SlideShare a Scribd company logo
1 of 75
Download to read offline
Estimation of Jump Variation in a Bayesian
Model of High-Frequency Asset Returns
Brian Donhauser
Department of Economics
University of Washington
June 14, 2012
1 / 75
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
2 / 75
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
3 / 75
Emergence of High-Frequency Financial Data
In the early 1990’s, developments in
the storage and vending of high-frequency financial data and
computing power
laid the groundwork for research in high-frequency finance (Wood,
2000).
4 / 75
What to Do With High-Frequency Financial Data?
financial economics: test theoretical market microstructure
models
financial econometrics: model high-frequency prices, volumes,
and durations
estimate lower-frequency quantities (e.g., conditional daily
return variance)
5 / 75
0 100 200 300 400
46.6
46.8
47.0
47.2
47.4
WMT Jan 02, 2008
minutes (t)
prices(St)
Simple Returns vs. Log Returns
If St is the spot price of an asset at minute t, then the simple
return over the interval [t − 1,t] is
Rt =
St − St−1
St−1
and the logarithmic return is
rt = log(St) − log(St−1)
= log(1 + Rt)
≈ Rt, for small Rt
We prefer the latter because of additivity and infinite support.
7 / 75
A Mathematical Model for an Asset X
X ≡ (Xt)t∈[0,∞)
an adapted, c`adl`ag stochastic process
on a filtered complete probability space (Ω,F,F,P),
satisfying the usual hypothesis
will represent an asset with log-price Xt at time t.
8 / 75
Toward a Simple Jump-Diffusion Model for X
Under mild regularity conditions:
rt ≡ Xt − X0 = ∫
t
0
audu + ∫
t
0
σu dWu + Jt, 0 ≤ t < ∞
rt is the log-return over the trading time interval [0,t]
W ∈ BM
a,σ ∈ PRE are the spot drift and spot volatility of returns
Jt = ∑
Nt
i=1 Ci is the cumulative jump process
Nt is a simple counting process of the number of jumps in the
time interval [0,t]
Ci is the size of the ith jump.
9 / 75
Revisiting the Motivating Question
Q: What is the return variance for WMT on January 2nd, 2008?
Q:
Var{rt Ft} =?
where
Ft ≡ F{au,σu}u∈[0,t]
10 / 75
Var{r F} = IV
From Andersen et al. (2003, Thm. 2), if (a,σ) W and J ≡ 0,
rt Ft ∼ N (∫
t
0
au du,∫
t
0
σ2
u du)
so
E{rt Ft} = ∫
t
0
au du
Var{rt Ft} = IVt
where
IVt ≡ ∫
t
0
σ2
u dt
11 / 75
Realized Variance: RV
For
an asset X
on a time interval [0,t]
with (n + 1)-element partition
Pn ≡ {τ0,τ1,...,τn}, 0 = τ0 ≤ τ1 ≤ ⋯ ≤ τn = t < ∞,
the realized variance
RV
(n)
t ≡
n
∑
i=1
r2
i , 0 ≤ t < ∞
where
ri ≡ Xτi − Xτi−1 , i = 1,...,n
is the i-th log-return on Pn.
12 / 75
RV → IV
From Andersen et al. (2003); Barndorff-Nielsen and Shephard
(2002),
RV
(n)
t → IVt
convergence ucp on [0,t]
limit taken over all Pn with limn→∞ Pn = 0.
13 / 75
0 100 200 300 400
46.6
46.8
47.0
47.2
47.4
WMT Jan 02, 2008
minutes (t)
prices(St)
RV for WMT on Jan 2, 2008
100
√
⋅ 100
√
252
√
⋅
RV 1.5 24.1
15 / 75
0 10 20 30 40 50 60
20
30
40
50
60
WMT Jan 02, 2008 – Mar 31, 2008
day
AnnualizedVolatilityMeasuresin%
Estimating Var{rt Ft} Other Methods
The realized quantity r2
t
GARCH (Bollerslev, 1986)
Stochastic volatility (Melino and Turnbull, 1990; Taylor, 1994;
Harvey et al., 1994; Jacquier et al., 1994)
17 / 75
RV → IV + JV
Relaxing J ≡ 0, from Barndorff-Nielsen and Shephard (2004),
RV
(n)
t → IVt + JVt ≈ Var{rt Ft}
where
JVt ≡
Nt
∑
i=1
C2
i .
18 / 75
Realized Bipower Variation: RBPV
For
an asset X
on a time interval [0,t]
with (n + 1)-element partition Pn,
the realized bipower variation
RBPV
(n)
t ≡
n
∑
i=2
ri ri−1 , 0 ≤ t < ∞.
19 / 75
IVBNS04,JVBNS04
From Barndorff-Nielsen and Shephard (2004), under mild regularity
conditions
IV
(n)
BNS04,t ≡
π
2
RBPV
(n)
t → IVt
JV
(n)
BNS04,t ≡ RV
(n)
t − IV
(n)
BNS04,t → JVt.
20 / 75
0 100 200 300 400
46.6
46.8
47.0
47.2
47.4
WMT Jan 02, 2008
minutes (t)
prices(St)
IVBNS04,JVBNS04 for WMT on Jan 2, 2008
100
√
⋅ 100
√
252
√
⋅ %RV
RV 1.5 24.1 100.0
JVBNS04 −0.1 −1.0 −0.2
IVBNS04 1.5 24.1 100.2
22 / 75
0 10 20 30 40 50 60
0
10
20
30
40
50
60
WMT Jan 02, 2008 – Mar 31, 2008
day
AnnualizedVolatilityMeasuresin%
Summary of JVBNS04
WMT: Jan 2, 2008 – Mar 31, 2008
100 ∗ (JVBNS04
RV )
Min. −3.5
1st Qu. 1.2
Median 3.6
Mean 4.8
3rd Qu. 8.1
Max. 20.0
24 / 75
Simulation Results for JVBNS04: MPE and MAPE
# Jumps
Est. 0 3 10 30
JVBNS04 0.3 −4.5 −12.7 −26.6
IVBNS04 −0.4 4.1 12.7 26.4
# Jumps
Est. 0 3 10 30
JVBNS04 3.3 5.4 12.7 26.6
IVBNS04 6.7 7.3 12.9 26.4
25 / 75
Estimating Jump Locations: LM Stat
Extending Barndorff-Nielsen and Shephard, Lee and Mykland
(2008) define their jump statistic
LMl,τi
≡
ri
σi
,
where
σi
2
≡
1
n
IVBNS04,t
and show that jumps are identified with perfect classification
accuracy asymptotically.
26 / 75
Na¨ıve Shrinkage Estimators: JVNS,IVNS
In previous work, I extended Lee and Mykland (2008) and defined
na¨ıve shrinkage estimators of JV, IV
JV
(n)
NS,t ≡
n
∑
i=1
[Fξ(LMg,τi )ri]
2
IV
(n)
NS,t ≡ RV
(n)
t − JVNS,t.
and showed their consistency.
27 / 75
0 100 200 300 400
46.6
46.8
47.0
47.2
47.4
WMT Jan 02, 2008
minutes (t)
prices(St)
IVNS,JVNS for WMT on Jan 2, 2008
100
√
⋅ 100
√
252
√
⋅ %RV
RV 1.5 24.1 100.0
JVNS 0.2 3.2 1.7
JVBNS04 −0.1 −1.0 −0.2
IVNS 1.5 23.8 98.3
IVBNS04 1.5 24.1 100.2
29 / 75
0 10 20 30 40 50 60
0
10
20
30
40
50
60
WMT Jan 02, 2008 – Mar 31, 2008
day
AnnualizedVolatilityMeasuresin%
0 10 20 30 40
0
5
10
15
20
WMT Jan 02, 2008 – Mar 31, 2008
100 ∗ JVNS/RV
100∗JVBNS04/RV
Summary of JVNS
WMT: Jan 2, 2008 – Mar 31, 2008
100 ∗ (JVBNS04
RV ) 100 ∗ (JVNS
RV )
Min. −3.5 0.4
1st Qu. 1.2 8.9
Median 3.6 15.6
Mean 4.8 16.1
3rd Qu. 8.1 21.9
Max. 20.0 47.1
32 / 75
Simulation Results for JVNS: MPE and MAPE
# Jumps
Est. 0 3 10 30
JVNS 1.3 −0.0 −2.1 −10.3
JVBNS04 0.3 −4.5 −12.7 −26.6
IVNS −1.4 −0.4 2.1 10.0
IVBNS04 −0.4 4.1 12.7 26.4
# Jumps
Est. 0 3 10 30
JVNS 1.3 2.7 4.4 10.6
JVBNS04 3.3 5.4 12.7 26.6
IVNS 5.9 5.3 4.7 10.1
IVBNS04 6.7 7.3 12.9 26.4
33 / 75
Conclusion: Na¨ıve Shrinkage Estimators
Simulations demonstrate superiority over JVBNS04 :)
Bounded above zero and below RV :)
Non-model-based :(
34 / 75
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
35 / 75
Continuous → Discrete: The Reduced Model
Under assumptions and definitions to follow, the continuous
jump-diffusion model reduces to a discrete model where we observe
ri = σixi, with
xi = µi + i, i = 1,...,n,
and
i
i.i.d.
∼ N(0,1) with pdf φ
where µi and σi are unspecified jump and stochastic volatility
processes.
36 / 75
Continuous → Discrete: Assumptions and Definitions
Assume,
(i) (Zero Drift). au = 0, ∀u ∈ [0,t],
(ii) (Homogenous Sampling). An (n + 1)-element homogenous
sampling of Xu over the time interval [0,t],
{X0,Xδ,X2δ,...,X(n−1)δ,Xt}, where δ = t/n is the width of
the sampling interval,
and define for i = 1,...,n,
(i) (Interval Volatility). σi ≡ σ[δ(i−1), δi].
(ii) (Scaled Interval Jump). µi ≡ 1
σi
(Jδi − Jδ(i−1)).
(iii) (Log-Returns). ri ≡ Xδi − Xδ(i−1).
(iv) (Scaled Log-Returns). xi ≡ 1
σi
ri.
37 / 75
JV and IV in the Discrete, Reduced Model
JV ≈
n
∑
i=1
σ2
i µ2
i
IV ≈
n
∑
i=1
σ2
i
QV ≈
n
∑
i=1
σ2
i +
n
∑
i=1
σ2
i µ2
i .
We take these to define JV and IV in the discrete model.
38 / 75
The Discrete Bayesian Model
From Johnstone and Silverman (2004, 2005),
ri = σixi i = 1,...,n, (Observations)
L(xi µi,σi) = φ(xi − µi) i = 1,...,n, (Likelihood)
π(µi) = {
1 − w for µi = 0
wγ(µi) for µi ≠ 0,
i = 1,...,n,
(Prior Jump Density)
w = π {µ ≠ 0}, (Prior Jump Probability)
γ(µ) =
1
2
aexp(−a µ ), (Prior Density of µ {µ ≠ 0})
σi,w,a (Hyperparemeters)
39 / 75
Bayesian Model Estimation: Initial Steps
1 Set a = 0.5 a priori
2 Assume σi = σ a constant and take σ = 1.48MAD{r1,...,rn}
3 Calculate xi = ri
σ for i = 1,...,n
4 Calculate w by marginal maximum likelihood of L( ˇw). I.e.,
take
w = argmax
0≤ ˇw≤1
n
∑
i=1
log{(1 − ˇw)φ(xi) + ˇwg(xi)}
where
g(x) ≡ (φ ∗ γ)(x) ≡ ∫ φ(x − µ)γ(µ)dµ
is interpreted as the marginal density of x {µ ≠ 0}
5 For i = 1,...,n, solve for the posterior density of µi xi . . .
40 / 75
Posterior Density of µ x
π(µ x)
After much algebra, we can write the posterior density of µ x as
π(µ x) = {
1 − w(x) for µ = 0
w(x)γ(µ x) for µ ≠ 0,
where γ(µ x) is the posterior density of µ {x,µ ≠ 0} and
w(x) ≡ π(µ ≠ 0 x) is the posterior non-zero jump probability
41 / 75
Posterior Density of µ {x,µ ≠ 0} for Laplace prior
γ(µ x)
For the Laplace prior,
γ(µ x) =
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩
e−ax
D
φ(µ − x + a) for µ > 0
eax
D
φ(µ − x − a) for µ ≤ 0,
where D = e−ax
Φ(x − a) + eax ˜Φ(x + a).
42 / 75
Posterior Density Illustration
From Johnstone (2011):
43 / 75
Posterior Mean of µ x for Laplace Prior
ˆµπ(x)
Recall the posterior density of µ x is given by
π(µ x) = {
1 − w(x) for µ = 0
w(x)γ(µ x) for µ ≠ 0.
Then the posterior mean of µ x is
ˆµπ(x) = w(x)ˆµγ(x)
= w(x)
→1
(x − a
{e−ax
Φ(x − a) − eax ˜Φ(x + a)}
e−axΦ(x − a) + eax ˜Φ(x + a)
)
→(x−a)
→ x − a for large x
in the case of Laplace prior density γ(µ)
44 / 75
0 50 100 150 200 250
-2
0
2
4
6
i
xi,µi,ˆµ(xi)
0 1 2 3 4 5 6
0
1
2
3
4
5
6
µ
ˆµ
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
47 / 75
Posterior Mean of JV x: Na¨ıve Approach
JVNEB, 2 (x)
Recall that
JV ≡
n
∑
i=1
σ2
i µ2
i .
Then, a na¨ıve estimation approach gives
JVNEB, 2 (x) ≡
n
∑
i=1
σ2
i ˆµπ,i(xi)2
.
From Jensen’s inequality we expect this to under-represent the
actual posterior mean of JV : JVEB, 2 (x). But, very easy to
calculate!
48 / 75
Posterior Mean of JV x: Na¨ıve Relation
JVEB, 2 (x)
JVEB, 2 (x) ≡ E[JV x]
= E[
n
∑
i=1
σ2
i µ2
i x]
=
n
∑
i=1
σ2
i E[µ2
i xi]
=
n
∑
i=1
σ2
i ˆµπ,i(xi)2
+ σ2
i Var[µi xi]
= JVNEB, 2 (x) +
n
∑
i=1
σ2
i Var[µi xi].
49 / 75
Posterior Mean of JV x for Laplace Prior
JVEB, 2 (x)
So then,
JVEB, 2 (x) =
n
∑
i=1
σ2
i µ2
π,i(xi)
where, after skipping a large amount of algebra,
µ2
π(x) = w(x)µ2
γ(x)
= w(x)(x2
+ a2
+ 1 − 2ax{
e−ax
Φ(x − a) − eax ˜Φ(x + a)
D
}
−2a{
e−ax
φ(x − a)
D
})
→ (x − a)2
+ 1 for large x
= ˆµπ(x)2
+ 1 for large x
for the Laplace prior. Closed form!
50 / 75
Posterior Median of JV x for Laplace Prior
JVEB, 1 (x)
No simple closed form result. Can still get a numerical result via
the following procedure:
1 Simulate one value µi,1 from each of the n posterior jump
densities πi(µi xi)
2 Calculate JV1 = ∑n
i=1 σ2
i µ2
i,1
3 Repeat steps 1-2 k-times, returning {JV1,...,JVk}
4 Then, for large k, JVEB, 1 (x) ≈ Median{JV1,...,JVk}
51 / 75
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
52 / 75
0 100 200 300 400
46.6
46.8
47.0
47.2
47.4
WMT Jan 02, 2008
minutes (t)
prices(St)
JVEB, 2
for WMT on Jan 2, 2008
Window 100
√
⋅ 100
√
252
√
⋅ %RV
JVEB, 2 full 0.8 12.1 25.4
60min 0.7 11.7 23.8
30min 0.6 8.7 13.2
15min 0.5 8.4 12.1
10min 0.6 9.4 15.3
05min 0.7 11.6 23.3
IVEB, 2 full 1.3 20.8 74.6
60min 1.3 21.0 76.2
30min 1.4 22.4 86.8
15min 1.4 22.6 87.9
10min 1.4 22.1 84.7
05min 1.3 21.1 76.7
54 / 75
IVEB,JVEB for WMT on Jan 2, 2008
100
√
⋅ 100
√
252
√
⋅ %RV
RV 1.5 24.1 100.0
JVEB, 1 0.5 8.5 12.5
JVEB, 2 0.6 8.7 13.2
JVNS 0.2 3.2 1.7
JVBNS04 −0.1 −1.0 −0.2
IVEB, 1 1.4 22.5 87.5
IVEB, 2 1.4 22.4 86.8
IVNS 1.5 23.8 98.3
IVBNS04 1.5 24.1 100.2
55 / 75
0 10 20 30 40 50 60
0
10
20
30
40
50
60
WMT Jan 02, 2008 – Mar 31, 2008
day
AnnualizedVolatilityMeasuresin%
0 10 20 30 40 50
0
5
10
15
20
WMT Jan 02, 2008 – Mar 31, 2008
100 ∗ JVEB, 2 /RV
100∗JVBNS04/RV
0 10 20 30 40 50
0
10
20
30
40
WMT Jan 02, 2008 – Mar 31, 2008
100 ∗ JVEB, 2 /RV
100∗JVNS/RV
Summary of JVEB, 2
WMT: Jan 2, 2008 – Mar 31, 2008
100 ∗ (JVBNS04
RV ) 100 ∗ (JVNS
RV ) 100 ∗ (
JVEB, 2
RV )
Min. −3.5 0.4 0.0
1st Qu. 1.2 8.9 19.4
Median 3.6 15.6 25.6
Mean 4.8 16.1 26.3
3rd Qu. 8.1 21.9 33.0
Max. 20.0 47.1 52.7
59 / 75
Outline
Motivation and Previous Work
The Bayesian Model
Jump Variation in the Bayesian Model
Empirical Results
Simulation Results
60 / 75
Simulation Model
(Number of Observations). n = 390.
(Observations). For i = 1,...,n,
ri = σixi,
where
xi = µi + i, i
i.i.d.
∼ N(0,1).
(Interval Volatility). σi = σ = 0.000638 ≈ 0.20/
√
252 ∗ 390.
(Scaled Jumps). µi µi ≠ 0 ∼ U(−s,s), with s
deterministically set equal to 4, 7, 10, and 15.
(Number of Jumps). Deterministically set equal to 0, 3, 10,
and 30.
(Jump Locations). Each uniformly chosen from i = 1,...,n
(Number of Simulations). m = 5000
61 / 75
Estimator Evaluation Criteria: MPE, MAPE
We define the mean percentage error and mean absolute
percentage error for an estimator JV of JV as
MPE(JV ) = 100 ∗ E[
JV − JV
QV
]
MAPE(JV ) = 100 ∗ E[
JV − JV
QV
]
and similarly for an estimator IV of IV
MPE(IV ) = 100 ∗ E[
IV − IV
QV
]
MAPE(IV ) = 100 ∗ E[
IV − IV
QV
]
62 / 75
Estimator Evaluation Criteria: Sample MPE and MAPE
We approximate MPE and MAPE by their sample counterparts
MPE(JV ) ≈
100
m
m
∑
j=1
JVj − JVj
QVj
MAPE(JV ) ≈
100
m
m
∑
j=1
JVj − JVj
QVj
MPE(IV ) ≈
100
m
m
∑
j=1
IVj − IVj
QVj
MAPE(IV ) ≈
100
m
m
∑
j=1
IVj − IVj
QVj
63 / 75
MPE for s = 4
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 −2.1 −6.5 −15.5
JVEB, 2 0.8 −0.4 −2.1 −6.3
JVNS 1.3 −0.5 −4.0 −15.1
JVBNS04 0.2 −2.0 −7.3 −19.1
IVNEB, 2 −0.2 2.0 6.9 15.6
IVEB, 2 −0.7 0.3 2.5 6.4
IVNS −1.4 0.1 3.9 14.8
IVBNS04 −0.1 1.9 7.7 19.1
64 / 75
MAPE for s = 4
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 2.7 6.8 15.5
JVEB, 2 0.8 3.3 5.6 8.5
JVNS 1.3 2.1 4.8 15.1
JVBNS04 3.3 3.7 7.6 19.1
IVNEB, 2 5.8 5.9 7.9 15.7
IVEB, 2 6.0 6.2 6.7 8.5
IVNS 5.9 5.7 6.4 14.9
IVBNS04 6.7 6.4 8.7 19.2
65 / 75
MPE for s = 7
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 −2.1 −5.6 −11.4
JVEB, 2 0.8 1.4 1.2 −1.7
JVNS 1.3 −0.0 −2.1 −10.3
JVBNS04 0.2 −4.3 −12.6 −26.1
IVNEB, 2 −0.2 2.2 5.4 11.5
IVEB, 2 −0.7 −1.3 −1.4 1.8
IVNS −1.4 −0.4 2.1 10.0
IVBNS04 −0.1 4.4 12.3 26.2
66 / 75
MAPE for s = 7
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 3.3 6.3 11.4
JVEB, 2 0.8 3.9 4.8 4.7
JVNS 1.3 2.7 4.4 10.6
JVBNS04 3.3 5.3 12.6 26.1
IVNEB, 2 5.8 5.8 6.5 11.5
IVEB, 2 6.0 6.1 5.1 3.7
IVNS 5.9 5.3 4.7 10.1
IVBNS04 6.7 7.3 12.6 26.2
67 / 75
MPE for s = 10
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 −2.3 −6.0 −9.6
JVEB, 2 0.8 1.4 −0.1 −2.7
JVNS 1.3 0.2 −1.0 −6.4
JVBNS04 0.2 −6.3 −15.6 −27.4
IVNEB, 2 −0.2 2.3 6.0 9.8
IVEB, 2 −0.7 −1.4 0.1 2.9
IVNS −1.4 −0.6 1.0 6.1
IVBNS04 −0.1 6.3 15.5 27.7
68 / 75
MAPE for s = 10
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 3.9 6.5 9.7
JVEB, 2 0.8 4.0 4.2 4.3
JVNS 1.3 3.1 4.2 6.9
JVBNS04 3.3 7.1 15.6 27.4
IVNEB, 2 5.8 5.0 6.3 9.8
IVEB, 2 6.0 5.1 3.6 3.3
IVNS 5.9 4.8 3.5 6.2
IVBNS04 6.7 7.8 15.6 27.7
69 / 75
MPE for s = 15
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 −2.7 −5.4 −7.9
JVEB, 2 0.8 0.6 −1.3 −4.0
JVNS 1.3 0.2 −0.4 −3.7
JVBNS04 0.2 −7.8 −16.0 −25.0
IVNEB, 2 −0.2 2.7 5.4 7.9
IVEB, 2 −0.7 −0.6 1.3 4.0
IVNS −1.4 −0.6 0.4 3.5
IVBNS04 −0.1 7.8 16.0 25.0
70 / 75
MAPE for s = 15
# Jumps
Est. 0 3 10 30
JVNEB, 2 0.3 4.3 6.0 7.9
JVEB, 2 0.8 4.1 4.0 4.5
JVNS 1.3 3.6 3.8 4.5
JVBNS04 3.3 8.4 16.0 25.0
IVNEB, 2 5.8 4.5 5.5 7.9
IVEB, 2 6.0 4.1 2.6 4.0
IVNS 5.9 3.9 2.2 3.6
IVBNS04 6.7 8.8 16.0 25.0
71 / 75
Conclusion: Empirical Bayesian Estimators
Simulations demonstrate superiority over JVBNS04 and JVNS
:)
Model-based :)
Bounded above zero :)
Not necessarily bounded below RV :(
May depend on window of volatility estimation :(
72 / 75
Bibliography I
Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2003).
Modeling and forecasting realized volatility.
Econometrica 71(2), 579–625.
Barndorff-Nielsen, O. and N. Shephard (2002). Econometric
analysis of realized volatility and its use in estimating stochastic
volatility models. Journal of the Royal Statistical Society. Series
B (Statistical Methodology) 64(2), 253–280.
Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and
bipower variation with stochastic volatility and jumps. Journal of
Financial Econometrics 2(1), 1–37.
Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of
testing for jumps in financial economics using bipower variation.
Journal of Financial Econometrics 4(1), 1–30.
Bollerslev, T. (1986). Generalized autoregressive conditional
heteroskedasticity. Journal of econometrics 31(3), 307–327.
73 / 75
Bibliography II
Harvey, A., E. Ruiz, and N. Shephard (1994). Multivariate
stochastic variance models. The Review of Economic
Studies 61(2), 247–264.
Jacquier, E., N. Polson, and P. Rossi (1994). Bayesian analysis of
stochastic volatility models. Journal of Business & Economic
Statistics 12(4), 371–389.
Johnstone, I. and B. Silverman (2005). Ebayesthresh: R programs
for empirical bayes thresholding. Journal of Statistical
Software 12(8), 1–38.
Johnstone, I. M. (2011). Gaussian estimation: Sequence and
multiresolution models.
Johnstone, I. M. and B. W. Silverman (2004). Needles and straw
in haystacks: Empirical bayes estimates of possibly sparse
sequences. The Annals of Statistics 32(4), 1594–1649.
74 / 75
Bibliography III
Lee, S. S. and P. A. Mykland (2008). Jumps in financial markets:
A new nonparametric test and jump dynamics. Review of
Financial studies 21(6), 2535–2563.
Melino, A. and S. Turnbull (1990). Pricing foreign currency
options with stochastic volatility. Journal of
Econometrics 45(1-2), 239–265.
Taylor, S. (1994). Modeling stochastic volatility: A review and
comparative study. Mathematical finance 4(2), 183–204.
Wood, R. (2000). Market microstructure research databases:
History and projections. Journal of Business & Economic
Statistics, 140–145.
75 / 75

More Related Content

What's hot

11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plateAlexander Decker
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticalityOsame Kinouchi
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
Wasserstein gan
Wasserstein ganWasserstein gan
Wasserstein ganJinho Lee
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Jurgen Riedel
 
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...iosrjce
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Tomoya Murata
 
Modeling of Rayleigh-Taylor instability with conservative level set method
Modeling of Rayleigh-Taylor instability with conservative level set methodModeling of Rayleigh-Taylor instability with conservative level set method
Modeling of Rayleigh-Taylor instability with conservative level set methodLuka Štrubelj
 
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...Luka Štrubelj
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for controlSpringer
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAlex (Oleksiy) Varfolomiyev
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 

What's hot (20)

11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate
 
1notes
1notes1notes
1notes
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Wasserstein gan
Wasserstein ganWasserstein gan
Wasserstein gan
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
 
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Modeling of Rayleigh-Taylor instability with conservative level set method
Modeling of Rayleigh-Taylor instability with conservative level set methodModeling of Rayleigh-Taylor instability with conservative level set method
Modeling of Rayleigh-Taylor instability with conservative level set method
 
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...
Numerical Simulations Of Basic Interfacial Instabilities With the Improved Tw...
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 

Viewers also liked

Saul Bass presentation
Saul Bass presentationSaul Bass presentation
Saul Bass presentationEmilyCollins7
 
PF Strategic Leadershp Introductory pages (1)
PF  Strategic Leadershp Introductory pages (1)PF  Strategic Leadershp Introductory pages (1)
PF Strategic Leadershp Introductory pages (1)John Terhune
 
Carp andreea georgiana
Carp andreea georgianaCarp andreea georgiana
Carp andreea georgianaAndreea Carp
 
Transitioning to the GIS Workplace
Transitioning to the GIS WorkplaceTransitioning to the GIS Workplace
Transitioning to the GIS WorkplaceMelvin Shuster
 
La Web 2.0 y las TICs
La Web 2.0 y las TICsLa Web 2.0 y las TICs
La Web 2.0 y las TICsarevalo12971
 
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsDonhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsBrian Donhauser
 
How to be a better manager
How to be a better managerHow to be a better manager
How to be a better managerAndreea Carp
 
Carlos Joaquín: Competitividad turística, base del desarrollo
Carlos Joaquín: Competitividad turística, base del desarrolloCarlos Joaquín: Competitividad turística, base del desarrollo
Carlos Joaquín: Competitividad turística, base del desarrolloHaide Serrano
 
Ptsa meeting 1 15-15
Ptsa meeting 1 15-15Ptsa meeting 1 15-15
Ptsa meeting 1 15-15pudongptsa
 
Simpson University_Student Characteristics
Simpson University_Student CharacteristicsSimpson University_Student Characteristics
Simpson University_Student CharacteristicsMelvin Shuster
 
20150116_techwomen
20150116_techwomen20150116_techwomen
20150116_techwomenamico8
 
Mastering The Art of Human Engagement
Mastering The Art of Human EngagementMastering The Art of Human Engagement
Mastering The Art of Human EngagementJohn Terhune
 

Viewers also liked (19)

BA_FCaballero
BA_FCaballeroBA_FCaballero
BA_FCaballero
 
Saul Bass presentation
Saul Bass presentationSaul Bass presentation
Saul Bass presentation
 
PF Strategic Leadershp Introductory pages (1)
PF  Strategic Leadershp Introductory pages (1)PF  Strategic Leadershp Introductory pages (1)
PF Strategic Leadershp Introductory pages (1)
 
Carp andreea georgiana
Carp andreea georgianaCarp andreea georgiana
Carp andreea georgiana
 
Transitioning to the GIS Workplace
Transitioning to the GIS WorkplaceTransitioning to the GIS Workplace
Transitioning to the GIS Workplace
 
La Web 2.0 y las TICs
La Web 2.0 y las TICsLa Web 2.0 y las TICs
La Web 2.0 y las TICs
 
презентация Microsoft office power point
презентация Microsoft office power pointпрезентация Microsoft office power point
презентация Microsoft office power point
 
Renacimiento
Renacimiento Renacimiento
Renacimiento
 
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsDonhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
 
How to be a better manager
How to be a better managerHow to be a better manager
How to be a better manager
 
Carlos Joaquín: Competitividad turística, base del desarrollo
Carlos Joaquín: Competitividad turística, base del desarrolloCarlos Joaquín: Competitividad turística, base del desarrollo
Carlos Joaquín: Competitividad turística, base del desarrollo
 
Ptsa meeting 1 15-15
Ptsa meeting 1 15-15Ptsa meeting 1 15-15
Ptsa meeting 1 15-15
 
Simpson University_Student Characteristics
Simpson University_Student CharacteristicsSimpson University_Student Characteristics
Simpson University_Student Characteristics
 
Berbusana Muslim
Berbusana MuslimBerbusana Muslim
Berbusana Muslim
 
20150116_techwomen
20150116_techwomen20150116_techwomen
20150116_techwomen
 
презентация Microsoft office power point
презентация Microsoft office power pointпрезентация Microsoft office power point
презентация Microsoft office power point
 
Mastering The Art of Human Engagement
Mastering The Art of Human EngagementMastering The Art of Human Engagement
Mastering The Art of Human Engagement
 
Neumec Adagio Mulund West
Neumec Adagio Mulund WestNeumec Adagio Mulund West
Neumec Adagio Mulund West
 
соната музыка
соната музыкасоната музыка
соната музыка
 

Similar to pres06-main

Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...IFPRI-EPTD
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
SIAM SEAS Talk Slides
SIAM SEAS Talk SlidesSIAM SEAS Talk Slides
SIAM SEAS Talk SlidesRyan White
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 
Mining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsMining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsDr.MAYA NAYAK
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...jfrchicanog
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
Tenser Product of Representation for the Group Cn
Tenser Product of Representation for the Group CnTenser Product of Representation for the Group Cn
Tenser Product of Representation for the Group CnIJERA Editor
 
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions ManualIntroduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manualnajovon
 
03 20256 ijict
03 20256 ijict03 20256 ijict
03 20256 ijictIAESIJEECS
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
Business forecasting decomposition & exponential smoothing - bhawani nandan...
Business forecasting   decomposition & exponential smoothing - bhawani nandan...Business forecasting   decomposition & exponential smoothing - bhawani nandan...
Business forecasting decomposition & exponential smoothing - bhawani nandan...Bhawani N Prasad
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 

Similar to pres06-main (20)

Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
 
Forecast2007
Forecast2007Forecast2007
Forecast2007
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
 
Congrès SMAI 2019
Congrès SMAI 2019Congrès SMAI 2019
Congrès SMAI 2019
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
SIAM SEAS Talk Slides
SIAM SEAS Talk SlidesSIAM SEAS Talk Slides
SIAM SEAS Talk Slides
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
Mining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsMining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systems
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
1 2 tutorial questions
1 2 tutorial questions1 2 tutorial questions
1 2 tutorial questions
 
Tenser Product of Representation for the Group Cn
Tenser Product of Representation for the Group CnTenser Product of Representation for the Group Cn
Tenser Product of Representation for the Group Cn
 
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions ManualIntroduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
 
03 20256 ijict
03 20256 ijict03 20256 ijict
03 20256 ijict
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
Business forecasting decomposition & exponential smoothing - bhawani nandan...
Business forecasting   decomposition & exponential smoothing - bhawani nandan...Business forecasting   decomposition & exponential smoothing - bhawani nandan...
Business forecasting decomposition & exponential smoothing - bhawani nandan...
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 

pres06-main

  • 1. Estimation of Jump Variation in a Bayesian Model of High-Frequency Asset Returns Brian Donhauser Department of Economics University of Washington June 14, 2012 1 / 75
  • 2. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 2 / 75
  • 3. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 3 / 75
  • 4. Emergence of High-Frequency Financial Data In the early 1990’s, developments in the storage and vending of high-frequency financial data and computing power laid the groundwork for research in high-frequency finance (Wood, 2000). 4 / 75
  • 5. What to Do With High-Frequency Financial Data? financial economics: test theoretical market microstructure models financial econometrics: model high-frequency prices, volumes, and durations estimate lower-frequency quantities (e.g., conditional daily return variance) 5 / 75
  • 6. 0 100 200 300 400 46.6 46.8 47.0 47.2 47.4 WMT Jan 02, 2008 minutes (t) prices(St)
  • 7. Simple Returns vs. Log Returns If St is the spot price of an asset at minute t, then the simple return over the interval [t − 1,t] is Rt = St − St−1 St−1 and the logarithmic return is rt = log(St) − log(St−1) = log(1 + Rt) ≈ Rt, for small Rt We prefer the latter because of additivity and infinite support. 7 / 75
  • 8. A Mathematical Model for an Asset X X ≡ (Xt)t∈[0,∞) an adapted, c`adl`ag stochastic process on a filtered complete probability space (Ω,F,F,P), satisfying the usual hypothesis will represent an asset with log-price Xt at time t. 8 / 75
  • 9. Toward a Simple Jump-Diffusion Model for X Under mild regularity conditions: rt ≡ Xt − X0 = ∫ t 0 audu + ∫ t 0 σu dWu + Jt, 0 ≤ t < ∞ rt is the log-return over the trading time interval [0,t] W ∈ BM a,σ ∈ PRE are the spot drift and spot volatility of returns Jt = ∑ Nt i=1 Ci is the cumulative jump process Nt is a simple counting process of the number of jumps in the time interval [0,t] Ci is the size of the ith jump. 9 / 75
  • 10. Revisiting the Motivating Question Q: What is the return variance for WMT on January 2nd, 2008? Q: Var{rt Ft} =? where Ft ≡ F{au,σu}u∈[0,t] 10 / 75
  • 11. Var{r F} = IV From Andersen et al. (2003, Thm. 2), if (a,σ) W and J ≡ 0, rt Ft ∼ N (∫ t 0 au du,∫ t 0 σ2 u du) so E{rt Ft} = ∫ t 0 au du Var{rt Ft} = IVt where IVt ≡ ∫ t 0 σ2 u dt 11 / 75
  • 12. Realized Variance: RV For an asset X on a time interval [0,t] with (n + 1)-element partition Pn ≡ {τ0,τ1,...,τn}, 0 = τ0 ≤ τ1 ≤ ⋯ ≤ τn = t < ∞, the realized variance RV (n) t ≡ n ∑ i=1 r2 i , 0 ≤ t < ∞ where ri ≡ Xτi − Xτi−1 , i = 1,...,n is the i-th log-return on Pn. 12 / 75
  • 13. RV → IV From Andersen et al. (2003); Barndorff-Nielsen and Shephard (2002), RV (n) t → IVt convergence ucp on [0,t] limit taken over all Pn with limn→∞ Pn = 0. 13 / 75
  • 14. 0 100 200 300 400 46.6 46.8 47.0 47.2 47.4 WMT Jan 02, 2008 minutes (t) prices(St)
  • 15. RV for WMT on Jan 2, 2008 100 √ ⋅ 100 √ 252 √ ⋅ RV 1.5 24.1 15 / 75
  • 16. 0 10 20 30 40 50 60 20 30 40 50 60 WMT Jan 02, 2008 – Mar 31, 2008 day AnnualizedVolatilityMeasuresin%
  • 17. Estimating Var{rt Ft} Other Methods The realized quantity r2 t GARCH (Bollerslev, 1986) Stochastic volatility (Melino and Turnbull, 1990; Taylor, 1994; Harvey et al., 1994; Jacquier et al., 1994) 17 / 75
  • 18. RV → IV + JV Relaxing J ≡ 0, from Barndorff-Nielsen and Shephard (2004), RV (n) t → IVt + JVt ≈ Var{rt Ft} where JVt ≡ Nt ∑ i=1 C2 i . 18 / 75
  • 19. Realized Bipower Variation: RBPV For an asset X on a time interval [0,t] with (n + 1)-element partition Pn, the realized bipower variation RBPV (n) t ≡ n ∑ i=2 ri ri−1 , 0 ≤ t < ∞. 19 / 75
  • 20. IVBNS04,JVBNS04 From Barndorff-Nielsen and Shephard (2004), under mild regularity conditions IV (n) BNS04,t ≡ π 2 RBPV (n) t → IVt JV (n) BNS04,t ≡ RV (n) t − IV (n) BNS04,t → JVt. 20 / 75
  • 21. 0 100 200 300 400 46.6 46.8 47.0 47.2 47.4 WMT Jan 02, 2008 minutes (t) prices(St)
  • 22. IVBNS04,JVBNS04 for WMT on Jan 2, 2008 100 √ ⋅ 100 √ 252 √ ⋅ %RV RV 1.5 24.1 100.0 JVBNS04 −0.1 −1.0 −0.2 IVBNS04 1.5 24.1 100.2 22 / 75
  • 23. 0 10 20 30 40 50 60 0 10 20 30 40 50 60 WMT Jan 02, 2008 – Mar 31, 2008 day AnnualizedVolatilityMeasuresin%
  • 24. Summary of JVBNS04 WMT: Jan 2, 2008 – Mar 31, 2008 100 ∗ (JVBNS04 RV ) Min. −3.5 1st Qu. 1.2 Median 3.6 Mean 4.8 3rd Qu. 8.1 Max. 20.0 24 / 75
  • 25. Simulation Results for JVBNS04: MPE and MAPE # Jumps Est. 0 3 10 30 JVBNS04 0.3 −4.5 −12.7 −26.6 IVBNS04 −0.4 4.1 12.7 26.4 # Jumps Est. 0 3 10 30 JVBNS04 3.3 5.4 12.7 26.6 IVBNS04 6.7 7.3 12.9 26.4 25 / 75
  • 26. Estimating Jump Locations: LM Stat Extending Barndorff-Nielsen and Shephard, Lee and Mykland (2008) define their jump statistic LMl,τi ≡ ri σi , where σi 2 ≡ 1 n IVBNS04,t and show that jumps are identified with perfect classification accuracy asymptotically. 26 / 75
  • 27. Na¨ıve Shrinkage Estimators: JVNS,IVNS In previous work, I extended Lee and Mykland (2008) and defined na¨ıve shrinkage estimators of JV, IV JV (n) NS,t ≡ n ∑ i=1 [Fξ(LMg,τi )ri] 2 IV (n) NS,t ≡ RV (n) t − JVNS,t. and showed their consistency. 27 / 75
  • 28. 0 100 200 300 400 46.6 46.8 47.0 47.2 47.4 WMT Jan 02, 2008 minutes (t) prices(St)
  • 29. IVNS,JVNS for WMT on Jan 2, 2008 100 √ ⋅ 100 √ 252 √ ⋅ %RV RV 1.5 24.1 100.0 JVNS 0.2 3.2 1.7 JVBNS04 −0.1 −1.0 −0.2 IVNS 1.5 23.8 98.3 IVBNS04 1.5 24.1 100.2 29 / 75
  • 30. 0 10 20 30 40 50 60 0 10 20 30 40 50 60 WMT Jan 02, 2008 – Mar 31, 2008 day AnnualizedVolatilityMeasuresin%
  • 31. 0 10 20 30 40 0 5 10 15 20 WMT Jan 02, 2008 – Mar 31, 2008 100 ∗ JVNS/RV 100∗JVBNS04/RV
  • 32. Summary of JVNS WMT: Jan 2, 2008 – Mar 31, 2008 100 ∗ (JVBNS04 RV ) 100 ∗ (JVNS RV ) Min. −3.5 0.4 1st Qu. 1.2 8.9 Median 3.6 15.6 Mean 4.8 16.1 3rd Qu. 8.1 21.9 Max. 20.0 47.1 32 / 75
  • 33. Simulation Results for JVNS: MPE and MAPE # Jumps Est. 0 3 10 30 JVNS 1.3 −0.0 −2.1 −10.3 JVBNS04 0.3 −4.5 −12.7 −26.6 IVNS −1.4 −0.4 2.1 10.0 IVBNS04 −0.4 4.1 12.7 26.4 # Jumps Est. 0 3 10 30 JVNS 1.3 2.7 4.4 10.6 JVBNS04 3.3 5.4 12.7 26.6 IVNS 5.9 5.3 4.7 10.1 IVBNS04 6.7 7.3 12.9 26.4 33 / 75
  • 34. Conclusion: Na¨ıve Shrinkage Estimators Simulations demonstrate superiority over JVBNS04 :) Bounded above zero and below RV :) Non-model-based :( 34 / 75
  • 35. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 35 / 75
  • 36. Continuous → Discrete: The Reduced Model Under assumptions and definitions to follow, the continuous jump-diffusion model reduces to a discrete model where we observe ri = σixi, with xi = µi + i, i = 1,...,n, and i i.i.d. ∼ N(0,1) with pdf φ where µi and σi are unspecified jump and stochastic volatility processes. 36 / 75
  • 37. Continuous → Discrete: Assumptions and Definitions Assume, (i) (Zero Drift). au = 0, ∀u ∈ [0,t], (ii) (Homogenous Sampling). An (n + 1)-element homogenous sampling of Xu over the time interval [0,t], {X0,Xδ,X2δ,...,X(n−1)δ,Xt}, where δ = t/n is the width of the sampling interval, and define for i = 1,...,n, (i) (Interval Volatility). σi ≡ σ[δ(i−1), δi]. (ii) (Scaled Interval Jump). µi ≡ 1 σi (Jδi − Jδ(i−1)). (iii) (Log-Returns). ri ≡ Xδi − Xδ(i−1). (iv) (Scaled Log-Returns). xi ≡ 1 σi ri. 37 / 75
  • 38. JV and IV in the Discrete, Reduced Model JV ≈ n ∑ i=1 σ2 i µ2 i IV ≈ n ∑ i=1 σ2 i QV ≈ n ∑ i=1 σ2 i + n ∑ i=1 σ2 i µ2 i . We take these to define JV and IV in the discrete model. 38 / 75
  • 39. The Discrete Bayesian Model From Johnstone and Silverman (2004, 2005), ri = σixi i = 1,...,n, (Observations) L(xi µi,σi) = φ(xi − µi) i = 1,...,n, (Likelihood) π(µi) = { 1 − w for µi = 0 wγ(µi) for µi ≠ 0, i = 1,...,n, (Prior Jump Density) w = π {µ ≠ 0}, (Prior Jump Probability) γ(µ) = 1 2 aexp(−a µ ), (Prior Density of µ {µ ≠ 0}) σi,w,a (Hyperparemeters) 39 / 75
  • 40. Bayesian Model Estimation: Initial Steps 1 Set a = 0.5 a priori 2 Assume σi = σ a constant and take σ = 1.48MAD{r1,...,rn} 3 Calculate xi = ri σ for i = 1,...,n 4 Calculate w by marginal maximum likelihood of L( ˇw). I.e., take w = argmax 0≤ ˇw≤1 n ∑ i=1 log{(1 − ˇw)φ(xi) + ˇwg(xi)} where g(x) ≡ (φ ∗ γ)(x) ≡ ∫ φ(x − µ)γ(µ)dµ is interpreted as the marginal density of x {µ ≠ 0} 5 For i = 1,...,n, solve for the posterior density of µi xi . . . 40 / 75
  • 41. Posterior Density of µ x π(µ x) After much algebra, we can write the posterior density of µ x as π(µ x) = { 1 − w(x) for µ = 0 w(x)γ(µ x) for µ ≠ 0, where γ(µ x) is the posterior density of µ {x,µ ≠ 0} and w(x) ≡ π(µ ≠ 0 x) is the posterior non-zero jump probability 41 / 75
  • 42. Posterior Density of µ {x,µ ≠ 0} for Laplace prior γ(µ x) For the Laplace prior, γ(µ x) = ⎧⎪⎪⎪⎪⎪ ⎨ ⎪⎪⎪⎪⎪⎩ e−ax D φ(µ − x + a) for µ > 0 eax D φ(µ − x − a) for µ ≤ 0, where D = e−ax Φ(x − a) + eax ˜Φ(x + a). 42 / 75
  • 43. Posterior Density Illustration From Johnstone (2011): 43 / 75
  • 44. Posterior Mean of µ x for Laplace Prior ˆµπ(x) Recall the posterior density of µ x is given by π(µ x) = { 1 − w(x) for µ = 0 w(x)γ(µ x) for µ ≠ 0. Then the posterior mean of µ x is ˆµπ(x) = w(x)ˆµγ(x) = w(x) →1 (x − a {e−ax Φ(x − a) − eax ˜Φ(x + a)} e−axΦ(x − a) + eax ˜Φ(x + a) ) →(x−a) → x − a for large x in the case of Laplace prior density γ(µ) 44 / 75
  • 45. 0 50 100 150 200 250 -2 0 2 4 6 i xi,µi,ˆµ(xi)
  • 46. 0 1 2 3 4 5 6 0 1 2 3 4 5 6 µ ˆµ
  • 47. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 47 / 75
  • 48. Posterior Mean of JV x: Na¨ıve Approach JVNEB, 2 (x) Recall that JV ≡ n ∑ i=1 σ2 i µ2 i . Then, a na¨ıve estimation approach gives JVNEB, 2 (x) ≡ n ∑ i=1 σ2 i ˆµπ,i(xi)2 . From Jensen’s inequality we expect this to under-represent the actual posterior mean of JV : JVEB, 2 (x). But, very easy to calculate! 48 / 75
  • 49. Posterior Mean of JV x: Na¨ıve Relation JVEB, 2 (x) JVEB, 2 (x) ≡ E[JV x] = E[ n ∑ i=1 σ2 i µ2 i x] = n ∑ i=1 σ2 i E[µ2 i xi] = n ∑ i=1 σ2 i ˆµπ,i(xi)2 + σ2 i Var[µi xi] = JVNEB, 2 (x) + n ∑ i=1 σ2 i Var[µi xi]. 49 / 75
  • 50. Posterior Mean of JV x for Laplace Prior JVEB, 2 (x) So then, JVEB, 2 (x) = n ∑ i=1 σ2 i µ2 π,i(xi) where, after skipping a large amount of algebra, µ2 π(x) = w(x)µ2 γ(x) = w(x)(x2 + a2 + 1 − 2ax{ e−ax Φ(x − a) − eax ˜Φ(x + a) D } −2a{ e−ax φ(x − a) D }) → (x − a)2 + 1 for large x = ˆµπ(x)2 + 1 for large x for the Laplace prior. Closed form! 50 / 75
  • 51. Posterior Median of JV x for Laplace Prior JVEB, 1 (x) No simple closed form result. Can still get a numerical result via the following procedure: 1 Simulate one value µi,1 from each of the n posterior jump densities πi(µi xi) 2 Calculate JV1 = ∑n i=1 σ2 i µ2 i,1 3 Repeat steps 1-2 k-times, returning {JV1,...,JVk} 4 Then, for large k, JVEB, 1 (x) ≈ Median{JV1,...,JVk} 51 / 75
  • 52. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 52 / 75
  • 53. 0 100 200 300 400 46.6 46.8 47.0 47.2 47.4 WMT Jan 02, 2008 minutes (t) prices(St)
  • 54. JVEB, 2 for WMT on Jan 2, 2008 Window 100 √ ⋅ 100 √ 252 √ ⋅ %RV JVEB, 2 full 0.8 12.1 25.4 60min 0.7 11.7 23.8 30min 0.6 8.7 13.2 15min 0.5 8.4 12.1 10min 0.6 9.4 15.3 05min 0.7 11.6 23.3 IVEB, 2 full 1.3 20.8 74.6 60min 1.3 21.0 76.2 30min 1.4 22.4 86.8 15min 1.4 22.6 87.9 10min 1.4 22.1 84.7 05min 1.3 21.1 76.7 54 / 75
  • 55. IVEB,JVEB for WMT on Jan 2, 2008 100 √ ⋅ 100 √ 252 √ ⋅ %RV RV 1.5 24.1 100.0 JVEB, 1 0.5 8.5 12.5 JVEB, 2 0.6 8.7 13.2 JVNS 0.2 3.2 1.7 JVBNS04 −0.1 −1.0 −0.2 IVEB, 1 1.4 22.5 87.5 IVEB, 2 1.4 22.4 86.8 IVNS 1.5 23.8 98.3 IVBNS04 1.5 24.1 100.2 55 / 75
  • 56. 0 10 20 30 40 50 60 0 10 20 30 40 50 60 WMT Jan 02, 2008 – Mar 31, 2008 day AnnualizedVolatilityMeasuresin%
  • 57. 0 10 20 30 40 50 0 5 10 15 20 WMT Jan 02, 2008 – Mar 31, 2008 100 ∗ JVEB, 2 /RV 100∗JVBNS04/RV
  • 58. 0 10 20 30 40 50 0 10 20 30 40 WMT Jan 02, 2008 – Mar 31, 2008 100 ∗ JVEB, 2 /RV 100∗JVNS/RV
  • 59. Summary of JVEB, 2 WMT: Jan 2, 2008 – Mar 31, 2008 100 ∗ (JVBNS04 RV ) 100 ∗ (JVNS RV ) 100 ∗ ( JVEB, 2 RV ) Min. −3.5 0.4 0.0 1st Qu. 1.2 8.9 19.4 Median 3.6 15.6 25.6 Mean 4.8 16.1 26.3 3rd Qu. 8.1 21.9 33.0 Max. 20.0 47.1 52.7 59 / 75
  • 60. Outline Motivation and Previous Work The Bayesian Model Jump Variation in the Bayesian Model Empirical Results Simulation Results 60 / 75
  • 61. Simulation Model (Number of Observations). n = 390. (Observations). For i = 1,...,n, ri = σixi, where xi = µi + i, i i.i.d. ∼ N(0,1). (Interval Volatility). σi = σ = 0.000638 ≈ 0.20/ √ 252 ∗ 390. (Scaled Jumps). µi µi ≠ 0 ∼ U(−s,s), with s deterministically set equal to 4, 7, 10, and 15. (Number of Jumps). Deterministically set equal to 0, 3, 10, and 30. (Jump Locations). Each uniformly chosen from i = 1,...,n (Number of Simulations). m = 5000 61 / 75
  • 62. Estimator Evaluation Criteria: MPE, MAPE We define the mean percentage error and mean absolute percentage error for an estimator JV of JV as MPE(JV ) = 100 ∗ E[ JV − JV QV ] MAPE(JV ) = 100 ∗ E[ JV − JV QV ] and similarly for an estimator IV of IV MPE(IV ) = 100 ∗ E[ IV − IV QV ] MAPE(IV ) = 100 ∗ E[ IV − IV QV ] 62 / 75
  • 63. Estimator Evaluation Criteria: Sample MPE and MAPE We approximate MPE and MAPE by their sample counterparts MPE(JV ) ≈ 100 m m ∑ j=1 JVj − JVj QVj MAPE(JV ) ≈ 100 m m ∑ j=1 JVj − JVj QVj MPE(IV ) ≈ 100 m m ∑ j=1 IVj − IVj QVj MAPE(IV ) ≈ 100 m m ∑ j=1 IVj − IVj QVj 63 / 75
  • 64. MPE for s = 4 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 −2.1 −6.5 −15.5 JVEB, 2 0.8 −0.4 −2.1 −6.3 JVNS 1.3 −0.5 −4.0 −15.1 JVBNS04 0.2 −2.0 −7.3 −19.1 IVNEB, 2 −0.2 2.0 6.9 15.6 IVEB, 2 −0.7 0.3 2.5 6.4 IVNS −1.4 0.1 3.9 14.8 IVBNS04 −0.1 1.9 7.7 19.1 64 / 75
  • 65. MAPE for s = 4 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 2.7 6.8 15.5 JVEB, 2 0.8 3.3 5.6 8.5 JVNS 1.3 2.1 4.8 15.1 JVBNS04 3.3 3.7 7.6 19.1 IVNEB, 2 5.8 5.9 7.9 15.7 IVEB, 2 6.0 6.2 6.7 8.5 IVNS 5.9 5.7 6.4 14.9 IVBNS04 6.7 6.4 8.7 19.2 65 / 75
  • 66. MPE for s = 7 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 −2.1 −5.6 −11.4 JVEB, 2 0.8 1.4 1.2 −1.7 JVNS 1.3 −0.0 −2.1 −10.3 JVBNS04 0.2 −4.3 −12.6 −26.1 IVNEB, 2 −0.2 2.2 5.4 11.5 IVEB, 2 −0.7 −1.3 −1.4 1.8 IVNS −1.4 −0.4 2.1 10.0 IVBNS04 −0.1 4.4 12.3 26.2 66 / 75
  • 67. MAPE for s = 7 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 3.3 6.3 11.4 JVEB, 2 0.8 3.9 4.8 4.7 JVNS 1.3 2.7 4.4 10.6 JVBNS04 3.3 5.3 12.6 26.1 IVNEB, 2 5.8 5.8 6.5 11.5 IVEB, 2 6.0 6.1 5.1 3.7 IVNS 5.9 5.3 4.7 10.1 IVBNS04 6.7 7.3 12.6 26.2 67 / 75
  • 68. MPE for s = 10 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 −2.3 −6.0 −9.6 JVEB, 2 0.8 1.4 −0.1 −2.7 JVNS 1.3 0.2 −1.0 −6.4 JVBNS04 0.2 −6.3 −15.6 −27.4 IVNEB, 2 −0.2 2.3 6.0 9.8 IVEB, 2 −0.7 −1.4 0.1 2.9 IVNS −1.4 −0.6 1.0 6.1 IVBNS04 −0.1 6.3 15.5 27.7 68 / 75
  • 69. MAPE for s = 10 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 3.9 6.5 9.7 JVEB, 2 0.8 4.0 4.2 4.3 JVNS 1.3 3.1 4.2 6.9 JVBNS04 3.3 7.1 15.6 27.4 IVNEB, 2 5.8 5.0 6.3 9.8 IVEB, 2 6.0 5.1 3.6 3.3 IVNS 5.9 4.8 3.5 6.2 IVBNS04 6.7 7.8 15.6 27.7 69 / 75
  • 70. MPE for s = 15 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 −2.7 −5.4 −7.9 JVEB, 2 0.8 0.6 −1.3 −4.0 JVNS 1.3 0.2 −0.4 −3.7 JVBNS04 0.2 −7.8 −16.0 −25.0 IVNEB, 2 −0.2 2.7 5.4 7.9 IVEB, 2 −0.7 −0.6 1.3 4.0 IVNS −1.4 −0.6 0.4 3.5 IVBNS04 −0.1 7.8 16.0 25.0 70 / 75
  • 71. MAPE for s = 15 # Jumps Est. 0 3 10 30 JVNEB, 2 0.3 4.3 6.0 7.9 JVEB, 2 0.8 4.1 4.0 4.5 JVNS 1.3 3.6 3.8 4.5 JVBNS04 3.3 8.4 16.0 25.0 IVNEB, 2 5.8 4.5 5.5 7.9 IVEB, 2 6.0 4.1 2.6 4.0 IVNS 5.9 3.9 2.2 3.6 IVBNS04 6.7 8.8 16.0 25.0 71 / 75
  • 72. Conclusion: Empirical Bayesian Estimators Simulations demonstrate superiority over JVBNS04 and JVNS :) Model-based :) Bounded above zero :) Not necessarily bounded below RV :( May depend on window of volatility estimation :( 72 / 75
  • 73. Bibliography I Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2003). Modeling and forecasting realized volatility. Econometrica 71(2), 579–625. Barndorff-Nielsen, O. and N. Shephard (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64(2), 253–280. Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2(1), 1–37. Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4(1), 1–30. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics 31(3), 307–327. 73 / 75
  • 74. Bibliography II Harvey, A., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. The Review of Economic Studies 61(2), 247–264. Jacquier, E., N. Polson, and P. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business & Economic Statistics 12(4), 371–389. Johnstone, I. and B. Silverman (2005). Ebayesthresh: R programs for empirical bayes thresholding. Journal of Statistical Software 12(8), 1–38. Johnstone, I. M. (2011). Gaussian estimation: Sequence and multiresolution models. Johnstone, I. M. and B. W. Silverman (2004). Needles and straw in haystacks: Empirical bayes estimates of possibly sparse sequences. The Annals of Statistics 32(4), 1594–1649. 74 / 75
  • 75. Bibliography III Lee, S. S. and P. A. Mykland (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial studies 21(6), 2535–2563. Melino, A. and S. Turnbull (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics 45(1-2), 239–265. Taylor, S. (1994). Modeling stochastic volatility: A review and comparative study. Mathematical finance 4(2), 183–204. Wood, R. (2000). Market microstructure research databases: History and projections. Journal of Business & Economic Statistics, 140–145. 75 / 75