SlideShare a Scribd company logo
1 of 49
Download to read offline
Ionic Liquid Pretreatment 

EERE Webinar 

June 24, 2013 

Blake Simmons, Ph.D.

Vice-President, Deconstruction Division, Joint BioEnergy Institute

Senior Manager, Biomass Program Lead, Sandia National 

Laboratories
 
 
 
 
 
 
INTRODUCTION - IONIC LIQUIDS

• Salts that are liquid at ambient temperatures.
• Have stable liquid range of over 300 K.
• Very low vapour pressure at room temperature.
• Selective solubility of water and organics.
• Potential to replace volatile organic solvents used in
processes
• Often associated with Green Chemistry. Has been a
major driving force behind the intense interest in ionic
liquids
 
 
 
 
INDUSTRY DRIVERS: ALTERNATIVE SOLVENTS

FOR PROCESS INTENSIFICATION

• There is a need to develop more environmentally benign
solvents or use solventless systems
• Such solvents should replace toxic and environmentally
hazardous and/or volatile solvents
• Necessary to develop and optimize reactions conditions to
use these new solvents and at the same time maximize yield
and minimize energy usage.
• Examples include use of solids or involatile liquids rather than
volatile, flammable and environmentally hazardous organic
compounds (VOC).
 
 
 
 
 
 
 
 
WHY CONSIDER IONIC LIQUIDS
AS GREEN SOLVENTS
• Low melting organic salts (-60 °C)
• Very low vapor pressure (good)
• Non-flammable (good)
• Wide liquid range (300 °C) (good)
• Moderate to high viscosity (bad)
• Solvent properties different from molecular solvents (good
and bad)
• Solvent properties can be controlled by selection of anion
and cation – hence often termed designer solvents (good)
• BUT – some ionic liquids are toxic to the environment and
humans
anionOrganic
cation
DESIGNER SOLVENTS - FLEXIBILITY OF CHOOSING
FUNCTIONAL GROUPS TO MAKE IONIC LIQUIDS
Alkylammonium
Alkylphosphonium
Alkylnitride
N,N’-dialkylimidazolium
N-alkylpyridinium

Halide-based (Cl
-, Br
-­‐, F
-­‐)
Halogeno-based (BF4
-­‐, PF6
-­‐)
Halogenoaluminium(III)

NO3
-­‐, ClO4
-­‐,HSO4
-­‐
SO3
-­‐, CF3SO3
-­‐
(CF3SO2)2N-­‐
(CF3SO2)3C-­‐
INDUSTRIAL PROCESSES WITH IONIC LIQUIDS
1-ethyl-3-methylimidazolium acetate, abbreviated
as [C2mim][OAc], dissolves > 20 wt% cellulose
CERTAIN IONIC LIQUIDS (ILS) ARE
EFFECTIVE BIOMASS SOLVENTS
Cation determines:
-  stability
-  properties
Anion determines:
- chemistry
- functionality
Room	
  Temperature,	
  Molten	
  Salts	
  
Simmons,	
  B.	
  et	
  al.,	
  Ionic	
  Liquid	
  Pretreatment,	
  Chem	
  Eng	
  Prog,	
  2010,	
  3,	
  50-­‐55	
  
7	
  
SOLVENT-BASED PREDICTORS OF IL
PERFORMANCE ON BIOMASS
•  Target: design of task-
specific ILs
•  Need: method of comparing
and determining solvent
properties
•  Kamlet-Taft parameters is a
way of measuring solvent
polarity using
solvatochromic dyes
•  Provides a quantitative
measure of:
-  solvent polarizability (π*
parameter),
-  hydrogen bond donator
capacity (α parameter),
-  hydrogen bond acceptor
capacity (β parameter).
Doherty	
  et	
  al.,	
  Green	
  Chemistry,	
  2010,	
  12(11),	
  	
  1967-­‐1975.	
  	
  
ESTABLISHING AN EFFECTIVE IL
CONVERSION PROCESS TECHNOLOGY
Feedstocks	
  
Pretreatment	
  
SaccharificaHon	
  
Fuels	
  Synthesis	
  
•  Challenge: Current
pretreatments are not effective
on wide range of feedstocks
and/or generate inhibitors
•  Any upstream unit operation
must be integrated with
downstream functions
•  Solution: develop an IL biomass
conversion platform that is
feedstock agnostic
Ø  Develop mechanistic
understanding of how ILs interact
with biomass
Ø  Explore alternative modes of IL
pretreatment that decrease cost
9	
  
[C2mim][OAc] Switchgrass
Heat
Stir
Anti-
solvent
Advantages:
•  Increased enzyme accessibility
•  Decreased lignin
•  Significantly impacted cellulose crystallinity
Challenges:
•  IL recovery and recycle
•  Process integration
•  IL cost
WE HAVE ESTABLISHED AN EFFECTIVE IONIC
LIQUID PRETREATMENT PROCESS BASELINE
10	
  
UNDERSTANDING IL PRETREATMENT
Molecular	
  scale:	
  20-­‐mer	
  of	
  cellulose;	
  [C2mim][OAc]/H2O	
  (w/w)	
  =	
  50/50	
  
Ø  MD	
  simulaHons	
  conducted	
  using	
  
NERSC	
  resources	
  
Ø  Provides	
  new	
  insight	
  into	
  the	
  
mechanism	
  of	
  cellulose	
  solvaHon	
  in	
  
ionic	
  liquids	
  
Ø  Produced	
  new	
  hypothesis	
  on	
  the	
  
mechanism	
  of	
  cellulose	
  precipitaHon	
  
Liu	
  et	
  al.,	
  Journal	
  of	
  Physical	
  Chemistry	
  (2011),	
  115(34),	
  10251-­‐10258.	
  
11	
  
Macroscale:	
  plant	
  cell	
  walls	
  of	
  pine,	
  [C2mim][OAc],	
  120	
  oC	
  
Ø  In	
  situ	
  studies	
  using	
  bright	
  field	
  
microscopy	
  
Ø  Rapid	
  swelling	
  of	
  the	
  plant	
  cell	
  walls,	
  
followed	
  by	
  dissoluHon	
  
Ø  Complementary	
  Raman	
  studies	
  
indicate	
  that	
  lignin	
  is	
  solvated	
  first,	
  
then	
  cellulose	
  
SWITCHGRASS UNDERGOING IL PRETREATMENT
•  [C2mim][OAc],	
  120oC,	
  t	
  =	
  10	
  minutes	
  
•  In	
  situ	
  studies	
  using	
  bright	
  field	
  microscopy	
  
•  Complementary	
  Raman	
  and	
  fluorescence	
  studies	
  indicate	
  that	
  
lignin	
  is	
  solvated	
  first,	
  then	
  cellulose	
  
12	
  
SOLVENT-BASED PREDICTORS
OF IL PERFORMANCE
•  Target: design of task-
specific ILs
•  Need: method of comparing
and determining solvent
properties
•  Kamlet-Taft parameters is a
way of measuring solvent
polarity using
solvatochromic dyes
•  Provides a quantitative
measure of:
-  solvent polarizability (π*
parameter),
-  hydrogen bond donator
capacity (α parameter),
-  hydrogen bond acceptor
capacity (β parameter).
Doherty	
  et	
  al.,	
  Green	
  Chemistry,	
  2010,	
  12(11),	
  	
  1967-­‐1975.	
  	
  
•  Comparative study of
leading pretreatment
technologies on
common feedstock and
enzymes (inter-BRC
collaboration)
•  GLBRC: Provided corn
stover and AFEX
pretreated corn stover
•  JBEI: Ionic liquid and
dilute acid pretreatment
of corn stover
•  Result: Ionic liquid
outperforms dilute acid
and AFEX
0%
20%
40%
60%
80%
100%
0.0
1.0
2.0
3.0
4.0
5.0
0 20 40 60 80 100
Reducingsugar(mg/mL)
Time (h)
Ionic liquid
AFEX
Dilute acid
Untreated
IL PRETREATMENT GENERATES HIGH SUGAR YIELDS
Novozymes commercial cellulase cocktails:
5g glucan/L biomass loading
50mg protein/g glucan of cellulase (NS50013)
5mg protein/g glucan of β-glucosidase (NS50010)
Li et al., Biores. Tech. (2011), 102(13), 6928-6936; Li et al., Biores. Tech. (2010), 101 (13), 4900-4906
14	
  
Feedstock	
  availability	
  by	
  type	
  and	
  by	
  
state	
  (Lubowski	
  et	
  al.	
  2005)	
  
Mixed feedstocks: In order to
accomplish large-scale utilization
of biomass feedstocks for biofuels,
a consistent and stable supply of
sustainable feedstocks from a
variety of sources will be required
Issues that must be addressed:
•  Impact of blends on conversion
efficiency?
•  What are the most reasonable
combinations of feedstocks?
•  Can we improve energy
density?
•  “Universal Feedstock”?
MIXED FEEDSTOCKS WILL BE SIGNIFICANT
SOURCE OF BIOMASS FOR BIOREFINERIES
15	
  
Cropland	
  
Grassland	
  
Forestry	
  
Special	
  use/urban	
  
Land-­‐use	
  types	
  
Densifica:on:	
  typically	
  involves	
  exposing	
  biomass	
  to	
  elevated	
  pressure	
  and	
  temperature	
  
and	
  compressing	
  it	
  to	
  a	
  higher	
  energy	
  density	
  which	
  facilitates	
  the	
  transport,	
  store,	
  and	
  
distribute	
  of	
  the	
  biomass	
  .	
  	
  
20	
  g	
  mixed	
  flour 20	
  g	
  mixed	
  pellets
5	
  g	
  pine 5	
  g	
  eucalyptus
5	
  g	
  corn	
  stover 5	
  g	
  switchgrass
10	
  mm
Pelleting
FEEDSTOCK DENSIFICATION
AND BLENDING
16	
  
Shi	
  et	
  al.,	
  Biofuels,	
  2013,	
  4(1),	
  63-­‐72.	
  	
  
IL PROCESS GENERATES HIGH SUGAR
YIELDS FOR SINGLE AND MIXED FEEDSTOCKS
• Pretreatment: [C2mim][OAc], 15% solids loading, 160 oC, 3 hours
• Saccharification: 15% solids loading, CTec2 @ 40 mg/g glucan loading, HTec2 4 mg/g xylan
• Mixed feedstocks appear to perform better than average of single feedstock yields – why?
17	
  
0
10
20
30
40
50
60
70
Mixed Eucalyptus Pine Switchgrass Corn	
  stover
Sugar	
  released	
  (g/L)
Biomass	
  types
Arabinose
Galactose
Glucose
Xylose
Shi	
  et	
  al.,	
  Biofuels,	
  2013,	
  4(1),	
  63-­‐72.	
  	
  
DENSIFIED FEEDSTOCKS ARE
EFFECTIVELY PRETREATED USING ILS
20#g#mixed#flour# 20#g#mixed#pellets#
A" B"
Images	
  of	
  (a)	
  feedstocks	
  before	
  pretreatment	
  and	
  (b)	
  
densified	
  feedstocks	
  during	
  IL	
  pretreatment	
  
18	
  
Shi	
  et	
  al.,	
  Biofuels,	
  2013,	
  4(1),	
  63-­‐72.	
  	
  
0 24 48 72
0
20
40
60
80
100
EnzymaticDigestibility,%
Time, h
mixed flour-IL pretreated
mixed pellets-IL pretreated
mixed flour-untreated
mixed pellets-untreated
PARTICLE SIZE AND MIXED FEEDSTOCKS – NO
IMPACT ON IL PRETREATMENT
1:1:1:1	
  corn	
  stover:switchgrass:eucalyptus:pine.	
  Biomass	
  loading	
  =	
  20	
  g/L,	
  with	
  enzyme	
  
loading	
  of	
  20	
  mg	
  CTec2	
  protein/g	
  glucan	
  and	
  0.26	
  mg	
  HTec2	
  protein/g	
  glucan	
  	
  
19	
  
Sugar	
  Yield	
  as	
  %	
  of	
  IniHal	
  ComposiHon	
  
Shi	
  et	
  al.,	
  Biofuels,	
  2013,	
  4(1),	
  63-­‐72.	
  	
  
IL TECHNO-ECONOMIC MODELING - BASELINE
Feedstock	
  handling	
  
Pretreatment	
  
FermentaVon	
  
Product	
  recovery	
  
Water	
  recovery	
  
Wastewater	
  treatment	
  
Steam/Electricity	
  
Klein-­‐Marcuschamer	
  et	
  al.,	
  Biomass	
  and	
  Bioenergy,	
  2010,	
  34(12),	
  1914-­‐1921	
  
Available	
  at	
  econ.jbei.org	
  
20	
  
IL PRETREATMENT MODULE
IL	
  mixing	
  reactor	
  
RT	
  ~30min,	
  120	
  oC	
  
Solids	
  
precipitate	
  
Solids	
  are	
  
separated	
  
Lignin	
  is	
  purified	
  
and	
  IL	
  recycled	
  
	
  Klein-­‐Marcuschamer	
  et	
  al.,	
  Biofpr,	
  2011,	
  5(5),	
  562-­‐569	
  
	
  
21	
  
SENSITIVITY ANALYSIS HIGHLIGHTS KEY
OPPORTUNITIES TO IMPROVE IL ECONOMICS
	
  Klein-­‐Marcuschamer	
  et	
  al.,	
  Biofpr,	
  2011,	
  5(5),	
  562-­‐569	
  
•  IL	
  pretreatment	
  has	
  challenging	
  
economics	
  
•  Significant	
  swings	
  in	
  IL	
  price	
  based	
  on	
  
type	
  and	
  vendor	
  ($1.00-­‐800/kg)	
  
•  Key	
  findings	
  to	
  reduce	
  cost:	
  
•  Increase	
  solids	
  loading	
  	
  
Ø  During	
  IL	
  mixing	
  	
  
Ø  During	
  saccharificaHon	
  
Ø  Higher	
  solids	
  loading	
  
lowers	
  CAPEX	
  and	
  OPEX	
  
•  Reduce	
  IL	
  price	
  and	
  use	
  
	
  
•  Develop	
  efficient	
  IL	
  recycling	
  
techniques	
  and	
  technologies	
  	
  
•  Reduce	
  enzyme	
  costs	
  
•  Develop	
  integrated	
  systems	
  
approach	
  
22	
  
IL	
  price	
  =	
  $2.5	
  kg-­‐1	
  
DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC
AND SCIENTIFIC CHALLENGES
• Increase solids loading
- During IL mixing
- During saccharification
- Higher solids loading lowers CAPEX and OPEX
• Reduce IL price and use
• Develop better IL recycling techniques and
technologies (research phase separation,
other ways to extract sugars from IL, etc.)
• Reduce cost of enzymes (they still represent
up to 24% of raw material costs)
• Develop integrated systems approach for
downstream operations
23	
  
IMPROVING IL PRETREATMENT ECONOMICS -
HIGHER BIOMASS LOADING
Benefits	
  of	
  higher	
  biomass	
  loading	
  and	
  
larger	
  parHcle	
  size:	
  
•  Decrease	
  need	
  for	
  comminuHon	
  
•  Biorefinery	
  OPEX	
  savings	
  
•  Impacts	
  harvesHng	
  opHons	
  
•  May	
  drive	
  to	
  co-­‐solvent	
  opHons	
  to	
  
miHgate	
  viscosity	
  concerns	
  
24	
  
A.	
  Cruz	
  et	
  al.,	
  Biotechnology	
  for	
  Biofuels,	
  2013,	
  6:52.	
  
3%,$$CrI$=$0.35$(Cellulose$II)$
20%,$CrI$=$0.26$(Cellulose$II)$
50%,$CrI$=$0.03$(Mostly$Amorphous)$
Untreated,$CrI$=$0.36$(Cellulose$I)$
Untreated,)cellulose)I)
3%,)treated,)cellulose)II)
20%,)treated,)cellulose)II)
50%,)treated,)amorphous)
0"
20"
40"
60"
80"
100"
20"
30"
40"
50"
untreated"
Rate"of"Hydrolysis"
"(mg/L/min)"""
%"Biomass"Loading"(w/w)"
UNANTICIPATED BENEFIT OF
HIGHER BIOMASS LOADING
•  Surveyed impact of high
biomass loading on
sugar yields and kinetics
•  Higher biomass loading
yields higher hydrolysis
rates
•  Higher biomass loading
generates more
amorphous product after
pretreatment
25	
  
X-­‐ray	
  Diffractograms	
  
Sugar	
  Release	
  KineHcs	
  
A.	
  Cruz	
  et	
  al.,	
  Biotechnology	
  for	
  Biofuels,	
  2013,	
  6:52.	
  
DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC
AND SCIENTIFIC CHALLENGES
• Increase solids loading
- During IL mixing
- During saccharification
- Higher solids loading lowers CAPEX and OPEX
• Reduce IL price and use
• Develop better IL recycling techniques and
technologies (research phase separation,
other ways to extract sugars from IL, etc.)
• Reduce cost of enzymes (they still represent
up to 24% of raw material costs)
• Develop integrated systems approach for
downstream operations
26	
  
DISCOVERY AND SCREENING OF LOW-
COST, HIGH-PERFORMING ILS
•  Challenge: The most
effective ILs known to
date have limits and are
expensive
•  Solution: Discovery of
new ILs with optimal
properties
Ø Screen new ILs
synthesized
Ø Determine
physicochemical
properties and generate
cheminformatic training
set
Ø Evaluate pretreatment
performance
27	
  
IL	
  selecHon	
  and	
  synthesis	
  
Measure	
  density,	
  
surface	
  tension	
  
Pretreatment	
  
efficiency,	
  IL	
  
recovery	
  
Modeling,	
  
cheminformaHcs	
  
Goal:	
  Design,	
  synthesize	
  and	
  screen	
  new	
  ionic	
  liquids	
  that:	
  
	
  
1.  Compare	
  favorably	
  in	
  performance	
  to	
  our	
  current	
  gold	
  standard	
  [C2mim][OAc]	
  
2.  Do	
  not	
  require	
  anhydrous	
  condiVons	
  (operate	
  effecVvely	
  at	
  20%	
  H2O)	
  
3.  Compete	
  in	
  cost	
  with	
  commonly	
  used	
  industrial	
  reagents	
  
	
  
HSO4-­‐	
  anions	
  (good	
  delignifiers)	
  systemaVcally	
  varied	
  caVon,	
  to	
  understand	
  mechanisms.	
  
	
  
	
  
	
  
IDENTIFYING AND DEVELOPING
COST-EFFECTIVE ILS
ethylammonium	
  
diethylammonium	
  
triethylammonium	
  
diisopropylammonium	
  
NH3
+
N
H2
+
N
H2
+
NH+
monoethanolammonium	
  
diethanolammonium	
  
triethanolammonium	
  
NH3
+
HO
NH+
HO OH
OH
H2
+
N
HO OH
28	
  
80:20 TRIETHYLAMMONIUM:H2O MIXTURE IS ~80% AS
EFFECTIVE AS 80:20 [C2MIM][OAC]:H2O……
0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  
48	
  hr	
  hydrolysis	
  yield	
  /[%]	
  
Pretreatment	
  condiHons:	
  120	
  oC,	
  2	
  hours,	
  10%	
  loading	
  
SaccharificaHon	
  condiHons:	
  50	
  oC,	
  1%	
  glucan	
  loading,	
  72	
  hours,	
  CTec2	
  20	
  mg/g	
  
glucan,	
  HTec2	
  1:10	
  
29	
  
....AND COSTS $0.75 PER KG VERSUS $20
Ionic	
  liquid	
   Cost	
  /kg	
  
[C4C1im][PF6]	
  (Sigma-­‐Aldrich)	
   (250g)	
   $2000	
  
[C2mim][OAc]	
  (Sigma-­‐Aldrich)	
   (1kg)	
   $850	
  
[(C8)3C1N][Br]	
  (Solvent	
  InnovaVons)	
   (100T)	
   $30	
  
[C2mim][OAc]	
  (BASF)	
   (best	
  case	
  bulk	
  esVmate)	
   $20	
  
[C4mim][HSO4]	
  (BASF)	
   (best	
  case	
  bulk	
  esVmate)	
   $2.5	
  
TRIETHYLAMMONIUM	
  HYDROGEN	
  
SULPHATE	
  
Cost/kg	
  
Raw	
  materials:	
  	
  	
  	
  H2SO4	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Triethylamine	
  
$0.04	
  	
  	
  	
  	
  	
  	
  	
  
$1.45	
  
Process	
  costs	
   $0.01	
  
TOTAL	
  COST	
   $0.75	
  
30	
  
IMPACT OF IL = $0.75/KG
31	
  
_"
96%"
98%"
99.60%"
"$*""""
"$2.00""
"$4.00""
"$6.00""
"$8.00""
"$10.00""
"$12.00""
10"
7.5"
5"
2"
1"
IL#recycle#rate#
MESP#($/gal)#
IL4Biomass#Ra;o#
IL=$0.75/kg#
"$10.00"*"$12.00""
"$8.00"*"$10.00""
"$6.00"*"$8.00""
"$4.00"*"$6.00""
"$2.00"*"$4.00""
"$*"""*"$2.00""
DEVELOPING SOLUTIONS TO ADDRESS
ECONOMIC AND SCIENTIFIC CHALLENGES
• Reduce IL price and use
• Increase the solids loading
- During IL mixing (as shown in this presentation)
- During saccharification
- Higher solids loading mean lower CAPEX and
OPEX
• Develop better IL recycling techniques and
technologies (research phase separation,
other ways to extract sugars from IL, etc.)
• Reduce the contribution of enzymes (they still
represent up to 24% of raw material costs)
• Develop integrated systems approach for
downstream operations
IL RECOVERY METHODS
Feedstocks	
  
Pretreatment	
  
SaccharificaHon	
  
Fuels	
  Synthesis	
  
•  Challenge: Need to recover and
reuse ionic liquids after use
•  Solution: Develop techniques
based on liquid-liquid extraction
Ø  Minimize requirements for
energy intensive distillation
Ø  Generate lignin as a
separate product stream
•  Future directions: evaluate
membrane based separations
33	
  
IL	
  Recycle	
  
Lignin	
  
ESTABLISHING ROUTES TO EFFICIENT IL
RECOVERY AND RECYCLE
•  Challenge: IL must be
recovered and recycled
•  Solution: Demonstrated
~90% IL recovery and IL
maintains pretreatment
efficacy.
Ø  Biomass fractionation
can be tailored to
desired output streams.
Ø  <1% IL degraded during
pretreatment at these
conditions
Estimated mass balances!
!"
Starting Biomass
(Corn Stover)
100%
3%
2%
18%
77%
64%
13%
Xylan-rich product
6.5% of C6 Carb.
15.3% of C5 Carb.
14.3% of Lignin
19.2% of Other
Aliphatic-rich product
8.4% of Other
Lig.-rich product
1.2% of C6 Carb.
3.7% of C5 Carb.
5.9% of Lig
1.2% of Other
Lost
7.6% of C6 Carb.
16.6% of C5 Carb.
44.6% of Lignin
21.3% of Other
Glucan-rich product
84.7% of C6 Carb.
64.3% of C5 Carb.
35.2% of Lignin
49.9% of Other
IL recovery ! 89%
ComposiHon	
  and	
  disposiHon	
  of	
  corn	
  stover	
  aler	
  IL	
  pretreatment	
  
uHlizing	
  new	
  [C2mim][OAc]	
  IL	
  for	
  3	
  hours	
  at	
  140	
  °C.	
  A	
  Xylan-­‐rich	
  
product	
  is	
  obtained	
  from	
  a	
  water	
  wash	
  of	
  pretreated	
  solids.	
  
Dibble	
  et	
  al.,	
  A	
  facile	
  method	
  for	
  the	
  recovery	
  of	
  ionic	
  liquid	
  and	
  lignin	
  from	
  
biomass	
  pretreatment,	
  Green	
  Chemistry,	
  2011,13,	
  3255-­‐3264.	
  
	
  
34	
  
IL RECOVERY USING
WATER-IL-KETONE MIXTURES
	
  Dibble	
  et	
  al.,	
  Green	
  Chemistry,	
  2011,13,	
  3255-­‐3264.	
  
	
  
Challenges	
  
	
  -­‐	
  MulVple	
  stage	
  process	
  costly	
  and	
  requires	
  disVllaVon	
  
	
  -­‐	
  Energy	
  consumed	
  can	
  be	
  more	
  than	
  the	
  potenVal	
  
energy	
  of	
  some	
  biomass	
  types	
  
DEVELOPING SOLUTIONS TO ADDRESS
ECONOMIC AND SCIENTIFIC CHALLENGES
• Reduce IL price and use
• Increase the solids loading
- During IL mixing (as shown in this presentation)
- During saccharification
- Higher solids loading mean lower CAPEX and
OPEX
• Develop better IL recycling techniques and
technologies (research phase separation,
other ways to extract sugars from IL, etc.)
• Reduce the contribution of enzymes (they still
represent up to 24% of raw material costs)
• Develop integrated systems approach for
downstream operations
[C2mim]Cl	
  
[C2mim]Cl	
  
HCl	
  
FERMENTABLE SUGARS BY ACID HYDROLYSIS
Binder	
  and	
  Raines.	
  PNAS	
  (2010)	
  
v  Directly hydrolyze biomass dissolved in IL with the aid of acid	

v  HMF/furfural reduction by titration of water	

v  Cost effective separation of sugars/products from ILs and IL
recycling is a challenge	

105	
  oC/6h	
  
IL RECOVERY USING AQUEOUS
BIPHASIC (ABP) SYSTEMS
38	
  
IL	
  rich	
  phase	
  
Sugar	
  rich	
  phase	
  
•  Expand	
  upon	
  iniHal	
  results	
  
obtained	
  in	
  Years	
  1-­‐4	
  
•  Develop	
  process	
  technology	
  
based	
  on	
  ABP	
  
•  Increases	
  IL	
  recovery	
  and	
  
recycle	
  
•  Can	
  be	
  integrated	
  with	
  “one-­‐
pot”	
  approach	
  to	
  sugar	
  
producHon	
  
N.	
  Sun	
  et	
  al.,	
  Biotechnology	
  for	
  Biofuels,	
  2013,	
  6:39.	
  
39	
  
HIGHER PRETREATMENT TEMPERATURE
ENHANCES SUGAR YIELD
v  Pretreatment under higher temperature is more efficient for sugar production. 	

v  Xylan is much easier for hydrolysis compared to cellulose. However, with the increase
of glucose yield the xylose yield goes down indicating some degradation. 	

v  May indicate that two-stage thermal process is needed to maximize sugar yields.	

0
20
40
60
80
100
120
1 2 3 4 5 6
Glucose yield
Xylose yield
Percentage(%)
N.	
  Sun	
  et	
  al.,	
  Biotechnology	
  for	
  Biofuels,	
  2013,	
  6:39.	
  
DEVELOPING SOLUTIONS TO ADDRESS
ECONOMIC AND SCIENTIFIC CHALLENGES
• Reduce IL price and use
• Increase the solids loading
- During IL mixing (as shown in this presentation)
- During saccharification
- Higher solids loading mean lower CAPEX and
OPEX
• Develop better IL recycling techniques and
technologies (research phase separation,
other ways to extract sugars from IL, etc.)
• Reduce the contribution of enzymes (they still
represent up to 24% of raw material costs)
• Develop integrated systems approach for
downstream operations
ALTERNATIVE IL PROCESS TECHNOLOGIES
Feedstocks	
  
Pretreatment	
  
SaccharificaHon	
  
FermentaHon	
  
IL	
  Recycle	
  
Lignin	
  
•  Challenge:	
  “One-­‐pot”	
  approach	
  
requires	
  the	
  development	
  of	
  IL	
  
tolerant	
  and	
  thermostable	
  enzymes	
  
•  SoluHon:	
  
Ø  Use	
  sequence-­‐	
  and	
  structure-­‐
based	
  informaHon	
  as	
  methods	
  
to	
  improve	
  stability	
  
Ø  Targeted	
  discovery	
  of	
  novel	
  
enzymes	
  from	
  microbial	
  
communiHes	
  
	
  
Ø  Develop	
  enzyme	
  cocktails	
  at	
  
high	
  solids	
  loading	
  and	
  relevant	
  
processing	
  condiHons	
  
41	
  
Feedstocks	
  
Consolidated	
  
Pretreatment	
  +	
  
Hydrolysis	
  
FermentaHon	
  
IL	
  Recycle	
  
Lignin	
  
CELLULOSE HYDROLYSIS TO GLUCOSE
REQUIRES A MIXTURE OF ENZYMES
42	
  
Adapted	
  from	
  Dimarogona	
  et	
  al.,	
  2012	
  	
  
Enzymes needed to form robust
“cocktail”:
•  Endoglucanase (EG)
•  Exoglucanases
Ø  Cellobiohydrolases
(CBH)
Ø  Cellodextrinases
•  β-glucosidases
•  Polysaccharide
monooxygenases (PMO)
•  Cellobiose
dehydrogenases (CDH)
Factors that impact performance:
•  Degree of polymerization
•  Crystallinity index
•  Presence of lignin
WE HAVE DEVELOPED A CELLULASE COCKTAIL
THAT IS IL- AND THERMO-TOLERANT
Recombinant thermophilic cellulases from
Enzyme Optimization team
JTHERM Cellulase Cocktail
Target genes found in thermophilic compost
metagenome expressed and profiled
Gene$
ID$ J30$J37$J24$J28$J29$J36$J40$J41$J03$
J0
6$ J08$ J09$J11$J14$J18$J19$J35$J01$J02$J15$J17$J31$
CMC$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
Avicel$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
pSG$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
pNPC$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
pNPG$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
Joshua	
  I.	
  Park	
  et	
  al.,	
  A	
  Thermophilic	
  Ionic	
  liquid-­‐tolerant	
  Cellulase	
  Cocktail	
  for	
  the	
  
ProducHon	
  of	
  Cellulosic	
  Biofuels,	
  PLoS	
  ONE,	
  2012,	
  7(5),	
  e37010	
  
80C	
  
50C	
  
0	
  
5	
  
10	
  
0%	
  IL	
   10%	
  IL	
   20%	
  IL	
  
Glucose	
  (g/L)	
  
80C$
50C$
0$
5$
10$
0%$IL$10%$IL$20%$IL$
Novozymes)
CTec2)
Glucose)(g/L))
43	
  
70C	
  
70C	
  
ASSEMBLING THE PIECES: ONE-POT LIGNOCELLULOSIC
PROCESSING USING JBEI PLATFORM TECHNOLOGIES
IL tolerantenzymes
Ionic Liquids
Fermentable
Sugars
+
Lignin recovery
IL recycle
0 10 20 30 40 50 60
0
50
100
150
200
250
300
350
Wateruse,L/kgbiomass
Biomass loading during IL pretreatment, %
Multi-unit
One-pot, 20% IL
One-pot, 10% IL
Feedstocks
Pretreatment/
IL	
  removal
Saccharification
Fermentation
IL	
  Recycle
Lignin
Feedstocks
One-­‐pot	
  
Pretreatment	
  +	
  
Saccharification
Fermentation
IL	
  Recycle
Lignin
Sugar	
  extraction
(a) (b)
Water	
  wash
0
20
40
60
80
100
Untreated --
CTec + washed
CTec + IL --
JTherm
+ IL
0
10
20
30
Glucoseyield,%ofmaximumpotential
Glucosemassyield,g/100grawSG
Glucose
Xylose
Ø  Wash-­‐free	
  
Ø  No	
  pH	
  adjustment	
  needed	
  
Ø  Glucose	
  and	
  xylose	
  yields	
  comparable	
  to	
  
tradiHonal	
  IL	
  pretreatment	
  and	
  
saccharificaHon	
  using	
  commercial	
  enzymes	
  
Ø  SelecHve	
  sugar	
  extracHon	
  
Ø  Lignin	
  streams	
  open	
  to	
  recycle	
  and	
  
valorizaHon	
  
Ø  Batch	
  mode	
  à	
  conHnuous	
  mode	
  	
  
Switchgrass
Ionic Liquid
Pretreatment
Enzymatic
Hydrolysis
1
2
3
Liquid
Solids
16.8 g dry
residual solids
100 g dry weight
31.5 g glucose
13.6 g xylose
1.0 g glucose oligomers
6.0 g xylose oligomers
7.7 g lignin
Overall yield of glucose from liquid streams = 81.9%
Overall yield of xylose plus xylooligomers from liquid streams = 85.4%
JTherm Protein ~ 2.3 g
(23 mg enzyme/g )
2.1 g glucan
2.2 g xylan
11.3 g lignin
1.6 g others
160 o
C, 3h
Atmospheric pressure
10% solid loading
34.6 g glucan (G)
20.2 g xylan
19.0 g lignin
26.2 g others Water
9000 g
[C2mim][OAc]
900 g
(a)
ONE-POT LIGNOCELLULOSIC PROCESSING
USING JBEI PLATFORM TECHNOLOGIES
SUMMARY
•  ILs are a promising pretreatment technology
-  No drop in performance as a function of scale
-  Need to develop an integrated conversion process with all downstream
functions tolerant to residual ILs
•  ILs provide a unique opportunity to tailor pretreatment and
reaction chemistry
•  Several challenges remain, primarily around cost of the
process
-  Innovations on new IL synthesis routes
-  Cheaper combinations of anions and cations
-  Renewable ionic liquids
•  IL pretreatment technology commercialization underway
BENCHMARKING: ECONOMICS
ConvenHonal	
  IL	
  Process:	
  Pretreatment	
  +	
  Enzymes	
  
1"
10"
100"
1,000"
10,000"
2005'2006" 2008" 2011'2012" 2013" 2017" Goal" Dilute"Acid"
Reference"Case"
MESP"($)"
Reflects	
  improvements	
  realized	
  in:	
  
-­‐  IL	
  cost	
  ($773	
  à	
  0.75-­‐2.5/kg)	
  
-­‐  Higher	
  biomass	
  loading	
  
-­‐  Increased	
  sugar	
  yields	
  
-­‐  Efficient	
  IL	
  recycle	
  and	
  lignin	
  recovery	
  
-­‐  “One-­‐pot”	
  pretreatment	
  +	
  saccharificaHon	
  
IL PRETREATMENT AND COMMERCIALIZATION
• SuGanit
- Biochemical conversion platform
- Uses IL soaking of biomass
- Hydrolysis using enzyme mixtures
- Lignin recovery after saccharification
• Hyrax
- ILs used to solubilize biomass
- HCl catalysts added to liberate sugars
- Sugar recovery is a challenge
- Start-up from lab of Prof. Raines at UW-Mad
ACKNOWLEDGMENTS
•  JBEI: Seema Singh, Ning Sun, Jian Shi, Kim Tran, Mike
Kent, Rich Heins, John Gladden, Ken Sale, Steve Singer
•  Imperial College: Tom Welton, Jason Hallett
•  VTT: Alistair King
•  ABPDU: James Gardner, Chenlin Li, Deepti Tanjore, Wei He
•  INL: Richard Hess, Vicki Thompson
49	
  

More Related Content

What's hot

Activated carbon
Activated carbonActivated carbon
Activated carbonparam2723
 
Switchable polarity solvent in analytical chem
Switchable polarity  solvent in analytical chemSwitchable polarity  solvent in analytical chem
Switchable polarity solvent in analytical chemAbdullahiUsman10
 
Dye removal by adsorption on waste biomass - sugarcane bagasse
Dye removal by adsorption on waste biomass - sugarcane bagasseDye removal by adsorption on waste biomass - sugarcane bagasse
Dye removal by adsorption on waste biomass - sugarcane bagasseMadhura Chincholi
 
Bioethanol plant design
Bioethanol plant designBioethanol plant design
Bioethanol plant designnitinsingh544
 
Organic synthesis using enzymes or microbes
Organic synthesis using enzymes or microbesOrganic synthesis using enzymes or microbes
Organic synthesis using enzymes or microbesAayushi Kushwaha
 
Green synthesis of Nanoparticles using plants
Green synthesis of Nanoparticles using plants Green synthesis of Nanoparticles using plants
Green synthesis of Nanoparticles using plants utsav dalal
 
Acetic acid production
Acetic acid productionAcetic acid production
Acetic acid productionravi1505
 
Supercrtical fluid extraction
Supercrtical fluid extractionSupercrtical fluid extraction
Supercrtical fluid extractionUrmi Sarkar
 
Isolation of l asparaginase
Isolation of l asparaginaseIsolation of l asparaginase
Isolation of l asparaginasesubhan laskar
 
Chemical reaction catalyst.pdf
Chemical reaction catalyst.pdfChemical reaction catalyst.pdf
Chemical reaction catalyst.pdfEr. Rahul Jarariya
 
Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Vinod kumar
 
chapter 5
chapter 5chapter 5
chapter 5aglasem
 

What's hot (20)

Activated carbon
Activated carbonActivated carbon
Activated carbon
 
Switchable polarity solvent in analytical chem
Switchable polarity  solvent in analytical chemSwitchable polarity  solvent in analytical chem
Switchable polarity solvent in analytical chem
 
Dye removal by adsorption on waste biomass - sugarcane bagasse
Dye removal by adsorption on waste biomass - sugarcane bagasseDye removal by adsorption on waste biomass - sugarcane bagasse
Dye removal by adsorption on waste biomass - sugarcane bagasse
 
Bioethanol plant design
Bioethanol plant designBioethanol plant design
Bioethanol plant design
 
Pretreatment Methods
Pretreatment MethodsPretreatment Methods
Pretreatment Methods
 
Organic synthesis using enzymes or microbes
Organic synthesis using enzymes or microbesOrganic synthesis using enzymes or microbes
Organic synthesis using enzymes or microbes
 
Green synthesis of Nanoparticles using plants
Green synthesis of Nanoparticles using plants Green synthesis of Nanoparticles using plants
Green synthesis of Nanoparticles using plants
 
Pervaporation
PervaporationPervaporation
Pervaporation
 
Acetic acid production
Acetic acid productionAcetic acid production
Acetic acid production
 
Supercrtical fluid extraction
Supercrtical fluid extractionSupercrtical fluid extraction
Supercrtical fluid extraction
 
refernce electrodes
refernce electrodesrefernce electrodes
refernce electrodes
 
Liquid membrane
Liquid membraneLiquid membrane
Liquid membrane
 
Isolation of l asparaginase
Isolation of l asparaginaseIsolation of l asparaginase
Isolation of l asparaginase
 
Lignin Depolymerization and Conversion
Lignin Depolymerization and ConversionLignin Depolymerization and Conversion
Lignin Depolymerization and Conversion
 
Organic acids
Organic acidsOrganic acids
Organic acids
 
Liquid-Liquid Extraction
Liquid-Liquid Extraction Liquid-Liquid Extraction
Liquid-Liquid Extraction
 
Chemical reaction catalyst.pdf
Chemical reaction catalyst.pdfChemical reaction catalyst.pdf
Chemical reaction catalyst.pdf
 
Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...Fabrication and characterization of graphene oxide nanoparticles incorporated...
Fabrication and characterization of graphene oxide nanoparticles incorporated...
 
Packed bed reactor
Packed bed reactorPacked bed reactor
Packed bed reactor
 
chapter 5
chapter 5chapter 5
chapter 5
 

Viewers also liked

Ionic Liquid Lubricants; design chemistry for engineering applications
Ionic Liquid Lubricants; design chemistry for engineering applicationsIonic Liquid Lubricants; design chemistry for engineering applications
Ionic Liquid Lubricants; design chemistry for engineering applicationsPathum Weerawarna
 
Biorefining and biobased products
Biorefining and biobased productsBiorefining and biobased products
Biorefining and biobased productsNNFCC
 
The future of lignocellulose processing
The future of lignocellulose processingThe future of lignocellulose processing
The future of lignocellulose processingNNFCC
 
Biomass Power Point
Biomass Power PointBiomass Power Point
Biomass Power Pointguestcc80f8
 
Biomass Growing Ppt
Biomass Growing PptBiomass Growing Ppt
Biomass Growing Pptychandra
 
Biomass energy ppt
Biomass energy pptBiomass energy ppt
Biomass energy pptSann Jana
 

Viewers also liked (7)

Ionic Liquid Lubricants; design chemistry for engineering applications
Ionic Liquid Lubricants; design chemistry for engineering applicationsIonic Liquid Lubricants; design chemistry for engineering applications
Ionic Liquid Lubricants; design chemistry for engineering applications
 
Biomass energy data book
Biomass energy data bookBiomass energy data book
Biomass energy data book
 
Biorefining and biobased products
Biorefining and biobased productsBiorefining and biobased products
Biorefining and biobased products
 
The future of lignocellulose processing
The future of lignocellulose processingThe future of lignocellulose processing
The future of lignocellulose processing
 
Biomass Power Point
Biomass Power PointBiomass Power Point
Biomass Power Point
 
Biomass Growing Ppt
Biomass Growing PptBiomass Growing Ppt
Biomass Growing Ppt
 
Biomass energy ppt
Biomass energy pptBiomass energy ppt
Biomass energy ppt
 

Similar to Ionic Liquid Pretreatment Generates High Sugar Yields from Biomass

JBEI Research Highlights - June 2014
JBEI Research Highlights - June 2014 JBEI Research Highlights - June 2014
JBEI Research Highlights - June 2014 Irina Silva
 
July 2021 - JBEI Research Highlights
July 2021 - JBEI Research HighlightsJuly 2021 - JBEI Research Highlights
July 2021 - JBEI Research HighlightsSaraHarmon4
 
JBEI highlights January 2020
JBEI highlights January 2020JBEI highlights January 2020
JBEI highlights January 2020LeahFreemanSloan
 
JBEI Research Highlights - May 207
JBEI Research Highlights - May 207JBEI Research Highlights - May 207
JBEI Research Highlights - May 207Irina Silva
 
JBEI Research Highlights - December 2021
JBEI Research Highlights - December 2021JBEI Research Highlights - December 2021
JBEI Research Highlights - December 2021SaraHarmon4
 
JBEI Research Highlights - May 2018
JBEI Research Highlights - May 2018  JBEI Research Highlights - May 2018
JBEI Research Highlights - May 2018 Irina Silva
 
JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 Irina Silva
 
JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023SaraHarmon5
 
JBEI Research Highlights - October 2021
JBEI Research Highlights - October 2021JBEI Research Highlights - October 2021
JBEI Research Highlights - October 2021SaraHarmon4
 
JBEI August 2020 Highlights
JBEI August 2020 HighlightsJBEI August 2020 Highlights
JBEI August 2020 HighlightsLeahFreemanSloan
 
JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022SaraHarmon4
 
JBEI highlights October 2015
JBEI highlights October 2015JBEI highlights October 2015
JBEI highlights October 2015Irina Silva
 
September 2021 - JBEI Research Highlights Slides
September 2021 - JBEI Research Highlights SlidesSeptember 2021 - JBEI Research Highlights Slides
September 2021 - JBEI Research Highlights SlidesSaraHarmon4
 
Rong_21May2015
Rong_21May2015Rong_21May2015
Rong_21May2015Rong Dong
 
JBEI Science Highlights - January 2023
JBEI Science Highlights - January 2023JBEI Science Highlights - January 2023
JBEI Science Highlights - January 2023SaraHarmon5
 
Seminar PPT by Jeph
Seminar PPT by JephSeminar PPT by Jeph
Seminar PPT by JephAnil Jeph
 
Jablonsky des fractionation_bioresources_2015
Jablonsky des fractionation_bioresources_2015Jablonsky des fractionation_bioresources_2015
Jablonsky des fractionation_bioresources_2015Michal Jablonsky
 
Deep Eutectic Solvents: Fractionation of Wheat Straw
Deep Eutectic Solvents: Fractionation of Wheat StrawDeep Eutectic Solvents: Fractionation of Wheat Straw
Deep Eutectic Solvents: Fractionation of Wheat StrawMichal Jablonsky
 

Similar to Ionic Liquid Pretreatment Generates High Sugar Yields from Biomass (20)

JBEI Research Highlights - June 2014
JBEI Research Highlights - June 2014 JBEI Research Highlights - June 2014
JBEI Research Highlights - June 2014
 
July 2021 - JBEI Research Highlights
July 2021 - JBEI Research HighlightsJuly 2021 - JBEI Research Highlights
July 2021 - JBEI Research Highlights
 
JBEI highlights January 2020
JBEI highlights January 2020JBEI highlights January 2020
JBEI highlights January 2020
 
JBEI Research Highlights - May 207
JBEI Research Highlights - May 207JBEI Research Highlights - May 207
JBEI Research Highlights - May 207
 
JBEI Research Highlights - December 2021
JBEI Research Highlights - December 2021JBEI Research Highlights - December 2021
JBEI Research Highlights - December 2021
 
JBEI Research Highlights - May 2018
JBEI Research Highlights - May 2018  JBEI Research Highlights - May 2018
JBEI Research Highlights - May 2018
 
JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017 JBEI Research Highlights - November 2017
JBEI Research Highlights - November 2017
 
JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023
 
JBEI Research Highlights - October 2021
JBEI Research Highlights - October 2021JBEI Research Highlights - October 2021
JBEI Research Highlights - October 2021
 
JBEI August 2020 Highlights
JBEI August 2020 HighlightsJBEI August 2020 Highlights
JBEI August 2020 Highlights
 
JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022
 
JBEI highlights October 2015
JBEI highlights October 2015JBEI highlights October 2015
JBEI highlights October 2015
 
September 2021 - JBEI Research Highlights Slides
September 2021 - JBEI Research Highlights SlidesSeptember 2021 - JBEI Research Highlights Slides
September 2021 - JBEI Research Highlights Slides
 
Rong_21May2015
Rong_21May2015Rong_21May2015
Rong_21May2015
 
JBEI Science Highlights - January 2023
JBEI Science Highlights - January 2023JBEI Science Highlights - January 2023
JBEI Science Highlights - January 2023
 
PhD 1.ppt
PhD 1.pptPhD 1.ppt
PhD 1.ppt
 
Seminar PPT by Jeph
Seminar PPT by JephSeminar PPT by Jeph
Seminar PPT by Jeph
 
Green solvents
Green solventsGreen solvents
Green solvents
 
Jablonsky des fractionation_bioresources_2015
Jablonsky des fractionation_bioresources_2015Jablonsky des fractionation_bioresources_2015
Jablonsky des fractionation_bioresources_2015
 
Deep Eutectic Solvents: Fractionation of Wheat Straw
Deep Eutectic Solvents: Fractionation of Wheat StrawDeep Eutectic Solvents: Fractionation of Wheat Straw
Deep Eutectic Solvents: Fractionation of Wheat Straw
 

More from BiorefineryEPC™

Determination of Insoluble Solids in Pretreated Biomass
Determination of Insoluble Solids in Pretreated BiomassDetermination of Insoluble Solids in Pretreated Biomass
Determination of Insoluble Solids in Pretreated BiomassBiorefineryEPC™
 
Process Design and Economics for Conversion of Algal Biomass to Hydrocarbons
Process Design and Economics for Conversion of Algal Biomass to HydrocarbonsProcess Design and Economics for Conversion of Algal Biomass to Hydrocarbons
Process Design and Economics for Conversion of Algal Biomass to HydrocarbonsBiorefineryEPC™
 
Top Value Added Chemicals from Biomass- 2
Top Value Added Chemicals from Biomass- 2Top Value Added Chemicals from Biomass- 2
Top Value Added Chemicals from Biomass- 2BiorefineryEPC™
 
Top Value Added Chemicals From Biomass- 1
Top Value Added Chemicals From Biomass- 1Top Value Added Chemicals From Biomass- 1
Top Value Added Chemicals From Biomass- 1BiorefineryEPC™
 
Biotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass ConversionBiotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass ConversionBiorefineryEPC™
 
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...BiorefineryEPC™
 
Determination of Structural Carbohydrates & Lignin in Biomass
Determination of Structural Carbohydrates & Lignin in BiomassDetermination of Structural Carbohydrates & Lignin in Biomass
Determination of Structural Carbohydrates & Lignin in BiomassBiorefineryEPC™
 
Determination of Extractives in Biomass
Determination of Extractives in BiomassDetermination of Extractives in Biomass
Determination of Extractives in BiomassBiorefineryEPC™
 
Preparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisPreparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisBiorefineryEPC™
 
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...BiorefineryEPC™
 
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...BiorefineryEPC™
 
Enzymatic Saccharification of Lignocellulosic Biomass
Enzymatic Saccharification of Lignocellulosic BiomassEnzymatic Saccharification of Lignocellulosic Biomass
Enzymatic Saccharification of Lignocellulosic BiomassBiorefineryEPC™
 
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsLignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsBiorefineryEPC™
 
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...BiorefineryEPC™
 
Review- Biomass Densification Technologies for Energy Application
Review- Biomass Densification Technologies for Energy ApplicationReview- Biomass Densification Technologies for Energy Application
Review- Biomass Densification Technologies for Energy ApplicationBiorefineryEPC™
 

More from BiorefineryEPC™ (15)

Determination of Insoluble Solids in Pretreated Biomass
Determination of Insoluble Solids in Pretreated BiomassDetermination of Insoluble Solids in Pretreated Biomass
Determination of Insoluble Solids in Pretreated Biomass
 
Process Design and Economics for Conversion of Algal Biomass to Hydrocarbons
Process Design and Economics for Conversion of Algal Biomass to HydrocarbonsProcess Design and Economics for Conversion of Algal Biomass to Hydrocarbons
Process Design and Economics for Conversion of Algal Biomass to Hydrocarbons
 
Top Value Added Chemicals from Biomass- 2
Top Value Added Chemicals from Biomass- 2Top Value Added Chemicals from Biomass- 2
Top Value Added Chemicals from Biomass- 2
 
Top Value Added Chemicals From Biomass- 1
Top Value Added Chemicals From Biomass- 1Top Value Added Chemicals From Biomass- 1
Top Value Added Chemicals From Biomass- 1
 
Biotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass ConversionBiotechnological Routes to Biomass Conversion
Biotechnological Routes to Biomass Conversion
 
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...
Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...
 
Determination of Structural Carbohydrates & Lignin in Biomass
Determination of Structural Carbohydrates & Lignin in BiomassDetermination of Structural Carbohydrates & Lignin in Biomass
Determination of Structural Carbohydrates & Lignin in Biomass
 
Determination of Extractives in Biomass
Determination of Extractives in BiomassDetermination of Extractives in Biomass
Determination of Extractives in Biomass
 
Preparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisPreparation of Samples for Compositional Analysis
Preparation of Samples for Compositional Analysis
 
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid...
 
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...
Determination of Sugars, Bioproducts & Degradation Products in Liquid Fractio...
 
Enzymatic Saccharification of Lignocellulosic Biomass
Enzymatic Saccharification of Lignocellulosic BiomassEnzymatic Saccharification of Lignocellulosic Biomass
Enzymatic Saccharification of Lignocellulosic Biomass
 
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsLignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
 
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...
Process Design & Economics of Biochemical Conversion of Lignocellulosic Bioma...
 
Review- Biomass Densification Technologies for Energy Application
Review- Biomass Densification Technologies for Energy ApplicationReview- Biomass Densification Technologies for Energy Application
Review- Biomass Densification Technologies for Energy Application
 

Recently uploaded

Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 

Recently uploaded (20)

Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 

Ionic Liquid Pretreatment Generates High Sugar Yields from Biomass

  • 1. Ionic Liquid Pretreatment EERE Webinar June 24, 2013 Blake Simmons, Ph.D. Vice-President, Deconstruction Division, Joint BioEnergy Institute Senior Manager, Biomass Program Lead, Sandia National Laboratories
  • 2.             INTRODUCTION - IONIC LIQUIDS • Salts that are liquid at ambient temperatures. • Have stable liquid range of over 300 K. • Very low vapour pressure at room temperature. • Selective solubility of water and organics. • Potential to replace volatile organic solvents used in processes • Often associated with Green Chemistry. Has been a major driving force behind the intense interest in ionic liquids
  • 3.         INDUSTRY DRIVERS: ALTERNATIVE SOLVENTS FOR PROCESS INTENSIFICATION • There is a need to develop more environmentally benign solvents or use solventless systems • Such solvents should replace toxic and environmentally hazardous and/or volatile solvents • Necessary to develop and optimize reactions conditions to use these new solvents and at the same time maximize yield and minimize energy usage. • Examples include use of solids or involatile liquids rather than volatile, flammable and environmentally hazardous organic compounds (VOC).
  • 4.                 WHY CONSIDER IONIC LIQUIDS AS GREEN SOLVENTS • Low melting organic salts (-60 °C) • Very low vapor pressure (good) • Non-flammable (good) • Wide liquid range (300 °C) (good) • Moderate to high viscosity (bad) • Solvent properties different from molecular solvents (good and bad) • Solvent properties can be controlled by selection of anion and cation – hence often termed designer solvents (good) • BUT – some ionic liquids are toxic to the environment and humans
  • 5. anionOrganic cation DESIGNER SOLVENTS - FLEXIBILITY OF CHOOSING FUNCTIONAL GROUPS TO MAKE IONIC LIQUIDS Alkylammonium Alkylphosphonium Alkylnitride N,N’-dialkylimidazolium N-alkylpyridinium Halide-based (Cl -, Br -­‐, F -­‐) Halogeno-based (BF4 -­‐, PF6 -­‐) Halogenoaluminium(III) NO3 -­‐, ClO4 -­‐,HSO4 -­‐ SO3 -­‐, CF3SO3 -­‐ (CF3SO2)2N-­‐ (CF3SO2)3C-­‐
  • 7. 1-ethyl-3-methylimidazolium acetate, abbreviated as [C2mim][OAc], dissolves > 20 wt% cellulose CERTAIN IONIC LIQUIDS (ILS) ARE EFFECTIVE BIOMASS SOLVENTS Cation determines: -  stability -  properties Anion determines: - chemistry - functionality Room  Temperature,  Molten  Salts   Simmons,  B.  et  al.,  Ionic  Liquid  Pretreatment,  Chem  Eng  Prog,  2010,  3,  50-­‐55   7  
  • 8. SOLVENT-BASED PREDICTORS OF IL PERFORMANCE ON BIOMASS •  Target: design of task- specific ILs •  Need: method of comparing and determining solvent properties •  Kamlet-Taft parameters is a way of measuring solvent polarity using solvatochromic dyes •  Provides a quantitative measure of: -  solvent polarizability (π* parameter), -  hydrogen bond donator capacity (α parameter), -  hydrogen bond acceptor capacity (β parameter). Doherty  et  al.,  Green  Chemistry,  2010,  12(11),    1967-­‐1975.    
  • 9. ESTABLISHING AN EFFECTIVE IL CONVERSION PROCESS TECHNOLOGY Feedstocks   Pretreatment   SaccharificaHon   Fuels  Synthesis   •  Challenge: Current pretreatments are not effective on wide range of feedstocks and/or generate inhibitors •  Any upstream unit operation must be integrated with downstream functions •  Solution: develop an IL biomass conversion platform that is feedstock agnostic Ø  Develop mechanistic understanding of how ILs interact with biomass Ø  Explore alternative modes of IL pretreatment that decrease cost 9  
  • 10. [C2mim][OAc] Switchgrass Heat Stir Anti- solvent Advantages: •  Increased enzyme accessibility •  Decreased lignin •  Significantly impacted cellulose crystallinity Challenges: •  IL recovery and recycle •  Process integration •  IL cost WE HAVE ESTABLISHED AN EFFECTIVE IONIC LIQUID PRETREATMENT PROCESS BASELINE 10  
  • 11. UNDERSTANDING IL PRETREATMENT Molecular  scale:  20-­‐mer  of  cellulose;  [C2mim][OAc]/H2O  (w/w)  =  50/50   Ø  MD  simulaHons  conducted  using   NERSC  resources   Ø  Provides  new  insight  into  the   mechanism  of  cellulose  solvaHon  in   ionic  liquids   Ø  Produced  new  hypothesis  on  the   mechanism  of  cellulose  precipitaHon   Liu  et  al.,  Journal  of  Physical  Chemistry  (2011),  115(34),  10251-­‐10258.   11   Macroscale:  plant  cell  walls  of  pine,  [C2mim][OAc],  120  oC   Ø  In  situ  studies  using  bright  field   microscopy   Ø  Rapid  swelling  of  the  plant  cell  walls,   followed  by  dissoluHon   Ø  Complementary  Raman  studies   indicate  that  lignin  is  solvated  first,   then  cellulose  
  • 12. SWITCHGRASS UNDERGOING IL PRETREATMENT •  [C2mim][OAc],  120oC,  t  =  10  minutes   •  In  situ  studies  using  bright  field  microscopy   •  Complementary  Raman  and  fluorescence  studies  indicate  that   lignin  is  solvated  first,  then  cellulose   12  
  • 13. SOLVENT-BASED PREDICTORS OF IL PERFORMANCE •  Target: design of task- specific ILs •  Need: method of comparing and determining solvent properties •  Kamlet-Taft parameters is a way of measuring solvent polarity using solvatochromic dyes •  Provides a quantitative measure of: -  solvent polarizability (π* parameter), -  hydrogen bond donator capacity (α parameter), -  hydrogen bond acceptor capacity (β parameter). Doherty  et  al.,  Green  Chemistry,  2010,  12(11),    1967-­‐1975.    
  • 14. •  Comparative study of leading pretreatment technologies on common feedstock and enzymes (inter-BRC collaboration) •  GLBRC: Provided corn stover and AFEX pretreated corn stover •  JBEI: Ionic liquid and dilute acid pretreatment of corn stover •  Result: Ionic liquid outperforms dilute acid and AFEX 0% 20% 40% 60% 80% 100% 0.0 1.0 2.0 3.0 4.0 5.0 0 20 40 60 80 100 Reducingsugar(mg/mL) Time (h) Ionic liquid AFEX Dilute acid Untreated IL PRETREATMENT GENERATES HIGH SUGAR YIELDS Novozymes commercial cellulase cocktails: 5g glucan/L biomass loading 50mg protein/g glucan of cellulase (NS50013) 5mg protein/g glucan of β-glucosidase (NS50010) Li et al., Biores. Tech. (2011), 102(13), 6928-6936; Li et al., Biores. Tech. (2010), 101 (13), 4900-4906 14  
  • 15. Feedstock  availability  by  type  and  by   state  (Lubowski  et  al.  2005)   Mixed feedstocks: In order to accomplish large-scale utilization of biomass feedstocks for biofuels, a consistent and stable supply of sustainable feedstocks from a variety of sources will be required Issues that must be addressed: •  Impact of blends on conversion efficiency? •  What are the most reasonable combinations of feedstocks? •  Can we improve energy density? •  “Universal Feedstock”? MIXED FEEDSTOCKS WILL BE SIGNIFICANT SOURCE OF BIOMASS FOR BIOREFINERIES 15   Cropland   Grassland   Forestry   Special  use/urban   Land-­‐use  types  
  • 16. Densifica:on:  typically  involves  exposing  biomass  to  elevated  pressure  and  temperature   and  compressing  it  to  a  higher  energy  density  which  facilitates  the  transport,  store,  and   distribute  of  the  biomass  .     20  g  mixed  flour 20  g  mixed  pellets 5  g  pine 5  g  eucalyptus 5  g  corn  stover 5  g  switchgrass 10  mm Pelleting FEEDSTOCK DENSIFICATION AND BLENDING 16   Shi  et  al.,  Biofuels,  2013,  4(1),  63-­‐72.    
  • 17. IL PROCESS GENERATES HIGH SUGAR YIELDS FOR SINGLE AND MIXED FEEDSTOCKS • Pretreatment: [C2mim][OAc], 15% solids loading, 160 oC, 3 hours • Saccharification: 15% solids loading, CTec2 @ 40 mg/g glucan loading, HTec2 4 mg/g xylan • Mixed feedstocks appear to perform better than average of single feedstock yields – why? 17   0 10 20 30 40 50 60 70 Mixed Eucalyptus Pine Switchgrass Corn  stover Sugar  released  (g/L) Biomass  types Arabinose Galactose Glucose Xylose Shi  et  al.,  Biofuels,  2013,  4(1),  63-­‐72.    
  • 18. DENSIFIED FEEDSTOCKS ARE EFFECTIVELY PRETREATED USING ILS 20#g#mixed#flour# 20#g#mixed#pellets# A" B" Images  of  (a)  feedstocks  before  pretreatment  and  (b)   densified  feedstocks  during  IL  pretreatment   18   Shi  et  al.,  Biofuels,  2013,  4(1),  63-­‐72.    
  • 19. 0 24 48 72 0 20 40 60 80 100 EnzymaticDigestibility,% Time, h mixed flour-IL pretreated mixed pellets-IL pretreated mixed flour-untreated mixed pellets-untreated PARTICLE SIZE AND MIXED FEEDSTOCKS – NO IMPACT ON IL PRETREATMENT 1:1:1:1  corn  stover:switchgrass:eucalyptus:pine.  Biomass  loading  =  20  g/L,  with  enzyme   loading  of  20  mg  CTec2  protein/g  glucan  and  0.26  mg  HTec2  protein/g  glucan     19   Sugar  Yield  as  %  of  IniHal  ComposiHon   Shi  et  al.,  Biofuels,  2013,  4(1),  63-­‐72.    
  • 20. IL TECHNO-ECONOMIC MODELING - BASELINE Feedstock  handling   Pretreatment   FermentaVon   Product  recovery   Water  recovery   Wastewater  treatment   Steam/Electricity   Klein-­‐Marcuschamer  et  al.,  Biomass  and  Bioenergy,  2010,  34(12),  1914-­‐1921   Available  at  econ.jbei.org   20  
  • 21. IL PRETREATMENT MODULE IL  mixing  reactor   RT  ~30min,  120  oC   Solids   precipitate   Solids  are   separated   Lignin  is  purified   and  IL  recycled    Klein-­‐Marcuschamer  et  al.,  Biofpr,  2011,  5(5),  562-­‐569     21  
  • 22. SENSITIVITY ANALYSIS HIGHLIGHTS KEY OPPORTUNITIES TO IMPROVE IL ECONOMICS  Klein-­‐Marcuschamer  et  al.,  Biofpr,  2011,  5(5),  562-­‐569   •  IL  pretreatment  has  challenging   economics   •  Significant  swings  in  IL  price  based  on   type  and  vendor  ($1.00-­‐800/kg)   •  Key  findings  to  reduce  cost:   •  Increase  solids  loading     Ø  During  IL  mixing     Ø  During  saccharificaHon   Ø  Higher  solids  loading   lowers  CAPEX  and  OPEX   •  Reduce  IL  price  and  use     •  Develop  efficient  IL  recycling   techniques  and  technologies     •  Reduce  enzyme  costs   •  Develop  integrated  systems   approach   22   IL  price  =  $2.5  kg-­‐1  
  • 23. DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC AND SCIENTIFIC CHALLENGES • Increase solids loading - During IL mixing - During saccharification - Higher solids loading lowers CAPEX and OPEX • Reduce IL price and use • Develop better IL recycling techniques and technologies (research phase separation, other ways to extract sugars from IL, etc.) • Reduce cost of enzymes (they still represent up to 24% of raw material costs) • Develop integrated systems approach for downstream operations 23  
  • 24. IMPROVING IL PRETREATMENT ECONOMICS - HIGHER BIOMASS LOADING Benefits  of  higher  biomass  loading  and   larger  parHcle  size:   •  Decrease  need  for  comminuHon   •  Biorefinery  OPEX  savings   •  Impacts  harvesHng  opHons   •  May  drive  to  co-­‐solvent  opHons  to   miHgate  viscosity  concerns   24   A.  Cruz  et  al.,  Biotechnology  for  Biofuels,  2013,  6:52.  
  • 25. 3%,$$CrI$=$0.35$(Cellulose$II)$ 20%,$CrI$=$0.26$(Cellulose$II)$ 50%,$CrI$=$0.03$(Mostly$Amorphous)$ Untreated,$CrI$=$0.36$(Cellulose$I)$ Untreated,)cellulose)I) 3%,)treated,)cellulose)II) 20%,)treated,)cellulose)II) 50%,)treated,)amorphous) 0" 20" 40" 60" 80" 100" 20" 30" 40" 50" untreated" Rate"of"Hydrolysis" "(mg/L/min)""" %"Biomass"Loading"(w/w)" UNANTICIPATED BENEFIT OF HIGHER BIOMASS LOADING •  Surveyed impact of high biomass loading on sugar yields and kinetics •  Higher biomass loading yields higher hydrolysis rates •  Higher biomass loading generates more amorphous product after pretreatment 25   X-­‐ray  Diffractograms   Sugar  Release  KineHcs   A.  Cruz  et  al.,  Biotechnology  for  Biofuels,  2013,  6:52.  
  • 26. DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC AND SCIENTIFIC CHALLENGES • Increase solids loading - During IL mixing - During saccharification - Higher solids loading lowers CAPEX and OPEX • Reduce IL price and use • Develop better IL recycling techniques and technologies (research phase separation, other ways to extract sugars from IL, etc.) • Reduce cost of enzymes (they still represent up to 24% of raw material costs) • Develop integrated systems approach for downstream operations 26  
  • 27. DISCOVERY AND SCREENING OF LOW- COST, HIGH-PERFORMING ILS •  Challenge: The most effective ILs known to date have limits and are expensive •  Solution: Discovery of new ILs with optimal properties Ø Screen new ILs synthesized Ø Determine physicochemical properties and generate cheminformatic training set Ø Evaluate pretreatment performance 27   IL  selecHon  and  synthesis   Measure  density,   surface  tension   Pretreatment   efficiency,  IL   recovery   Modeling,   cheminformaHcs  
  • 28. Goal:  Design,  synthesize  and  screen  new  ionic  liquids  that:     1.  Compare  favorably  in  performance  to  our  current  gold  standard  [C2mim][OAc]   2.  Do  not  require  anhydrous  condiVons  (operate  effecVvely  at  20%  H2O)   3.  Compete  in  cost  with  commonly  used  industrial  reagents     HSO4-­‐  anions  (good  delignifiers)  systemaVcally  varied  caVon,  to  understand  mechanisms.         IDENTIFYING AND DEVELOPING COST-EFFECTIVE ILS ethylammonium   diethylammonium   triethylammonium   diisopropylammonium   NH3 + N H2 + N H2 + NH+ monoethanolammonium   diethanolammonium   triethanolammonium   NH3 + HO NH+ HO OH OH H2 + N HO OH 28  
  • 29. 80:20 TRIETHYLAMMONIUM:H2O MIXTURE IS ~80% AS EFFECTIVE AS 80:20 [C2MIM][OAC]:H2O…… 0   10   20   30   40   50   60   70   80   90   48  hr  hydrolysis  yield  /[%]   Pretreatment  condiHons:  120  oC,  2  hours,  10%  loading   SaccharificaHon  condiHons:  50  oC,  1%  glucan  loading,  72  hours,  CTec2  20  mg/g   glucan,  HTec2  1:10   29  
  • 30. ....AND COSTS $0.75 PER KG VERSUS $20 Ionic  liquid   Cost  /kg   [C4C1im][PF6]  (Sigma-­‐Aldrich)   (250g)   $2000   [C2mim][OAc]  (Sigma-­‐Aldrich)   (1kg)   $850   [(C8)3C1N][Br]  (Solvent  InnovaVons)   (100T)   $30   [C2mim][OAc]  (BASF)   (best  case  bulk  esVmate)   $20   [C4mim][HSO4]  (BASF)   (best  case  bulk  esVmate)   $2.5   TRIETHYLAMMONIUM  HYDROGEN   SULPHATE   Cost/kg   Raw  materials:        H2SO4                                                              Triethylamine   $0.04                 $1.45   Process  costs   $0.01   TOTAL  COST   $0.75   30  
  • 31. IMPACT OF IL = $0.75/KG 31   _" 96%" 98%" 99.60%" "$*"""" "$2.00"" "$4.00"" "$6.00"" "$8.00"" "$10.00"" "$12.00"" 10" 7.5" 5" 2" 1" IL#recycle#rate# MESP#($/gal)# IL4Biomass#Ra;o# IL=$0.75/kg# "$10.00"*"$12.00"" "$8.00"*"$10.00"" "$6.00"*"$8.00"" "$4.00"*"$6.00"" "$2.00"*"$4.00"" "$*"""*"$2.00""
  • 32. DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC AND SCIENTIFIC CHALLENGES • Reduce IL price and use • Increase the solids loading - During IL mixing (as shown in this presentation) - During saccharification - Higher solids loading mean lower CAPEX and OPEX • Develop better IL recycling techniques and technologies (research phase separation, other ways to extract sugars from IL, etc.) • Reduce the contribution of enzymes (they still represent up to 24% of raw material costs) • Develop integrated systems approach for downstream operations
  • 33. IL RECOVERY METHODS Feedstocks   Pretreatment   SaccharificaHon   Fuels  Synthesis   •  Challenge: Need to recover and reuse ionic liquids after use •  Solution: Develop techniques based on liquid-liquid extraction Ø  Minimize requirements for energy intensive distillation Ø  Generate lignin as a separate product stream •  Future directions: evaluate membrane based separations 33   IL  Recycle   Lignin  
  • 34. ESTABLISHING ROUTES TO EFFICIENT IL RECOVERY AND RECYCLE •  Challenge: IL must be recovered and recycled •  Solution: Demonstrated ~90% IL recovery and IL maintains pretreatment efficacy. Ø  Biomass fractionation can be tailored to desired output streams. Ø  <1% IL degraded during pretreatment at these conditions Estimated mass balances! !" Starting Biomass (Corn Stover) 100% 3% 2% 18% 77% 64% 13% Xylan-rich product 6.5% of C6 Carb. 15.3% of C5 Carb. 14.3% of Lignin 19.2% of Other Aliphatic-rich product 8.4% of Other Lig.-rich product 1.2% of C6 Carb. 3.7% of C5 Carb. 5.9% of Lig 1.2% of Other Lost 7.6% of C6 Carb. 16.6% of C5 Carb. 44.6% of Lignin 21.3% of Other Glucan-rich product 84.7% of C6 Carb. 64.3% of C5 Carb. 35.2% of Lignin 49.9% of Other IL recovery ! 89% ComposiHon  and  disposiHon  of  corn  stover  aler  IL  pretreatment   uHlizing  new  [C2mim][OAc]  IL  for  3  hours  at  140  °C.  A  Xylan-­‐rich   product  is  obtained  from  a  water  wash  of  pretreated  solids.   Dibble  et  al.,  A  facile  method  for  the  recovery  of  ionic  liquid  and  lignin  from   biomass  pretreatment,  Green  Chemistry,  2011,13,  3255-­‐3264.     34  
  • 35. IL RECOVERY USING WATER-IL-KETONE MIXTURES  Dibble  et  al.,  Green  Chemistry,  2011,13,  3255-­‐3264.     Challenges    -­‐  MulVple  stage  process  costly  and  requires  disVllaVon    -­‐  Energy  consumed  can  be  more  than  the  potenVal   energy  of  some  biomass  types  
  • 36. DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC AND SCIENTIFIC CHALLENGES • Reduce IL price and use • Increase the solids loading - During IL mixing (as shown in this presentation) - During saccharification - Higher solids loading mean lower CAPEX and OPEX • Develop better IL recycling techniques and technologies (research phase separation, other ways to extract sugars from IL, etc.) • Reduce the contribution of enzymes (they still represent up to 24% of raw material costs) • Develop integrated systems approach for downstream operations
  • 37. [C2mim]Cl   [C2mim]Cl   HCl   FERMENTABLE SUGARS BY ACID HYDROLYSIS Binder  and  Raines.  PNAS  (2010)   v  Directly hydrolyze biomass dissolved in IL with the aid of acid v  HMF/furfural reduction by titration of water v  Cost effective separation of sugars/products from ILs and IL recycling is a challenge 105  oC/6h  
  • 38. IL RECOVERY USING AQUEOUS BIPHASIC (ABP) SYSTEMS 38   IL  rich  phase   Sugar  rich  phase   •  Expand  upon  iniHal  results   obtained  in  Years  1-­‐4   •  Develop  process  technology   based  on  ABP   •  Increases  IL  recovery  and   recycle   •  Can  be  integrated  with  “one-­‐ pot”  approach  to  sugar   producHon   N.  Sun  et  al.,  Biotechnology  for  Biofuels,  2013,  6:39.  
  • 39. 39   HIGHER PRETREATMENT TEMPERATURE ENHANCES SUGAR YIELD v  Pretreatment under higher temperature is more efficient for sugar production. v  Xylan is much easier for hydrolysis compared to cellulose. However, with the increase of glucose yield the xylose yield goes down indicating some degradation. v  May indicate that two-stage thermal process is needed to maximize sugar yields. 0 20 40 60 80 100 120 1 2 3 4 5 6 Glucose yield Xylose yield Percentage(%) N.  Sun  et  al.,  Biotechnology  for  Biofuels,  2013,  6:39.  
  • 40. DEVELOPING SOLUTIONS TO ADDRESS ECONOMIC AND SCIENTIFIC CHALLENGES • Reduce IL price and use • Increase the solids loading - During IL mixing (as shown in this presentation) - During saccharification - Higher solids loading mean lower CAPEX and OPEX • Develop better IL recycling techniques and technologies (research phase separation, other ways to extract sugars from IL, etc.) • Reduce the contribution of enzymes (they still represent up to 24% of raw material costs) • Develop integrated systems approach for downstream operations
  • 41. ALTERNATIVE IL PROCESS TECHNOLOGIES Feedstocks   Pretreatment   SaccharificaHon   FermentaHon   IL  Recycle   Lignin   •  Challenge:  “One-­‐pot”  approach   requires  the  development  of  IL   tolerant  and  thermostable  enzymes   •  SoluHon:   Ø  Use  sequence-­‐  and  structure-­‐ based  informaHon  as  methods   to  improve  stability   Ø  Targeted  discovery  of  novel   enzymes  from  microbial   communiHes     Ø  Develop  enzyme  cocktails  at   high  solids  loading  and  relevant   processing  condiHons   41   Feedstocks   Consolidated   Pretreatment  +   Hydrolysis   FermentaHon   IL  Recycle   Lignin  
  • 42. CELLULOSE HYDROLYSIS TO GLUCOSE REQUIRES A MIXTURE OF ENZYMES 42   Adapted  from  Dimarogona  et  al.,  2012     Enzymes needed to form robust “cocktail”: •  Endoglucanase (EG) •  Exoglucanases Ø  Cellobiohydrolases (CBH) Ø  Cellodextrinases •  β-glucosidases •  Polysaccharide monooxygenases (PMO) •  Cellobiose dehydrogenases (CDH) Factors that impact performance: •  Degree of polymerization •  Crystallinity index •  Presence of lignin
  • 43. WE HAVE DEVELOPED A CELLULASE COCKTAIL THAT IS IL- AND THERMO-TOLERANT Recombinant thermophilic cellulases from Enzyme Optimization team JTHERM Cellulase Cocktail Target genes found in thermophilic compost metagenome expressed and profiled Gene$ ID$ J30$J37$J24$J28$J29$J36$J40$J41$J03$ J0 6$ J08$ J09$J11$J14$J18$J19$J35$J01$J02$J15$J17$J31$ CMC$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Avicel$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ pSG$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ pNPC$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ pNPG$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Joshua  I.  Park  et  al.,  A  Thermophilic  Ionic  liquid-­‐tolerant  Cellulase  Cocktail  for  the   ProducHon  of  Cellulosic  Biofuels,  PLoS  ONE,  2012,  7(5),  e37010   80C   50C   0   5   10   0%  IL   10%  IL   20%  IL   Glucose  (g/L)   80C$ 50C$ 0$ 5$ 10$ 0%$IL$10%$IL$20%$IL$ Novozymes) CTec2) Glucose)(g/L)) 43   70C   70C  
  • 44. ASSEMBLING THE PIECES: ONE-POT LIGNOCELLULOSIC PROCESSING USING JBEI PLATFORM TECHNOLOGIES IL tolerantenzymes Ionic Liquids Fermentable Sugars + Lignin recovery IL recycle 0 10 20 30 40 50 60 0 50 100 150 200 250 300 350 Wateruse,L/kgbiomass Biomass loading during IL pretreatment, % Multi-unit One-pot, 20% IL One-pot, 10% IL Feedstocks Pretreatment/ IL  removal Saccharification Fermentation IL  Recycle Lignin Feedstocks One-­‐pot   Pretreatment  +   Saccharification Fermentation IL  Recycle Lignin Sugar  extraction (a) (b) Water  wash
  • 45. 0 20 40 60 80 100 Untreated -- CTec + washed CTec + IL -- JTherm + IL 0 10 20 30 Glucoseyield,%ofmaximumpotential Glucosemassyield,g/100grawSG Glucose Xylose Ø  Wash-­‐free   Ø  No  pH  adjustment  needed   Ø  Glucose  and  xylose  yields  comparable  to   tradiHonal  IL  pretreatment  and   saccharificaHon  using  commercial  enzymes   Ø  SelecHve  sugar  extracHon   Ø  Lignin  streams  open  to  recycle  and   valorizaHon   Ø  Batch  mode  à  conHnuous  mode     Switchgrass Ionic Liquid Pretreatment Enzymatic Hydrolysis 1 2 3 Liquid Solids 16.8 g dry residual solids 100 g dry weight 31.5 g glucose 13.6 g xylose 1.0 g glucose oligomers 6.0 g xylose oligomers 7.7 g lignin Overall yield of glucose from liquid streams = 81.9% Overall yield of xylose plus xylooligomers from liquid streams = 85.4% JTherm Protein ~ 2.3 g (23 mg enzyme/g ) 2.1 g glucan 2.2 g xylan 11.3 g lignin 1.6 g others 160 o C, 3h Atmospheric pressure 10% solid loading 34.6 g glucan (G) 20.2 g xylan 19.0 g lignin 26.2 g others Water 9000 g [C2mim][OAc] 900 g (a) ONE-POT LIGNOCELLULOSIC PROCESSING USING JBEI PLATFORM TECHNOLOGIES
  • 46. SUMMARY •  ILs are a promising pretreatment technology -  No drop in performance as a function of scale -  Need to develop an integrated conversion process with all downstream functions tolerant to residual ILs •  ILs provide a unique opportunity to tailor pretreatment and reaction chemistry •  Several challenges remain, primarily around cost of the process -  Innovations on new IL synthesis routes -  Cheaper combinations of anions and cations -  Renewable ionic liquids •  IL pretreatment technology commercialization underway
  • 47. BENCHMARKING: ECONOMICS ConvenHonal  IL  Process:  Pretreatment  +  Enzymes   1" 10" 100" 1,000" 10,000" 2005'2006" 2008" 2011'2012" 2013" 2017" Goal" Dilute"Acid" Reference"Case" MESP"($)" Reflects  improvements  realized  in:   -­‐  IL  cost  ($773  à  0.75-­‐2.5/kg)   -­‐  Higher  biomass  loading   -­‐  Increased  sugar  yields   -­‐  Efficient  IL  recycle  and  lignin  recovery   -­‐  “One-­‐pot”  pretreatment  +  saccharificaHon  
  • 48. IL PRETREATMENT AND COMMERCIALIZATION • SuGanit - Biochemical conversion platform - Uses IL soaking of biomass - Hydrolysis using enzyme mixtures - Lignin recovery after saccharification • Hyrax - ILs used to solubilize biomass - HCl catalysts added to liberate sugars - Sugar recovery is a challenge - Start-up from lab of Prof. Raines at UW-Mad
  • 49. ACKNOWLEDGMENTS •  JBEI: Seema Singh, Ning Sun, Jian Shi, Kim Tran, Mike Kent, Rich Heins, John Gladden, Ken Sale, Steve Singer •  Imperial College: Tom Welton, Jason Hallett •  VTT: Alistair King •  ABPDU: James Gardner, Chenlin Li, Deepti Tanjore, Wei He •  INL: Richard Hess, Vicki Thompson 49