SlideShare a Scribd company logo
1 of 19
Download to read offline
 
Development of Enclosed Combustion Rig for SCRAMJET Fuel Studies 
Group #51 
Student: Dan Martin 
Supervisor: Dr. Egolfopoulos 
Due: 12/5/08 
Abstract:  
The opposed jet burner configuration that has been constructed in this experiment has been proven 
capable of producing and sustaining a stable stagnation flame. Despite the presence of a double helix 
shaped silicon carbide heating rod that resides in the top burner, the effect that it has on the flow and the 
resulting imposed velocity gradient on the stagnation flame did not cause a deviation from previously 
performed experimental results for a Methane stagnation flame ​at ​φ​=0.7​. However, this only holds true if 
the heating rod is positioned in just the right location, in the center of the top burner and at the right angle 
so it is parallel to the inner walls of the burner. Now that the combustion rig has been constructed and is 
capable of sustaining stable stagnation flames, the groundwork has been laid to begin testing ignition of 
fuel air mixtures through the heating of the air flow through the top burner. Future studies will need to be 
done to quantify the effect of the increased flow rate that will be induced by heating the flow through the 
top burner, and the necessary flow rate adjustments to ensure the momentum of the top and bottom flow 
remain equal so that a stable stagnation flame can still be produced. Ultimately, once the ignition of 
gaseous fuels has been achieved by this system and is calibrated to sustain stagnation flames consistent 
with previously published experimental data of laminar flame speeds, the rig will once more be modified 
to allow for the preheating of liquid fuels through the bottom burner, with the end goal of achieving 
ignition of various cracked states of JP­7. 
 
 
Introduction: 
The development of a hydrocarbon­fueled SCRAMJET is one of the highest priorities for the US Air 
Force. Specifically, the goal is for the SCRAMJET to fly at hypersonic speeds between Mach numbers of 
4 and 8. When the vehicle is moving at such high velocities it becomes difficult for the complete 
combustion to take place within the combustor given the short residence time scales within the relatively 
small area of the jet engine. Additionally, these vehicles can get extremely hot due to both the skin 
friction moving at these speeds, and the compressed air at the nose of the jet. A method to counteract this 
issue is to circulate the fuel under the skin of the jet, which would serve two purposes: it would cool the 
jet, and the heat absorbed by the fuel would cause the fuel to thermally crack. The fuel of choice is JP­7, a 
heavy jet fuel developed by the Air Force specifically for the use of Hypersonic SCRAMJET vehicles. 
JP­7 is a heavy endothermic fuel that can absorb significant amounts of heat before it cracks. Cracking of 
the fuel results in a “soup” of smaller molecules dominated by hydrogen, methane, and ethylene. These 
smaller and lighter molecules burn quicker than the heavier JP­7 jet fuel in its un­cracked state. In this 
investigation the behavior of flames resulting from mixtures of hydrogen, methane, and ethylene will be 
characterized experimentally. An enclosed combustion rig will be developed that will allow for accurate 
experimental measurements of fundamental flame properties, and that is capable of having Laser Doppler 
Velocimetry (LDV) experiments performed. The rig will also be developed with the goal of achieving 
independent remote ignition. 
There are three fundamental flame properties studied when examining these fuels, namely ignition, flame 
propagation, and extinction rate. The most ideal fuel mixture for a SCRAMJET engine would be able to 
achieve ignition as at a ​low temperature​, have a ​fast​ rate of propagation and extinction would occur at a 
high strain rate​. Ultimately the different cracked states of JP­7 will be examined closely, whether by 
heating the jet fuel to known cracked states, or by simulating the known cracked soup mixtures. The 
Combustion Lab has done previous studies on the composition of various cracked states of JP­7, so these 
simpler gases can be mixed to simulate these cracked states.  
The ignition of a fuel is characterized by both the temperature at which it occurs and the strain rate of the 
mixture. The propagation of a fuel mixture, or its ​flame speed,​ characterizes the speed at which a 
premixed fuel air mixture would propagate. The third fundamental property, the extinction strain rate, 
characterizes when the flame of the ignited fuel goes out, and the conditions at which flame extinction 
occurs. For the purposes of this experiment, an opposed jet system will be built, and the ignition of JP­7 
fuel will be characterized, laying the groundwork for examining the propagation and extinction of the 
flames achieved. 
The most ideal way to carry out combustion experiments for jet fuels is to build a full size engine and run 
experiments with it. However, not only would it be very expensive to produce a full size jet engine, it 
would be very cost ineffective to use the large amount of fuel that would be required to do a 
comprehensive study. Fundamental information regarding the properties of flames in jet engines cannot 
be garnered due to the chaotic nature of the combustion, so another method is used to study these 
properties in a well controlled environment. By properly configuring the flow of opposed jets, as shown 
in Figure (1), a simple flame can be formed for this purpose. This flat flame, or stagnation flame, closely 
approximates a flame described by the Ideal Flame Model (IFM), a steady, planar, laminar, adiabatic 
1­dimenstional flame. The only way to experimentally achieve a stable flame is by imposing a velocity 
gradient, in this case an opposing convective velocity, yielding a reference flame speed ​S​u ref​ . As a result 
of this imposed velocity gradient the flame does not perfectly conform to the IFM, but if all the properties 
are uniform at the nozzle exits, the flame exhibits “quasi­one dimensional” behavior since the properties 
are uniform in the radial direction. A constant “aerodynamic strain rate”, ​dv​/​dr​, is thus imposed by the 
external flow field, which is proportional to the “global strain rate” of the flame, ​du​/​dx​ (where ​dv/dr​ is the 
change in velocity of the flow in the radial direction and ​du/dx​ is the change in the stagnation flames 
velocity in the separation distance direction).  (Egolfopoulos)  
 
Figure (1)​ Opposed jet configuration used to achieve a flat flame (Egolfopoulos) 
When using an opposed jet configuration, by running a thermally cracked fuel air mixture through one 
burner and by running a hot air flow through the other burner, ignition can be achieved. In this case, the 
flame resulting from ignition of these fuels can be studied with the use of Laser Doppler Velocimetry 
(LDV), allowing in­depth studies of the conditions at ignition, including flame propagation and 
extinction. A flat flame is studied because it is one of the most fundamental and simplest flames to model. 
The bottom burner with a fuel air mixture through it is attached to a chamber. Rather than injecting the 
fuel mixture parallel to burner, it is injected perpendicular into the burner to reduce vortices in the flow. 
To further assist in achieving laminar flow, glass beads are inserted in the chamber attached to the bottom 
burner to reduce the vortices in the flow also. The flow of this fuel air mixture then travels through the 
length of the burner, through a diffuser section and a straight section with screens to reduce turbulence 
also. A silicon carbide heating rod inside the top burner will heat the flow impinging upon the fuel air 
mixture from the bottom burner up to potentially 1000°C, with the temperature being adjusted until 
ignition is achieved. A co­flow of inert gas is run along the edges of the mouth of the burner to create a 
shroud around the main flow to reduce the effects of shear on the main flow. As the opposing flow from 
the top burner is run into the resultant flow from the bottom burner, a radial pressure differential is 
established by this imposed velocity gradient.  The flame sits at a position whereby its propagation speed 
matches the velocity of the bottom jet.  
When studying the ignition of a fuel, four key properties are used to characterize the process: temperature, 
strain rate, composition, and equivalence ratio. The strain rate (​K​) in the flame, which is given by the 
equation: 
 ,    (1) 
This is a measure of the change in velocity versus the change in position across the flame,​ ​where u is the 
flow velocity and x is the position in relation to distance from the nozzle exits.  From the continuity 
equation this is equal to the velocity gradient in the radial direction.  Physically this relates to the rate at 
which each fluid element in the flame is being stretched apart.   For a stagnation flame, the strain rate is 
positive, meaning the flame is being pulled apart. For the purposes of this study a relatively low strain rate 
will be desirable so as to prevent the extinction of the flame. The equivalence ratio, ​φ​, of a flame 
describes the ratio of premixed fuel and air, given by the equation 
 .  (2) 
 
When the fuel to air ratio of a premixed flame is balanced stoichiometrically, ​φ​=1, and as the flame 
strength is typically reduced below and above value and extinction occurs faster. The temperature, T, of 
the fuel, flame, and air of the system can all be controlled with the silicon carbide heating rods in each 
burner, and the composition of the flame can be controlled directly by the amount that the JP­7 fuel is 
thermally ‘cracked’ before ignition. By holding 2 of these 4 parameters constant at any given time, the 
effect of each of these parameters on each other can be experimentally defined for any range of ‘’soups’’ 
of fuels. 
Experimental Setup: 
Since the primary goal of the development of this functioning rig is ignition, there will be numerous test 
runs to test the ignition capabilities. Many of these will result in ignition not being achieved, or if there is 
ignition the fuels may not be completely consumed. The byproducts of burning these fuels which will be 
released into the atmosphere will in some cases contain known carcinogens. For safety reasons, the 
combustion rig built to carry out these experiments will eventually be enclosed with Plexiglas to minimize 
any safety risks to the conductors of the experiments. For the initial phase of this experiment however 
only simple fuels such as Hydrogen and Methane will be tested in this system, which would require heavy 
concentrated doses to prove to be a lethal hazard, so the rig will not be enclosed until heavier fuels, such 
as JP­7, are utilized. This rig has been built in Dr. Egolfopoulos’ Combustion Lab in RRB 111.  
 
Figure (2) ​Basic configuration of system. Nitrogen co­flow for both burners. Water for copper cooling coil. Fuel­air 
mixture enters bottom burner after flowing through a chamber with glass beads to diffuse flow from turbulent to 
laminar. Three sides of the rig will eventually be enclosed by Plexiglas, and the fourth side enclosed by a metal 
sheet, which also serves as an inlet panel for the tubing for each of the gases into the system. 
 
The framing and stands for the rig is comprised of perforated square aluminum tubing, and will ultimately 
be enclosed with Plexiglas walls as aforementioned, with an exhaust duct at the top of the enclosure to 
serve as a vacuum to remove any hazardous byproducts. A basic configuration of the rig is outlined in 
Figure (2). The burners, whose design is shown in Figures (*) and (*), have been cut out of Quartz glass 
since they need to withstand high temperatures of potentially 1000°C and higher. Despite the 
unavailability of a second Quartz glass burner while it is machined in the glass shop here at USC, a 
temporary straight burner with a slightly convergent nozzle has been fixed to the rig. The nozzle exit is 
20mm in diameter as with the top burner, and allows for sufficient mixing of the fuel air­mixture to 
produce a flow with a low enough Reynolds Number to achieve a laminar flame. To secure the top burner 
to the rig a safety arm­claw clamp mounted to the framing holds a section of the burner, with ​glass fiber 
mesh ​wrapped around the burner for insulation. The bottom burner is suspended in a fixed position by the 
use of a sheet mounted to the framing of the rig to serve as a stand, and the two burners were carefully 
adjusted to ensure the nozzle exits were concentric and parallel to each other to minimize any instability 
in the produced flame. A cooling coil has been placed around the top burner to protect all tubing 
connected to the system from the high operating temperature of the rig. The coil is suspended from a 
vertically mounted metal sheet with a gap welded for it to fit around the mouth of the top burner. This 
sheet also serves as a mounting stand for the top burner, with the bottom inlet sections resting on the stand 
for further stability. 
 
Figures (3) and (4)​ The design for the Quartz glass burner. Figure (*) shows the cross section of the burners while 
Figure (3) shows the isometric view. The inert gas co­flow is run through the bottom inlet tubes into the blue 
highlighted section in Figure (4) which is separated from the air flow which is run through the top inlet tubes. A 
silicon carbide heating rod is inserted at the top of the burner to heat up the air before it exits through the mouth at 
the bottom. 
 
A heating rod was inserted in the top burner as highlighted in Figures (3) and (4). Since the ultimate goal 
of the construction of the combustion rig is to achieve ignition through the use of hot air, the flow through 
the top burner must be heated to considerably high temperatures. For this reason a silicon carbide heating 
rod capable of heating to temperatures above 1000°C was installed, and Quartz Glass was subsequently 
selected for the burner to tolerate this temperature range. The heating rod was positioned so as not to be in 
contact with the inner walls of the burner and was centered as accurately as possible to prevent any 
significant impedance of the flow through the burner. 
Pressurized poly flow tubing for all gases, liquids, and fuels necessary for the experiment is run into the 
enclosure through a metal sheet bolted to the back of the rig. Tubing with a tolerance level of 250psi was 
chosen and was run to a flow panel comprised of six pressure gauges, which are used to control the flow 
of every gas, liquid, and fuel used in the chamber. To achieve a flat laminar flame the flow through the 
bottom burner must be laminar, so flows at a high velocity are necessary to lower the Reynolds Number 
of the flow through the bottom burner.  
Sonic nozzles are used to meter the flow of all gasses. As a gas flows through a sonic nozzle it reaches the 
speed of sound.  From gas dynamics it is then known that the mass flow rate through this orifice has a 
linear relationship to its upstream pressure.  This is the main reason for their use in the experimental 
setup.  Another benefit of using sonic nozzles is the mass flow rate through them is unaffected by 
variations in the upstream pressure during the experiments once again due to the gas flow reaching sonic 
conditions.  Calibration of the sonic nozzles was done using wet gas meters.  
Ignition of Methane with an equivalence ratio (the ratio of fuel to air in a fuel­air mixture) of ​φ​=0.7 will 
be carried out to prove the combustion rig is operational and that it is able to reproduce existing published 
experimental data. This test was carried out with manual ignition rather than with the heated oxidizer 
from the top burner to first establish that the combustion rig could be shown to be functional. To achieve 
ignition of any fuel in an opposed burner experiment, the flow rates of both burners must be calibrated to 
achieve laminar flow at a Reynolds number less than 1000. This value is chosen so that there is no room 
for any error in the experimental data due to turbulent flow from either of the two burners. The 
composition of the flow from the top burner is of little relevance to the flame though the momentum of 
the flow from both burners should be equivalent to ensure that the stagnation plane is in the center of the 
two burners and the flame remains at a stable position.  
A flame speed study to prove that a flat flame characteristic of previously published experimental data 
was carried out with the use of Laser Doppler Velocimetry (LDV) for data acquisition. In order to 
measure the speed of the flame, the fuel air mixture is seeded with silicon oil. This is achieved by running 
the total flow of the bottom burner through a glass nebulizer filled with silicon oil.  The idea behind this is 
to achieve micron sized silicon oil droplets which will then seed the flow and effectively follow the 
velocity of the mixture. The nebulizer used can be seen in the Appendix. 
After ignition has been achieved and a stagnation flame has been established, a Nd:YAG 
(neodymium­doped yttrium aluminum garnet) laser is then positioned parallel to the nozzle exits of each 
burner and two laser beams are aimed at the center of this stagnation flame so that the region where they 
cross generates an alternating field with constant fringe spacing in the separation distance axis. As the 
seeding particles in the premixed fuel­air mixture pass through this laser field they are illuminated and 
captured by a reflective lens. The time that it takes for this particle to travel through this laser field is then 
measured and its velocity is calculated, and by comparing the speed of the flow of the fuel­air mixture to 
the stagnation flame, the strain rate of the system is calculated. The final flame speed is then recorded, 
and by adjusting the mass flow rate of the fuel air mixture while ensuring a stagnation flame is 
maintained, the flame speed at different strain rates is measured. By then plotting these strain rates versus 
the respective yielded flame speeds, a trend­line can be fit to these data points to characterize the laminar 
flame speed of a certain equivalence ratio of a fuel, in this case ​φ​=0.7 of methane, at any given strain rate. 
 
 
Results and Discussion 
The rig was constructed to the original design as shown in Figure (5) with the exclusion of the Plexiglas 
enclosure and with a previously used 20mm diameter burner from the Combustion Lab until the second 
Quartz Glass burner is machined. Upon calibration of the mass flow rates of each gas into the system, 
49psi of methane was run through a .2mm diameter sonic nozzle and mixed with 42psi of air which had 
been run through a .5mm diameter sonic nozzle to achieve the desired equivalence ratio of ​φ​=0.7. 
 
Figure (5) Final opposed jet burner configuration. The bottom burner will eventually by replaced with a second 
Quartz Glass burner but still has a 20mm diameter nozzle for experimental accuracy. 
One significant design issue that became apparent while testing the ignition of Methane was the effect of 
the silicon carbide heating rod on the air flowing from the top burner. Unless positioned dead­on in the 
center of the burner the flow would lose uniformity as it exited the nozzle, effectively skewing any flame 
ignited since the imposed velocity gradients were weaker than others due to the impedance of the flow by 
the heating rod. A future design improvement will be made to secure the heating rod in place so that this 
sensitivity issue will be mitigated.  Once the heating rod was positioned properly a flat flame was able to 
be produced as shown in Figure (6) and studied. An example of a crooked flame can be found in the 
Appendix. 
 
Figure (6) Stable stagnation flame of Methane at ​φ ​= 0.7. 
The flow rate from the top burner significantly affects the nature of the stagnation flame that is produced 
and must be adjusted after ignition is first achieved in order to stabilize the flame. The velocity must be 
high enough to impose the necessary velocity gradient to make the flame quasi­one dimensional 
otherwise it would ​start​ to resemble a Bunsen flame, and to keep the flame position stable in the 
separation distance plane. It also must be low enough so that the top flow does not overpower the flame 
and force it to become turbulent and/or cause it to extinguish due to too high of a strain rate. It is crucial 
that the flame remain at a constant separation distance for it to be considered stable, otherwise any 
measurements taken through LDV will be skewed since the stain rate is a function of separation distance 
and velocity. Once the flame was stabilized LDV was used to capture the velocity profile of the centerline 
of the flow up to the beginning of the flame.  At this point, the flow experiences thermal expansion, 
subsequently causing the seeding particles to lose fidelity either through destruction or second­order 
diffusion effects.  The flame speed itself is never measured but can be extrapolated by plotting the strain 
rate as a function of separation distance ​x​ versus velocity ​u​, and finding the local minimum velocity point 
(reference flame speed, ) and local maximum stretch rate,  , as seen in figure(7). 
 
Figure (7) Velocity profile of Methane at ​φ​=0.7 prior to thermal expansion. 
The flame speed was then measured at different strain rates by adjusting the mass flow of the fuel­air 
mixture into the system with a bypass valve. These reference flame speeds were then paired with their 
respective strain rates as seen in Figure (8) and after performing a linear extrapolation the laminar flame 
speed of Methane at ​φ​=0.7 is characterized. This is the speed that the flame would burn at if it 
experienced no stretch at all, thereby perfectly conforming to the Ideal Flame Model. While this condition 
is physically impossible to reproduce, a flame speed study cannot be considered valid if the extrapolated 
data does not yield a laminar flame speed equal to or within the tolerance of this universally accepted 
fundamental flame property. 
 
Figure (8) Flame speeds of Methane at ​φ​=0.7 at varying strain rates. A linear extrapolation is performed to find the 
laminar flame speed of the fuel. 
To check the validity of this experiment the extrapolated laminar flame speed was compared to that of a 
published laminar flame speed value of 15±1cm/s (Vagelopoulos). This published data has been provided 
in the Appendix for reference. The laminar flame speed extrapolated from the experimental data of 
16±1cm/s is within this range, showing that the combustion rig that has been constructed is capable of 
reproducing published laminar flame speeds. 
When future experiments are conducted utilizing the heating of the air from the top burner for ignition, 
there will be a minimum mass flow rate that must be flowing through the top burner due the operating 
conditions of the silicon carbide heating rod. In order to operate the silicon carbide heating rod, the 
thermal energy that accumulates must be absorbed by the particles of a gas flowing across it. Dependant 
on the specified heating temperature, if the mass flow of this gas across the heating rod is below a certain 
minimum value there will be an overload of thermal energy beyond the heating rod’s maximum tolerance 
and it will subsequently be damaged. 
The temperature of the system must be carefully adjusted and the power output of the heating rod has to 
be monitored at all times due to its fragile nature. For instance if the system is told to jump from ambient 
room temperature to 300 °C, a Proportional Integral Derivative (PID) controller used to control the 
temperature of the heating rod will attempt to heat so as to achieve this temperature as quickly as possible 
without regard to how much power it is supplying, which could result in an overflow of power causing the 
heating rod to crack. As the flow through the burner is heated, a Type­R Thermocouple positioned at the 
nozzle measures the temperature of this flow which is then displayed on the Temperature Controller as 
shown in Figure (9), and the power output of the heating rod can be monitored as well. The thermocouple 
provides feedback to the temperature controller so that the controller is aware of the temperature of the 
top air flow. The temperature controller can ultimately be programmed to automatically heat the flow 
from the top burner without exceeding a specified power level. Until this power output limit has been 
programmed the temperature is manually raised in increments of 10­20°C with the power output closely 
monitored during the process. A temperature of 500°C has been achieved, and once the temperature 
controller has been programmed as aforementioned for safety reasons, the maximum attainable 
temperature of the system will be characterized. 
 
Figure (9) The PID controller used to control the temperature of the heating rod. The top value is the reading from 
the thermocouple and the bottom value is the desired temperature. 
 
 
Concluding Remarks: 
The opposed jet burner configuration that has been constructed in this experiment has been proven 
capable of producing and sustaining a stable stagnation flame. Despite the presence of a double helix 
shaped silicon carbide heating rod that resides in the top burner, the effect that it has on the flow and the 
resulting imposed velocity gradient on the stagnation flame did not cause a deviation from previously 
performed experimental results. However, this only holds true if the heating rod is positioned in just the 
right location, in the center of the top burner and at the right angle so it is parallel to the inner walls of the 
burner. Even the slightest deviation in position will cause the flow exiting the burner nozzle to lose 
uniformity, resulting in a turbulent flame and/or flame extinction. However, perturbations generated in the 
flow through the top burner due to the geometry of the heating rod did not significantly affect the 
formation and sustaining of a methane stagnation flame ​at ​φ​=0.7. 
Now that the combustion rig has been constructed and is capable of sustaining stable stagnation flames, 
the groundwork has been laid to begin testing ignition of fuel air mixtures through the heating of the air 
flow through the top burner. Future studies will need to be done to quantify the effect of the increased 
flow rate that will be induced by heating the flow through the top burner, and the necessary flow rate 
adjustments to ensure the momentum of the top and bottom flow remain equal so that a stable stagnation 
flame can still be produced. Since numerous ignition experiments are going to be conducted, to optimize 
the experimental technique the temperature controller for the silicon carbide heating rod will be 
programmed so that it can safely heat to any preset temperature without drawing too much power, rather 
than manually adjusting the temperature every experiment. A design change to better secure the position 
of the silicon carbide heating rod will be formulated as well due to the sensitivity of the current 
configuration. Ultimately, once the ignition of gaseous fuels has been achieved by this system and is 
calibrated to sustain stagnation flames consistent with previously published experimental data of laminar 
flame speeds, the rig will once more be modified to allow for the preheating of liquid fuels through the 
bottom burner, with the end goal of achieving ignition of various cracked states of JP­7.
References: 
Egolfopoulos, Fokion.  “Premixed Flames.”  Pages 46­50.  AME513 Sp.  2007 Course Notes.  University 
of Southern California Viterbi School of Engineering. 
Escudie, D. “Influence of strain rate on a premixed turbulent flame stabilized in a stagnating flow. “ 
Experiments in Fluids, Vol. 27 Issue 6, pp 553­541, 1999. Spring­Verlag Berlin Heidelberg. 
1999. 
Direct experimental determination of laminar flame speeds 
Vagelopoulos, Christine M. (Univ of Southern California); Egolfopoulos, Fokion N. Source: 
Symposium (International) on Combustion, v 1, 1998, p 513­519 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 
 
Figure (10) Examples of skewed stagnation flames due to un­centered silicon carbide heating rod. 
 
Figure (11) Published laminar flame speed values for methane at ​φ​=0.7. 
 
Figure (11) The nebulizer used to seed the fuel­air mixture prior to flowing through the bottom burner. 
 

More Related Content

Viewers also liked

Newsletter 7 pdf
Newsletter 7 pdfNewsletter 7 pdf
Newsletter 7 pdfmaymaskow1
 
A case study on bio fuel stove technology jatropha as a bio fuel
A case study on bio fuel stove technology jatropha as a bio fuelA case study on bio fuel stove technology jatropha as a bio fuel
A case study on bio fuel stove technology jatropha as a bio fuelAshok Yadav
 
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...IAEME Publication
 
The Jatropha System: An Integrated Approach of Rural Development
The Jatropha System: An Integrated Approach of  Rural Development  The Jatropha System: An Integrated Approach of  Rural Development
The Jatropha System: An Integrated Approach of Rural Development QZ1
 
Developing History of Shredder Machine
Developing History of Shredder MachineDeveloping History of Shredder Machine
Developing History of Shredder Machineroll7amount
 
Design of a Scramjet Engine
Design of a Scramjet EngineDesign of a Scramjet Engine
Design of a Scramjet EngineAdam Resler
 
FRICTION STIR WELDING PROJECT
FRICTION STIR WELDING PROJECTFRICTION STIR WELDING PROJECT
FRICTION STIR WELDING PROJECTAKSHANSH MISHRA
 
Electricity generation from speed breaker and piezo tiles
Electricity generation from speed breaker and piezo tilesElectricity generation from speed breaker and piezo tiles
Electricity generation from speed breaker and piezo tilesAbhishek Shukla
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system reportSumit Kumar
 
Overview of friction stir welding
Overview of friction stir weldingOverview of friction stir welding
Overview of friction stir weldingVamsi Krishna
 
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKERGENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKERSamiullah Kakar
 
Power Generating Shock Absorber
Power Generating Shock AbsorberPower Generating Shock Absorber
Power Generating Shock AbsorberPratik Chaudhari
 
Scram jet
Scram jetScram jet
Scram jet1_4_3
 

Viewers also liked (20)

Kami newsletter 1 feb 2010
Kami newsletter 1 feb 2010Kami newsletter 1 feb 2010
Kami newsletter 1 feb 2010
 
Newsletter 7 pdf
Newsletter 7 pdfNewsletter 7 pdf
Newsletter 7 pdf
 
A case study on bio fuel stove technology jatropha as a bio fuel
A case study on bio fuel stove technology jatropha as a bio fuelA case study on bio fuel stove technology jatropha as a bio fuel
A case study on bio fuel stove technology jatropha as a bio fuel
 
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...
COMPARATIVE STUDY OF FULL JOURNAL BEARING WITH BIO LUBRICANTS – JATROPHA OIL,...
 
Scramjet
ScramjetScramjet
Scramjet
 
The Jatropha System: An Integrated Approach of Rural Development
The Jatropha System: An Integrated Approach of  Rural Development  The Jatropha System: An Integrated Approach of  Rural Development
The Jatropha System: An Integrated Approach of Rural Development
 
Developing History of Shredder Machine
Developing History of Shredder MachineDeveloping History of Shredder Machine
Developing History of Shredder Machine
 
Design of a Scramjet Engine
Design of a Scramjet EngineDesign of a Scramjet Engine
Design of a Scramjet Engine
 
FRICTION STIR WELDING PROJECT
FRICTION STIR WELDING PROJECTFRICTION STIR WELDING PROJECT
FRICTION STIR WELDING PROJECT
 
Electricity generation from speed breaker and piezo tiles
Electricity generation from speed breaker and piezo tilesElectricity generation from speed breaker and piezo tiles
Electricity generation from speed breaker and piezo tiles
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system report
 
Overview of friction stir welding
Overview of friction stir weldingOverview of friction stir welding
Overview of friction stir welding
 
Clutch ppt
Clutch pptClutch ppt
Clutch ppt
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir welding
 
Scranjet Engine
Scranjet EngineScranjet Engine
Scranjet Engine
 
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKERGENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
 
Power Generating Shock Absorber
Power Generating Shock AbsorberPower Generating Shock Absorber
Power Generating Shock Absorber
 
Scramjet engine
Scramjet engineScramjet engine
Scramjet engine
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir welding
 
Scram jet
Scram jetScram jet
Scram jet
 

Similar to Final report for development of enclosed combustion rig for scramjet fuel studies

The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...Jameel Tawfiq
 
Paper cid-furnace-feed-maxmization
Paper cid-furnace-feed-maxmizationPaper cid-furnace-feed-maxmization
Paper cid-furnace-feed-maxmizationCANDHARE
 
Advanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisAdvanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisPeter McGibney
 
Ring-Formation-in-Rotary-Kilns of cement plant
Ring-Formation-in-Rotary-Kilns of cement plantRing-Formation-in-Rotary-Kilns of cement plant
Ring-Formation-in-Rotary-Kilns of cement plantSaurabhVyAs34
 
Soot Blowing Optimization- Field Experience
Soot Blowing Optimization- Field ExperienceSoot Blowing Optimization- Field Experience
Soot Blowing Optimization- Field ExperiencePooja Agarwal
 
ICR OFT April
ICR OFT AprilICR OFT April
ICR OFT AprilTom Lowes
 
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...Saad Tanvir
 
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...ijscmcjournal
 
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...ijscmcj
 
Expanded graphite as thermal conductivity enhancer for paraffin wax being us...
 Expanded graphite as thermal conductivity enhancer for paraffin wax being us... Expanded graphite as thermal conductivity enhancer for paraffin wax being us...
Expanded graphite as thermal conductivity enhancer for paraffin wax being us...Gulfam Raza
 
Effect of rim geometry on burner stability Conference paper2019
Effect of rim geometry on burner stability  Conference paper2019Effect of rim geometry on burner stability  Conference paper2019
Effect of rim geometry on burner stability Conference paper2019Jameel Tawfiq
 
Counteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnCounteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnmkpq pasha
 
Counteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnCounteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnmkpq pasha
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)muhammad azam
 
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionSimulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionIJERA Editor
 
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018parthi2006
 
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...ijcsa
 

Similar to Final report for development of enclosed combustion rig for scramjet fuel studies (20)

Abstract
AbstractAbstract
Abstract
 
The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...
 
Paper cid-furnace-feed-maxmization
Paper cid-furnace-feed-maxmizationPaper cid-furnace-feed-maxmization
Paper cid-furnace-feed-maxmization
 
Advanced CFD_Numerical_Analysis
Advanced CFD_Numerical_AnalysisAdvanced CFD_Numerical_Analysis
Advanced CFD_Numerical_Analysis
 
Ring-Formation-in-Rotary-Kilns of cement plant
Ring-Formation-in-Rotary-Kilns of cement plantRing-Formation-in-Rotary-Kilns of cement plant
Ring-Formation-in-Rotary-Kilns of cement plant
 
Soot Blowing Optimization- Field Experience
Soot Blowing Optimization- Field ExperienceSoot Blowing Optimization- Field Experience
Soot Blowing Optimization- Field Experience
 
ICR OFT April
ICR OFT AprilICR OFT April
ICR OFT April
 
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...
Exhibit 13 On ignition mechanisms of premixed CH4air and H2air using a hot ...
 
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
 
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
 
6
66
6
 
Expanded graphite as thermal conductivity enhancer for paraffin wax being us...
 Expanded graphite as thermal conductivity enhancer for paraffin wax being us... Expanded graphite as thermal conductivity enhancer for paraffin wax being us...
Expanded graphite as thermal conductivity enhancer for paraffin wax being us...
 
Effect of rim geometry on burner stability Conference paper2019
Effect of rim geometry on burner stability  Conference paper2019Effect of rim geometry on burner stability  Conference paper2019
Effect of rim geometry on burner stability Conference paper2019
 
Counteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnCounteracting ring-formation-in-kiln
Counteracting ring-formation-in-kiln
 
Counteracting ring-formation-in-kiln
Counteracting ring-formation-in-kilnCounteracting ring-formation-in-kiln
Counteracting ring-formation-in-kiln
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)
 
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionSimulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
 
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018
Wingwall sh distortion in cfbc boilers by k.k.parthiban jan 2018
 
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
 
Poster Presentation.pdf
Poster Presentation.pdfPoster Presentation.pdf
Poster Presentation.pdf
 

Recently uploaded

computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 

Recently uploaded (20)

computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 

Final report for development of enclosed combustion rig for scramjet fuel studies