduction to Air Refrigeration for 3/4 B.Tech
Introduction to Air Refrigeration for 3/4 B.Techmaheshchindanu5783
 

Similar to Chapter 5 Fundamentals of Refrigeration (20)

Se prod thermo_chapter_5_refrigeration
Se prod thermo_chapter_5_refrigerationSe prod thermo_chapter_5_refrigeration
Se prod thermo_chapter_5_refrigeration
 
Referigeration
ReferigerationReferigeration
Referigeration
 
Refrigeration vtu atd notes pdf download
Refrigeration vtu atd notes pdf downloadRefrigeration vtu atd notes pdf download
Refrigeration vtu atd notes pdf download
 
refrigeration.pptx
refrigeration.pptxrefrigeration.pptx
refrigeration.pptx
 
Refrigeration and Heat Pump Systems
Refrigeration and Heat Pump SystemsRefrigeration and Heat Pump Systems
Refrigeration and Heat Pump Systems
 
5022-RAC MODULE-1.pdf
5022-RAC MODULE-1.pdf5022-RAC MODULE-1.pdf
5022-RAC MODULE-1.pdf
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)
 
13502376.ppt
13502376.ppt13502376.ppt
13502376.ppt
 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANT
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
 
Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle
 
Sessional 2 solutions
Sessional 2 solutionsSessional 2 solutions
Sessional 2 solutions
 
Thermodynamics Examples and Class test
Thermodynamics Examples and Class testThermodynamics Examples and Class test
Thermodynamics Examples and Class test
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioning
 
Chapter 4 Gas Turbine
Chapter 4 Gas TurbineChapter 4 Gas Turbine
Chapter 4 Gas Turbine
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
refrigeration-air-conditioning-training ppt
refrigeration-air-conditioning-training pptrefrigeration-air-conditioning-training ppt
refrigeration-air-conditioning-training ppt
 
Introduction to Air Refrigeration for 3/4 B.Tech
Introduction to Air Refrigeration for 3/4 B.TechIntroduction to Air Refrigeration for 3/4 B.Tech
Introduction to Air Refrigeration for 3/4 B.Tech
 
Gas power-09
Gas power-09Gas power-09
Gas power-09
 

More from ANIKET SURYAWANSHI

More from ANIKET SURYAWANSHI (9)

Chapter 6 Psychrometry & Air-Conditioning
Chapter 6  Psychrometry & Air-ConditioningChapter 6  Psychrometry & Air-Conditioning
Chapter 6 Psychrometry & Air-Conditioning
 
Chapter 3 Properties of Pure Substances
Chapter 3 Properties of Pure SubstancesChapter 3 Properties of Pure Substances
Chapter 3 Properties of Pure Substances
 
Chapter 2 Entropy & Availability
Chapter 2 Entropy & AvailabilityChapter 2 Entropy & Availability
Chapter 2 Entropy & Availability
 
Chapter 1 Review of Laws of Thermodynamics
Chapter 1 Review of Laws of ThermodynamicsChapter 1 Review of Laws of Thermodynamics
Chapter 1 Review of Laws of Thermodynamics
 
Sections of Solids
Sections of SolidsSections of Solids
Sections of Solids
 
Projection of Solids
Projection of SolidsProjection of Solids
Projection of Solids
 
Projections of Planes
Projections of PlanesProjections of Planes
Projections of Planes
 
Projection of Lines
Projection of LinesProjection of Lines
Projection of Lines
 
Engineering Curves
Engineering CurvesEngineering Curves
Engineering Curves
 

Recently uploaded

PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 

Recently uploaded (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 

Chapter 5 Fundamentals of Refrigeration

  • 1. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. FUNDAMENTALS OF REFRIGERATIONS Prof. Aniket Suryawanshi Asst. Prof. Automobile Engg. Dept. R. I. T. Rajaramnagar
  • 2. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Outline • Applications of Refrigeration. • Reversed Carnot Cycle. • COP and Power Calculations • Vapour – Compression Refrigeration System. • Presentation on T-S and P-h diagram. • Vapour – Absorption System.
  • 3. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Refrigeration REFRIGERATION – Cooling of or removal of heat from a system. Refrigerated System – System which is kept at lower temperature. Refrigeration – 1) By melting of a solid, 2) By sublimation of a solid, 3) By evaporation of a liquid. Most of the commercial refrigeration production : Evaporation of liquid. This liquid is known as Refrigerant.
  • 4. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Refrigeration Circuit Refrigeration Circuit Evaporator Compressor CondenserExpansion Valve
  • 5. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Refrigeration - Elements Compressor Condenser Evaporator Expansion Valve Wnet, in Surrounding Air Refrigerated Space QH QL High Temp Source Low Temp Sink QH QL Wnet, in
  • 6. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Refrigeration Systems 1. Ice Refrigeration System. 2. Air Refrigeration System. 3. Vapour Compression Refrigeration System. 4. Vapour Absorption Refrigeration System. 5. Adsorption Refrigeration System. 6. Cascade Refrigeration System. 7. Mixed Refrigeration System. 8. Thermoelectric Refrigeration System. 9. Steam Jet Refrigeration System. 10. Vortex Tube Refrigeration System. Refrigeration Systems :
  • 7. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Refrigeration - Applications 1. Ice making. 2. Transportation of food items above and below freezing. 3. Chemical and related industries. 4. Medical and Surgical instruments. 5. Processing food products and beverages. 6. Oil Refining. 7. Synthetic Rubber Manufacturing. 8. Freezing food products. 9. Manufacturing Solid Carbon Dioxide. Applications :
  • 8. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Performance - COP COP – Ratio of Heat absorbed by the Refrigerant while passing through the Evaporator to the Work Input required to compress the Refrigerant in the Compressor. Performance of Refrigeration System : - Measured in terms of COP (Coefficient of Performance). If; Rn = Net Refrigerating Effect. W = Work required by the machine. Then; W R COP n  COPlTheoretica COPActual COPlative Re Actual COP = Ratio of Rn and W actually measured. Theoretical COP = Ratio of Theoretical values of Rn and W obtained by applying Laws of Thermodynamics to the Refrigerating Cycle.
  • 9. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Performance - Rating Rating of Refrigeration System : - Refrigeration Effect / Amount of Heat extracted from a body in a given time. Unit : - Standard commercial Tonne of Refrigeration / TR Capacity Definition : - Refrigeration Effect produced by melting 1 tonne of ice from and at 0 ºC in 24 hours. Latent Heat of ice = 336 kJ/kg.
  • 10. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Reverse Carnot Cycle 3 2 1 4 Isotherms Adiabatic T2 Expansion Compression T1 Pressure Volume P –V Diagram 3 2 14T1 Expansion Compression T2 Temperature Entropy 1’4’ T –s Diagram
  • 11. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 3 2 14T1 Expansion Compression T2 Temperature Entropy 1’4’ Operation : 3 – 4 : Adiabatic Expansion. Temp. falls from T2 to T1. Cylinder in contact with Cold Body at T1. 4 – 1 : Isothermal Expansion. Heat Extraction from Cold Body. 1 – 2 : Adiabatic Compression. Requires external power. Temp. rises from T1 to T2. Cylinder in contact with Hot Body at T2 2 – 3 : Isothermal Compression. Heat Rejection to Hot Body. Reverse Carnot Cycle
  • 12. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 3 2 14T1 Expansion Compression T2 Temperature Entropy 1’4’ Heat extracted from cold Body : Area 1-1’-4’-4 = T1 X 1-4 Work done per cycle : Area 1-2-3-4 = (T2 – T1) X 1-4 12 1 12 1 )41()( )41( 4321 4'4'11 TT T XTT XT Area Area DoneWork ExtractedHeat COP          Reverse Carnot Cycle
  • 13. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 1 A Carnot Refrigerator requires 1.3 kW per tonne of refrigeration to maintain a region at low temperature of -38 ºC. Determine: i) COP of Carnot Refrigerator. ii) Higher temperature of the cycle. iii) Heat delivered and COP, if the same device is used Heat Pump. 99.2 )sec/3600()3.1( /000,14 3.1 1  hrkW hrkJ kW tonne doneWork absorbedHeat COPrefrig ….ANS KT KT K TT T COPrefrig 6.313 235 235 99.2 1 212 1      ….ANS Heat Delivered as Heat Pump ; sec/189.53.1 3600 /000,14 3.11 kJ hrkJ kWtonne doneWorkabsorbedHeat   ….ANS 99.3 3.1 sec/189.5  kW kJ doneWork deliveredHeat COPHP ….ANS
  • 14. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 2 A refrigerating system works on reverse Carnot cycle. The higher temperature in the system is 35 ºC and the lower temperature is -15 ºC. The capacity is to be 12 tonnes. Determine : i) COP of Carnot Refrigerator. ii) Heat rejected from the system per hour. iii) Power required. 18.5 258308 258 12 1      KK K TT T COPrefrig ….ANS hrkJInputWork InputWork hrkJX InputWork tonne InputWork Effectfrig COPrefrig /32558 /000,141212 16.5 .Re   ….ANSkW hrkJhrInputWork Power 04.9 3600 /32558 3600 /  Heat Rejected / hr = Refrig. Effect / hr + Work Input / hr = 12 x 14,000 (kJ/hr) + 32,558 (kJ/hr) = 2,00,558 kJ/hr. ….ANS
  • 15. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 3 Ice is formed at 0 ºC from water at 20 ºC. The temperature of the brine is -8 ºC. Find out the kg of ice per kWh. Assume that the system operates on reversed Carnot cycle. Take latent heat of ice as 335 kJ/kg. 46.9 265293 265 12 1      KK K TT T COPrefrig Heat to be extracted per kg of water ( to from ice at 0 ºC) Rn = 1 (kg) x Cpw (kJ/kg.K) x (293– 273) (K) + Latent Heat (kJ/kg) of ice = 1 (kg) x 4.18 (kJ/kg.K) x 20 (K) + 335 (kJ/kg) = 418.6 kJ/kg. Also, 1 kWh = 1 (kJ) x 3600 (sec/hr) = 3600 kJ. kgm kJ kgkJXkgm kJdoneWork kJEffectfrig W R COP ice ice n refrig 35.81 3600 )/(6.418)( 46.9 )( )(.Re   ….ANS
  • 16. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System Elements of this system : 1. Compressor. 2. Condenser. 3. Expansion Valve. 4. Evaporator. Vapour @ ↓ Pr. and ↓ Temp. (State 1) Isentropic Compression : ↑ Pr. and ↑ Temp. (State 2) Condenser : ↑ Pr. Liquid (State 3) Throttling : ↓ Pr. ↓ Temp. (State 4) Evaporator : Heat Extraction from surrounding; ↓ Pr. vapour (State 1). 1 2 3 4 1 23 4
  • 17. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System Merits : 1. High COP; as very close to Reverse Carnot Cycle. 2. Running Cost is 1/5th of that of Air Refrigeration Cycle. 3. Size of Evaporator is small; for same Refrigeration Effect. Demerits : 1. Initial cost is high. 2. Inflammability. 4. Evaporator temperature adjustment is simple; by adjusting Throttle Valve. 3. Leakage. 4. Toxicity.
  • 18. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System : T-s Diagram Case A. Dry and Saturated Vapour after Compression : Work done by Compressor = W = Area 1-2-3-4-1 Heat Absorbed = W = Area 1-4-g-f-1 Entropy, s Temperature,T Condensation Compression Evaporation Expansion T2 T1 3 4 2 1 Compressor Work, (W) Net Refrig. Effect, (Rn) Sat. Vapour Line Sat. Liq. Line fg 12 41 14321 141 hh hh Area fgArea DoneWork AbsorbedHeat COP       
  • 19. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System : T-s Diagram Case B. Superheated Vapour after Compression : Work done by Compressor = W = Area 1-2-2’-3-4-1 Heat Absorbed = W = Area 1-4-g-f-1 12 41 143'221 141 hh hh Area fgArea DoneWork AbsorbedHeat COP        Entropy, s Temperature,T Condensation Compression Evaporation Expansion T2 T1 3 4 2 1 Compressor Work, (W) Net Refrig. Effect, (Rn) Sat. Vapour Line Sat. Liq. Line fg 2’ NOTE : h2 = h2’ + Cp (Tsup – Tsat)
  • 20. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System : T-s Diagram Case C. Wet Vapour after Compression : Work done by Compressor = W = Area 1-2-3-4-1 Heat Absorbed = W = Area 1-4-g-f-1 Entropy, s Temperature,T Condensation Compression Evaporation Expansion T2 T1 3 4 2 1 Compressor Work, (W) Net Refrig. Effect, (Rn) Sat. Vapour Line Sat. Liq. Line fg 12 41 14321 141 hh hh Area fgArea DoneWork AbsorbedHeat COP        NOTE : h2 = (hf + x.hfg)2
  • 21. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System : P-h Diagram Enthalpy, h Pressure,Pr Isothermal, T=Const Isenthalpic, h=Const. Isobaric, P = Const Sub-cooled Liq. region 2 – phase region Superheated region
  • 22. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System : P-h Diagram Enthalpy, h Pressure,Pr 1 23 4 Evaporation Condensation Compression 12 41 hhW hhRn   12 41 hh hh W R COP n    
  • 23. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System – Mathematical Analysis A. Refrigerating Effect :   )/(41 kgkJHeatdSuperheateHeatLatenthhQevap  = Amount of Heat absorbed in Evaporator. B. Mass of Refrigerant : = Amount of Heat absorbed / Refrigerating Effect.   )sec/( 3600 000,14 41 tonnekg hh m    1 TR = 14,000 kJ/hr C. Theoretical Piston Displacement : = Mass of Refrigerant X Sp. Vol. of Refrigerant Gas (vg)1.     )sec/( 3600 000,14 .. 3 1 41 tonnemv hh DisplPistonTh g   
  • 24. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression System – Mathematical Analysis     )( )/( 12 12 kWhhmP kgkJhhW theor comp   a) Isentropic Compression : D. Theoretical Power Required :     )( 1 )/( 1 1122 1122 kWVPVP n n mP kgkJVPVP n n W theor comp       a) Polytropic Compression : E. Heat removed through Condenser :   )/(32 kgkJhhmQcond 
  • 25. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 4 A refrigeration machine is required to produce ice at 0º C from water at 20 ºC. The machine has a condenser temperature of 298 K while the evaporator temperature is 268 K. The relative efficiency of the machine is 50 % and 6 kg of Freon-12 refrigerant is circulated through the system per minute. The refrigerant enters the compressor with a dryness fraction of 0.6. Specific heat of water is 4.187 kJ/kg.K and the latent heat of ice is 335 kJ/kg. Calculate the amount of ice produced on 24 hours. The table of properties if Freon-12 is given below: Temperature (K) Liquid Heat (kJ/kg) Latent Heat (kJ/kg) Entropy of Liquid (kJ/kg) 298 59.7 138.0 0.2232 268 31.4 154.0 0.1251 hf1 = 31.4 kJ/kg hfg1 = 154.0 kJ/kg hf2 = 59.7 kJ/kg hfg2 = 138.0 kJ/kg hf3 = h4 = 59.7 kJ/kg m = 6 kg/min ηrel = 50 % x2 = 0.6 Cpw = 4.187 kJ/kg.K Latent Heat of ice = 335.7 kJ/kg Given :
  • 26. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 4….contd Entropy, s Temperature,T 298 K 268 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg kgkJhxhh fgf /8.1230.154)6.0(4.31111  kgkJhxhh fgf /2.1330.138)5325.0(7.5922 22    5325.0 268 0.154 6.01251.0 298 0.138 2232.0 2 2 1 1 11 2 2 22 111222 12                              x x T h xs T h xs sxssxs ss fg f fg f fgffgf Isentropic Compression : 1-2 kgkJhh f /7.5934  COP of Original Cycle :     82.6 /8.1232.133 /7.598.123 12 41        kgkJ kgkJ hh hh W R COP n
  • 27. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 4….contd Actual COP = ηrel X COPtheor = 0.5 X 6.82 = 3.41 Heat extracted from 1 kg of water at 20 ºC to form 1 kg of ice at 0 ºC : kgkJ kgkJ CXKkgkJXkg /74.418 )/(335 )()020()./(187.4)(1    Entropy, s Temperature,T 298 K 268 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg Now; ….ANS     hrsintonne XX kg kgkJ kgkJXkg m hhm Xm W R COP ice iceactualn actual 24661.0 1000 2460459.0 min/459.0 41.3 /74.418 )/(8.1232.133)(6 74.418 41.3 12 )(       
  • 28. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 5 28 tonnes of ice from and at 0 ºC is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 25ºC to -15ºC. The vapor is dry and saturated at the end of compression and an expansion valve is used. Assuming a co-efficient of performance of 62% of the theoretical, calculate the power required to drive the compressor. Take latent heat of ice = 335 kJ/kg. Temp (ºC) Enthalpy (kJ/kg) Entropy of Liquid (kJ/kg.K) Entropy of Vapour (kJ/kg.K)Liquid Vapour 25 100.04 1319.22 0.3473 4.4852 -15 -54.56 1304.99 -2.1338 5.0585 hf1 = -54.56 kJ/kg hg1 = 1304.99kJ/kg hf2 = 100.04 kJ/kg hg2 = 1319.22 kJ/kg hf3 = h4 = 100.04 kJ/kg Tcond = 25 ºC Tevap = -15 ºC x2 = 1….dry saturated vapour COPactual = 0.62 (COPtheor) Latent Heat of ice = 335.7 kJ/kg Given :
  • 29. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech.     91.8 23.119622.1319 04.10023.1196 12 41        hh hh COP ltheoreticaCOP of the Cycle : Entropy, s Temperature,T 298 K 258 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg Example 5….contd processcIsenthalpikgkJhh ...../04.10043    kgkJ hxhh fgf /23.1196 )56.54(99.1304)92.0()56.54( )( 1111         92.0 1338.20585.5)1338.2(4852.4 1 1 1112 12     x x sxss ss fgfg Isentropic Compression : 1-2 kgkJhh g /22.131922 
  • 30. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 5….contd Actual COP = ηrel X COPtheor = 0.62 X 8.91 = 5.52 Entropy, s Temperature,T 298 K 258 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg Actual Rn = COPactual X Work done = 5.52 X (h2 – h1) = 5.52 X (1319.22 – 1196.23) = 678.9 kJ/kg Heat extracted from 28 tonnes of water at 0 ºC to form ice at 0 ºC : )(sec/56.108 )(sec/3600)(24 )/(335)/(1000)(28 kWkJ hrXhr kgkJXtonnekgXkg   Mass of refrigerant : kg kgkJ kJ 1599.0 )/(9.678 sec)/(56.108  Total Work done by Compressor :   )(sec/67.19 /)23.119622.1319()(1599.012 kWkJ kgkJXkghhXmrefrig   ….ANS
  • 31. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 6 In a standard vapour compression refrigeration cycle, operating between an evaporator temperature of -10 ºC and a condenser temperature of 40 ºC, the enthalpy of the refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on T-s plane. Calculate: 1. The C.O.P. of the cycle. 2. The refrigerating capacity and the compressor power assuming a refrigerant flow rate of 1 kg/min. You may use the extract of Freon-12 property table given below: Temp (ºC) Pr (MPa) hf (kJ/kg) hg (kJ/kg) -10 0.2191 26.85 183.1 40 0.9607 74.53 203.1 hf1 = 26.85 kJ/kg hg1 = h1 = 183.1 kJ/kg hf2 = 74.53 kJ/kg hg2 = 203.1 kJ/kg hf3 = h4 = 74.53 kJ/kg Tcond = 40 ºC Tevap = -10 ºC x1 = 1….dry saturated vapour h2 = 220 kJ/kg Given :
  • 32. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 6….contd COP of Original Cycle :     94.2 /1.1830.220 /53.741.183 12 41        kgkJ kgkJ hh hh W R COP n ….ANS Refrigerating Capacity :     min/57.108 /53.741.183)(141 kJ kgkJXkghhm   ….ANS Compressor Power :     kW kJ kgkJXkghhm 615.0 min/9.36 /1.1830.220)(112    ….ANS Entropy, s Temperature,T 40 ºC -10 ºC 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg 2’
  • 33. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 7 A Freon-12 refrigerator producing a cooling effect of 20 kJ/sec operates on a simple cycle with pressure limits of 1.509 bar and 9.607 bar. The vapour leaves the evaporator dry saturated and there is no undercooling. Determine the power required by the machine. If the compressor operates at 300 rpm and has a clearance volume of 3% of stroke volume, determine the piston displacement of the compressor. For compressor assume that the expansion following the law PV1.3 = Constant. Temp (oC) Ps (bar) vg (m3/kg) Enthalpy hf (kJ/kg) Enthalpy hg (kJ/kg) Entropy sf (kJ/kg) Entropy sg (kJ/kg) Specific heat (kJ/kg.K) -20 1.509 0.1088 17.8 178.61 0.073 0.7082 --- 40 9.607 --- 74.53 203.05 0.2716 0.682 0.747 hf1 = 17.8 kJ/kg hg1 = h1 = 178.61 kJ/kg hf2 = 74.53 kJ/kg hg2’ = 203.05 kJ/kg hf3 = h4 = 74.53 kJ/kg Tcond = 40 ºC Tevap = -20 ºC x1 = 1….dry saturated vapour h2 = 220 kJ/kg Given :
  • 34. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 7….contd Refrigerating Capacity :     sec/192.0 /53.7461.1782041 kgm kgkJXmkWhhm       KT T T T Css ss P 2.324 313 ln747.0682.07082.0 ln 2 2 '2 2 '21 21                 Isentropic Compression : 1-2      kgkJ KKkgkJkgkJ TTChh P /4.211 0.3132.324./747.0)/(05.203 '22'22    Entropy, s Temperature,T 313 K 253 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg 2’
  • 35. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 7 ….ANS Power Required :     kW kgkJXkghhm 29.6 /61.1784.211sec)/(192.012    Vol. Efficiency : %6.87 509.1 607.9 03.003.01 1 13.1/1 /1                bar bar P P kk n S d vol Vol of Refrigerant at Intake : sec/02089.0 )/(1088.0sec)/(192.0 3 3 m kgmXkg vm g     Piston Displ. Vol. :   3 3 00477.0 )(300876.0 min)(sec/60sec)/(02089.0 )( . m rpm m rpm VolActual vol        ….ANS Entropy, s Temperature,T 313 K 253 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg 2’
  • 36. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 8 A food storage locker requires a refrigeration capacity of 50 kW. It works between a condenser temperature of 35 ºC and an evaporator temperature of -10 ºC. The refrigerator is ammonia. It is sub-cooled by 5 ºC before entering the expansion valve. By the dry saturated vapour leaving the evaporator. Assuming a single-cylinder, single-acting compressor operating at 1000 rpm with stroke equal to 1.2 times the bore, determine : 1. The power required. 2. The cylinder dimensions. Properties of ammonia are : Sat. Temp. (oC) Pr. (bar) Enthalpy (kJ/kg) Entropy (kJ/kg) Sp. Vol. (m3/kg) Sp. Heat (kJ/kg.K) Liquid Vapour Liquid Vapour Liquid Vapour Liquid Vapour -10 2.9157 154.056 1450.22 0.82965 5.7550 --- 0.417477 --- 2.492 35 13.522 366.072 1488.57 1.56605 5.2086 1.7023 0.095629 4.556 2.903 h1 = 1450.22 kJ/kg h2’ = 1488.57 kJ/kg hf3 = 366.072 kJ/kg Tcond = 35 ºC Tevap = -10 ºC x1 = 1….dry saturated vapour State 3 = Sub-cooled by 5 ºC Given :
  • 37. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 8….contd     kgkJ kgkJkgkJ TTChhh subcoolsatliqPf /29.343 )/(30330856.405)/(07.366 34'3      KT T T T Cssss P 8.371 308 ln903.22086.5755.5 ln 2 2 '2 2 '2121                Isentropic Compression : 1-2      kgkJ KKkgkJkgkJ TTChh P /8.1673 0.3088.371./903.2)/(57.1488 '22'22    Entropy, s Temperature,T 308 K 263 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg 2’ 3’ 303 K
  • 38. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Example 8….contd     sec/04517.0 /29.34322.1450 )(50 / )(50 41 kg kgkJ kW kgkJhh kW m       Mass of Refrigerant : Compressor Power :     kW kgkJXkg hhm 1.10 /22.14508.1673)(04517.0 12     ….ANS Cylinder Dimensions :   mmL mD kgm rpm DD v N LD kgm g 228.0)19.0(2.1 19.0 /417477.0 60 )(1000 )2.1( 4604 sec)/(04517.0 3 22                   ….ANS ….ANS Entropy, s Temperature,T 308 K 263 K 3 4 2 1 Sat. Vapour Line Sat. Liq. Line fg 2’ 3’ 303 K
  • 39. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Simple Theoretical Vapour Absorption System Evaporator Absorber GeneratorCondenser Weak Solution Refrig. Vapour Strong Solution PUMP QE QA WP Expn. Valve QC QG (2) (1) (3) (4) (5) (6) (7) (8) Assumption : Absorbent does not vaporise in the Generator. State (1) : Vapour leaving the Evaporator + Weak Liq. Solution in the Absorber Removal of Heat : Refrig. Vapour be absorbed by Weak Liq. Solution. Strong Liq. Solution. Pressure of Liq. Solution ↑ by pump to Generator Pressure.
  • 40. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Evaporator Absorber GeneratorCondenser Weak Solution Refrig. Vapour Strong Solution PUMP QE QA WP Expn. Valve QC QG (2) (1) (3) (4) (5) (6) (7) (8) Heat Addition in Generator : Refrig. Vapour be driven out of the Liq. Solution. Heat Exchanger in Liq. Solution Circuit, between Generator and Absorber. Generator + Condenser : HP Side. Evaporator + Absorber : LP Side. Simple Theoretical Vapour Absorption System
  • 41. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Absorption Fluid System TE TG Pump TO WP QO QG QE Generator Refrig. Space Environment Energy Transfer to & from the Fluid of Absorption System : Generator : Heating Medium Heat Addition, QG Pump : Work Addition, WP Substance to be cooled : Heat Addition, QE Absorber : Heat Rejection, QO = QA (Absorber) + QC (Condensor) to environment through cooling water. Simple Theoretical Vapour Absorption System
  • 42. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Absorption Fluid System TE TG Pump TO WP QO QG QE Generator Refrig. Space Environment CAO QQQ  First Law of Thermodynamics : PEGO WQQQ  Assumptions : Generator Heating Med. Temp, TG Refrig. Substance Temp, TE Environmental Temp, TO Const. Simple Theoretical Vapour Absorption System
  • 43. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Absorption System 1 2 4 3 Solubility of NH3 in water @ ↓ Temp and Pr. is MORE than that @ ↑ Temp. and Pr. NH3 vapour from Evaporator (State 1) is readily absorbed in Absorber. Heat Rejection This solution is then pumped to ↑ Temp. and Pr. @ Generator. Reduction in stability of solution Vapour removed from Solution. Vapour passes to Condenser. Weak Solution returns to Absorber.
  • 44. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Absorption System Merits : 2. Work done on Compression is LESS. 1. Pumping work is much less than work for Compressing vapour. Demerits : 2. Low COP. 1. Heat input to the Generator is required. COP : PumpLiquidondoneWorkGeneratorinpliedHeat EvaporatorinextractedHeat COP   sup
  • 45. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Vapour Compression Vs. Vapour Absorption Sr. No. Particulars Vapour Compression Systems Vapour Absorption Systems 1. Type of Energy Supplied Mechanical – High Grade Heat – Low Grade 2. Energy Supply Rate Low High 3. Wear & Tear More Less 4. Performance of Part Load Poor Not affected at Part Load 5. Suitability Used where High Grade Mechanical Energy is available Can be used at Remote Places, as can be used with simple Kerosene lamp 6. Charging of Refrigerant Simple Difficult 7. Leakage More chances No chances, as no Compressor or Reciprocating Part 8. Damage Liquid traces in Suction Line may damage Compressor No danger
  • 46. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Thermodynamic Properties A. Critical Temp. & Pressure 1. Highest Temp at which liquid can be condensed. 2. Condenser Pressure : well below Critical Pressure. 3. Otherwise ↑ Power Consumption…!!!
  • 47. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. High Vaporisation Enthalpy. Enthalpy, hPressure,Pr Vaporization Enthalpy B. Enthalpy of Vaporization 2. More Refrigerating Effect per unit mass of refrigerant. 3. ↓ Size of Equipment. Thermodynamic Properties
  • 48. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. As HIGH as possible. Enthalpy, h Pressure,Pr 1 23 4 Evaporation Condensation Expansion C. Specific Heat Vapour : ↑ value is desired. Liquid : ↓ value is desired. D. Thermal Conductivity 2. ↑ Heat Transfer Rates. 3. Use of Low Conductivity Materials. Thermodynamic Properties
  • 49. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. • Both should be + ve. E. Evaporator & Condenser Pressures • + ve Pressure : Refrigerant flows out , if leak…!! • – ve Pressure : Air and Moisture enters into system…!!! Enthalpy, h Pressure,Pr 1 23 4 Evaporation Condensation Expansion Thermodynamic Properties
  • 50. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. Chemical Stability – Important as Working Substance. A. Stability & Inertness 2. Should Not decompose in operating range of temperatures. 3. Inertness – Should Not react with equipment material. e.g. Ammonia (NH3) attacks on Copper and Cuprous alloys. Chemical Properties
  • 51. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. As low as possible B. Flammability C. Water Solubility 1. Less solubility for water. inflammable 2. Straight Hydrocarbons : ↑ flammable 2. Presence of moisture can be detected…!!! Chemical Properties
  • 52. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. Ability to mix with oil. D. Miscibility E. Toxicity 2. Need Oil Separators. 2. Toxic Refrigerants : 1. As low as possible Non - Toxic DANGER for Domestic and Comfort Air Conditioning Chemical Properties
  • 53. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. 1. Non – Corrosive. F. Corrosive Properties G. Viscosity 1. Low Viscosity 2. Better Refrigerant Flow ↑ Heat Transfer H. Dielectric Strength 1. High Dielectric Strength for Hermetically Sealed Compressors. Chemical Properties
  • 54. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. • Boiling Temperature of refrigerant should be quite low at atmospheric conditions for effective refrigeration. For refrigerants having higher boiling temperatures at atmospheric conditions the compressor is run at higher vacuum. • For an ideal refrigerant the freezing temperature of refrigerant should be quite low so as to prevent its freezing at evaporative temperature. Freezing point temperature should be less than evaporative temperature. For example, R-22 has freezing point of -160ºC and normally most of refrigerants have freezing point below -30ºC. • Critical temperature of the ideal refrigerant should be higher than the condenser temperature for the ease of condensation. • Refrigerant should have large latent heat at evaporative temperature as this shall increase the refrigerant capacity per kg of refrigerant. • Refrigerant should have small specific volume at inlet to compressor as this reduces compressor size for the same refrigeration capacity. Desired Properties of Refrigerants
  • 55. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. • Specific heat of refrigerant in liquid form should be small and it should large for refrigerant in vapor form, since these increase the refrigerating capacity per kg of refrigerant. • Thermal conductivity of refrigerant should be high. • Viscosity of refrigerant should be small for the ease of better heat transfer and small pumping work requirement. • Refrigerant should be chemically inert and non-toxic. • Refrigerant should be non-flammable, non- explosive and do not have any harmful effect upon coming in contact with material stored in refrigeration space. • Refrigerant may have pleasant distinct odour so as to know about its leakage. • Refrigerant should be readily available at lesser price. Desired Properties of Refrigerants
  • 56. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Classification Refrigerants Primary Secondary 1. Halocarbon Refrigerants 2. Inorganic Refrigerants 3. Azeotrope Refrigerants 4. Hydrocarbon Refrigerants  Usually liquids.  Transfer heat from the substance being cooled to a Heat Exchanger where the heat is absorbed by a Primary Refrigerant.  e.g. In an air conditioning system, air acts as a secondary refrigerant.
  • 57. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Halocarbon Refrigerants 42 identified halocarbons by ASHRAE • Designated by ‘R’ followed by a Numerical. • First digit from right ≡ No. of C atoms -1 • Second digit from right ≡ No. of H atoms +1 • Third digit from right ≡ No. of Fluorine (F) atoms Nomenclature : e.g. : R 114 – dichloro-tetrafluoro-ethane
  • 58. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R – 11 ( C-Cl3-F ) • Operating Pressures – 0.3 bar (Evaporator) – 1.25 bar (Condenser) • Suitable with Centrifugal Compressor. • Also used as Secondary Refrigerant. • Safe and Non – Toxic • One of the Highest Ozone Destruction Potential . C Cl Cl Cl F
  • 59. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R – 12 ( C-Cl2-F2 ) • Most widely used. • Non – Toxic, Non – Flammable. • Miscible with oil. • Comparably Lower Latent Heat. • High Vapour Density. • High Ozone Depletion Potential . C F Cl Cl F
  • 60. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R – 12 ( C-Cl-F3 ) • Used in Ultra Low Temperature applications. • Boiling Temp. = (-98) ˚C • Suitable for all types of compressors. • High Ozone Depletion Potential. C F F Cl F
  • 61. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R – 22 ( C-H-Cl-F2 ) • High Discharge Temp. Thus suction superheat should be minimum. • Smaller Compressor Displacement is required than R 12. • Low Ozone Depletion Potential. • Similar Properties as of R 12. C F Cl H F
  • 62. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R – 134a • Leading candidate to Replace R 12. • Zero Ozone Depletion Potential. • Non – Flammable, Non – Toxic. • High Heat Transfer Coefficient. • Miscibility Problems. C F F F C F H H
  • 63. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Inorganic Refrigerants Before Halocarbons, these were used extensively…!! • Designated by ‘R’ followed by a Numerical. • Number ≡ 700 + Mole. Weight of the compound. Nomenclature : e.g. : Ammonia ≡ 700 + 17 ≡ R 717.
  • 64. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Ammonia ( NH3 – R 717 ) • Extensively used other than Halocarbons. • Excellent Thermal Properties. • Highest Refrigerating Effect per unit mass. • Operating Pressures – 2.37 bar (Evaporator) – 11.67 bar (Condenser) • Not Miscible with oil. • It attacks on Copper & Cuprous alloys.
  • 65. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Carbon Dioxide ( CO2 – R 744 ) • Excellent for Low Temperature Refrigeration. • Boiling Point = (-73.6) ˚C. • Operating Pressures – 20.7 bar (Evaporator, -15 ºC) – 11.67 bar (Condenser, 70 ºC) • Low Efficiency. • Immiscible with oil, Non – Flammable. • High Global Warming Potential.
  • 66. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Azeotropic Refrigerants • Azeotrope : • Designated by 500 Series. Mixture of two / more components in exact proportion. To form Low / High Pressure Boiling Mixture .
  • 67. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R 500 • Blend of R 12 + R 152a : R 12 (73.8 %) + R 152a (26.2 %) by weight. • Good substitute for R 12. • Compressor Capacity ↑ by 18 %.
  • 68. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. R 502 • Blend of R 22 + R 115 : R 22 (48.8 %) + R 115 (51.2 %) by mass. • Low Compressor Discharge Temp. than R 22. • Non – Flammable, Non – Toxic. • Low Oil Miscibility. • Replacement of R 22.
  • 69. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Straight Hydrocarbons • Highly Flammable. • Miscible with oil. • Ethane ( C2H6 ) , Methane ( CH4 ) & Ethylene ( C2H5 ) : Low Temperature Refrigeration
  • 70. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. ASHRAE Designation for Refrigerants No. Chemical Name Formulae Mole. Weight Halocarbons : 11 Trichloro-monofloro methane C-Cl3-F 137.4 12 Dichloro-difloro methane C-Cl2-F2 120.9 13 Monochloro-trifloro methane C-Cl-F3 104.5 14 Carbon tetrachloride C-F4 88.0 21 Dichloro-monofloro methane C-H-Cl2-F 102.9 22 Monochloro-difloro methane C-H-Cl-F2 86.5 113 Trichloro-trifloro ethane C-Cl2-F-C-Cl-F2 187.4 114 Dichloro-tetrafloro ethane C-Cl-F2-C-Cl-F2 170.9 Hydrocarbons : 50 Methane Ch4 16.0 170 Ethane C-H3-C-H3 30.0 290 Propane C-H3-C-H2-C-H3 44.0 Inorganic Compounds : 717 Ammonia NH3 17.0 718 Water H2O 18.0 729 Air --- 29.0 744 Carbon dioxide CO2 44.0 764 Sulphur dioxide SO2 64.0
  • 71. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Comparative Refrigerant Data Refrigerant Boiling Temp.@ 1 atm ( ºC) Freezing Temp. (ºC) Critical Temp. (ºC) Critical Pr. (bar) 11 23.83 -111.11 198.00 44.09 12 -29.78 -157.78 112.00 41.15 13 -81.40 -181.10 28.83 38.68 14 -128.00 -183.89 -45.50 37.37 21 8.89 -135.00 177.94 51.71 22 -40.78 -160.00 96.00 49.77 113 47.55 -35.00 214.11 34.13 114 3.56 -94.27 145.72 32.68 717 -33.33 -77.72 133.00 114.25 718 100.00 0.00 374.50 222.42 729 -194.33 --- -140.55 37.71 744 -78.50 -56.61 31.00 73.85 764 -10.00 -75.50 157.11 78.70
  • 72. AE 2031 APPLIED THERMODYNAMICS S. Y. B. Tech. Thank You !