SlideShare a Scribd company logo
1 of 28
Engenharia de Software PROTOTIPAÇÃO Altieres de Magalhães Silva Cesar Augusto Couto Santos Daniel Pedro dos Santos Fernandes Ednilson Martines de Araujo Fabio Augusto Azevedo Hellen de Souza Castro Luana Paula de Lima Lucas Antonio Braz de Morais
Prototipação
Modelo de Prototipação ,[object Object],[object Object],[object Object],[object Object]
Modelo de Prototipação ,[object Object]
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   1-  OBTENÇÃO DOS REQUISITOS:  Desenvolvedor e cliente definem os objetivos gerais do software, identificam quais requisitos são conhecidos e as áreas que necessitam de definições adicionais .
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   2- PROJETO RÁPIDO:   Representação dos aspectos do software que são visíveis ao usuário (abordagens de entrada e formatos de saída)
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   3-  CONSTRUÇÃO PROTÓTIPO:   Implementação rápida   do projeto
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   4- AVALIAÇÃO DO PROTÓTIPO:  Cliente e desenvolvedor avaliam o protótipo
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   5- REFINAMENTO DO PROTÓTIPO:   Cliente e desenvolvedor refinam os requisitos do software a ser desenvolvido.
Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos   CONSTRUÇÃO DO PRODUTO
Benefícios da Prototipação ,[object Object],[object Object],[object Object],[object Object],[object Object]
Benefícios da Prototipação ,[object Object],[object Object],[object Object],[object Object],[object Object]
Prototipação no Processo de Software ,[object Object],[object Object],[object Object],[object Object]
Objetivos da Prototipação Evolucionária e Descartável ,[object Object],[object Object]
Prototipação Evolucionária ,[object Object],[object Object]
Vantagens da Prototipação Evolucionária ,[object Object],[object Object],[object Object],[object Object]
Problemas Prototipação Evolucionária ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Prototipação Descartável ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protótipos  Descartáveis Liberáveis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protótipos Classificação ,[object Object],[object Object],[object Object],[object Object]
Protótipos de Baixa Fidelidade ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protótipos Classificação ,[object Object],[object Object],[object Object],[object Object]
Protótipos de Alta Fidelidade ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Comparando os Protótipos Tipo Vantagens Desvantagens Baixa-Fidelidade ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Alta-fidelidade ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Vantagens da Prototipação ,[object Object],[object Object],[object Object]
Desvantagens Prototipação ,[object Object],[object Object]
Prototipação Acessem!

More Related Content

What's hot

Aula 1 - Minicurso sobre Design Centrado no Usuário
Aula 1 - Minicurso sobre Design Centrado no UsuárioAula 1 - Minicurso sobre Design Centrado no Usuário
Aula 1 - Minicurso sobre Design Centrado no Usuário
Erico Fileno
 

What's hot (20)

Prototipação de software
Prototipação de softwarePrototipação de software
Prototipação de software
 
Workshop Prototipação em ux - Como validar uma ideia sem construir o produto
Workshop Prototipação em ux - Como validar uma ideia sem construir o produtoWorkshop Prototipação em ux - Como validar uma ideia sem construir o produto
Workshop Prototipação em ux - Como validar uma ideia sem construir o produto
 
Prototipagem
PrototipagemPrototipagem
Prototipagem
 
Engenharia de Requisitos
Engenharia de RequisitosEngenharia de Requisitos
Engenharia de Requisitos
 
Aula - Metodologias Ágeis
Aula - Metodologias ÁgeisAula - Metodologias Ágeis
Aula - Metodologias Ágeis
 
Engenharia de Requisitos
Engenharia de RequisitosEngenharia de Requisitos
Engenharia de Requisitos
 
DESIGN DE INTERFACE
DESIGN DE INTERFACEDESIGN DE INTERFACE
DESIGN DE INTERFACE
 
Aula4 levantamento requisitos
Aula4 levantamento requisitosAula4 levantamento requisitos
Aula4 levantamento requisitos
 
Design Thinking - Prototipação
Design Thinking  - PrototipaçãoDesign Thinking  - Prototipação
Design Thinking - Prototipação
 
Introdução ao desenvolvimento da web.pptx
Introdução ao desenvolvimento da web.pptxIntrodução ao desenvolvimento da web.pptx
Introdução ao desenvolvimento da web.pptx
 
Aula 1 - Minicurso sobre Design Centrado no Usuário
Aula 1 - Minicurso sobre Design Centrado no UsuárioAula 1 - Minicurso sobre Design Centrado no Usuário
Aula 1 - Minicurso sobre Design Centrado no Usuário
 
Metodologias de Desenvolvimento de Software
Metodologias de Desenvolvimento de SoftwareMetodologias de Desenvolvimento de Software
Metodologias de Desenvolvimento de Software
 
Extreme programming (xp)
 Extreme programming   (xp) Extreme programming   (xp)
Extreme programming (xp)
 
Interação Homem Computador Aula 02
Interação Homem Computador Aula 02Interação Homem Computador Aula 02
Interação Homem Computador Aula 02
 
Extreme programming (xp) - Resumo
Extreme programming (xp) - ResumoExtreme programming (xp) - Resumo
Extreme programming (xp) - Resumo
 
Usabilidade aula-01 Introdução
Usabilidade aula-01 IntroduçãoUsabilidade aula-01 Introdução
Usabilidade aula-01 Introdução
 
Introdução a gerenciamento de projetos e PMBoK®
Introdução a gerenciamento de projetos e PMBoK®Introdução a gerenciamento de projetos e PMBoK®
Introdução a gerenciamento de projetos e PMBoK®
 
Introducao a Arquitetura de Software
Introducao a Arquitetura de SoftwareIntroducao a Arquitetura de Software
Introducao a Arquitetura de Software
 
Analise de Requisitos Software
Analise de Requisitos SoftwareAnalise de Requisitos Software
Analise de Requisitos Software
 
O Processo de Desenvolvimento de Software
O Processo de Desenvolvimento de SoftwareO Processo de Desenvolvimento de Software
O Processo de Desenvolvimento de Software
 

Similar to Prototipação

Captulo 8 prototipacao
Captulo 8 prototipacaoCaptulo 8 prototipacao
Captulo 8 prototipacao
lua alves
 
Aula 2 modelo de processo de software1
Aula 2   modelo de processo de software1Aula 2   modelo de processo de software1
Aula 2 modelo de processo de software1
Tiago Vizoto
 
Este trabalho trata
Este trabalho trataEste trabalho trata
Este trabalho trata
Roni Reis
 
Es2 modelo de processo de software
Es2 modelo de processo de softwareEs2 modelo de processo de software
Es2 modelo de processo de software
luacal
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
wilsonguns
 
Modelos de desenvolvimento de software (dino brasilis)
Modelos de desenvolvimento de software (dino brasilis)Modelos de desenvolvimento de software (dino brasilis)
Modelos de desenvolvimento de software (dino brasilis)
djadrianodez
 

Similar to Prototipação (20)

Trabalho es prototipagem
Trabalho es   prototipagemTrabalho es   prototipagem
Trabalho es prototipagem
 
Engenharia de software - Prototipo
Engenharia de software - PrototipoEngenharia de software - Prototipo
Engenharia de software - Prototipo
 
Captulo 8 prototipacao
Captulo 8 prototipacaoCaptulo 8 prototipacao
Captulo 8 prototipacao
 
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile AppAula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
 
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
 
Projeto de Sistemas - Aula002
Projeto de Sistemas - Aula002Projeto de Sistemas - Aula002
Projeto de Sistemas - Aula002
 
Aula 2 modelo de processo de software1
Aula 2   modelo de processo de software1Aula 2   modelo de processo de software1
Aula 2 modelo de processo de software1
 
Analise aula2
Analise aula2Analise aula2
Analise aula2
 
Este trabalho trata
Este trabalho trataEste trabalho trata
Este trabalho trata
 
Es2 modelo de processo de software
Es2 modelo de processo de softwareEs2 modelo de processo de software
Es2 modelo de processo de software
 
Engenharia De Software
Engenharia De SoftwareEngenharia De Software
Engenharia De Software
 
Modelos de processos de software
Modelos de processos de softwareModelos de processos de software
Modelos de processos de software
 
Aula 2 - Modelos de processos
Aula 2 -  Modelos de processosAula 2 -  Modelos de processos
Aula 2 - Modelos de processos
 
Metodologia de Desenvolvimento de Softwares
Metodologia de Desenvolvimento de SoftwaresMetodologia de Desenvolvimento de Softwares
Metodologia de Desenvolvimento de Softwares
 
Introdução a engenharia de software aula 02
Introdução a engenharia de software   aula 02Introdução a engenharia de software   aula 02
Introdução a engenharia de software aula 02
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
 
Modelos de desenvolvimento de software (dino brasilis)
Modelos de desenvolvimento de software (dino brasilis)Modelos de desenvolvimento de software (dino brasilis)
Modelos de desenvolvimento de software (dino brasilis)
 
A proposal to combine elicitation techniques to write vision document and use...
A proposal to combine elicitation techniques to write vision document and use...A proposal to combine elicitation techniques to write vision document and use...
A proposal to combine elicitation techniques to write vision document and use...
 
ES4.ppt
ES4.pptES4.ppt
ES4.ppt
 
Modelos de processos de software
Modelos de processos de softwareModelos de processos de software
Modelos de processos de software
 

More from Daniel Fernandes (6)

Openstack 101
Openstack 101Openstack 101
Openstack 101
 
The best things of groovy
The best things of groovyThe best things of groovy
The best things of groovy
 
Facebook dev circle - cloud 101
Facebook dev circle - cloud 101Facebook dev circle - cloud 101
Facebook dev circle - cloud 101
 
The frontend and the automated tests
The frontend and the automated testsThe frontend and the automated tests
The frontend and the automated tests
 
Continuous integration (light talk)
Continuous integration   (light talk)Continuous integration   (light talk)
Continuous integration (light talk)
 
Jenkins além da integração contínua - práticas de devops
Jenkins além da integração contínua - práticas de devopsJenkins além da integração contínua - práticas de devops
Jenkins além da integração contínua - práticas de devops
 

Recently uploaded

Recently uploaded (6)

ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docxATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
ATIVIDADE 1 - ESTRUTURA DE DADOS II - 52_2024.docx
 
Boas práticas de programação com Object Calisthenics
Boas práticas de programação com Object CalisthenicsBoas práticas de programação com Object Calisthenics
Boas práticas de programação com Object Calisthenics
 
Padrões de Projeto: Proxy e Command com exemplo
Padrões de Projeto: Proxy e Command com exemploPadrões de Projeto: Proxy e Command com exemplo
Padrões de Projeto: Proxy e Command com exemplo
 
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docxATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
ATIVIDADE 1 - CUSTOS DE PRODUÇÃO - 52_2024.docx
 
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docxATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
ATIVIDADE 1 - LOGÍSTICA EMPRESARIAL - 52_2024.docx
 
ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docxATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
ATIVIDADE 1 - GCOM - GESTÃO DA INFORMAÇÃO - 54_2024.docx
 

Prototipação

  • 1. Engenharia de Software PROTOTIPAÇÃO Altieres de Magalhães Silva Cesar Augusto Couto Santos Daniel Pedro dos Santos Fernandes Ednilson Martines de Araujo Fabio Augusto Azevedo Hellen de Souza Castro Luana Paula de Lima Lucas Antonio Braz de Morais
  • 3.
  • 4.
  • 5. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos
  • 6. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos 1- OBTENÇÃO DOS REQUISITOS: Desenvolvedor e cliente definem os objetivos gerais do software, identificam quais requisitos são conhecidos e as áreas que necessitam de definições adicionais .
  • 7. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos 2- PROJETO RÁPIDO: Representação dos aspectos do software que são visíveis ao usuário (abordagens de entrada e formatos de saída)
  • 8. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos 3- CONSTRUÇÃO PROTÓTIPO: Implementação rápida do projeto
  • 9. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos 4- AVALIAÇÃO DO PROTÓTIPO: Cliente e desenvolvedor avaliam o protótipo
  • 10. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos 5- REFINAMENTO DO PROTÓTIPO: Cliente e desenvolvedor refinam os requisitos do software a ser desenvolvido.
  • 11. Modelo de Prototipação Elaborar Projeto Rápido Construir Protótipo Avaliar Protótipo Refinamento do Protótipo Obter Requisitos CONSTRUÇÃO DO PRODUTO
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.

Editor's Notes

  1. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863
  2. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863
  3. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863
  4. Significant mechanical and software problems have plagued the automated baggage handling system. In tests of the system, bags were misloaded, were misrouted, or fell out of telecarts, causing the system to jam. Video cameras were installed at several known trouble spots to document problems, such as the following: The baggage system continued to unload bags even though they were jammed on the conveyor belt. This problem occurred because the photo eye at this location could not detect the pile of bags on the belt and hence could not signal the system to stop. The baggage system loaded bags into telecarts that were already full. Hence, some bags fell onto the tracks, again causing the telecarts to jam. This problem occurred because the system had lost track of which telecarts were loaded or unloaded during a previous jam. When the system came back on-line, it failed to show that the telecarts were loaded. The timing between the conveyor belts and the moving telecarts was not properly synchronized, causing bags to fall between the conveyor belt and the telecarts. The bags became wedged under the telecarts. This occurred because telecarts were bumping into each other near the load point.
  5. Significant mechanical and software problems have plagued the automated baggage handling system. In tests of the system, bags were misloaded, were misrouted, or fell out of telecarts, causing the system to jam. Video cameras were installed at several known trouble spots to document problems, such as the following: The baggage system continued to unload bags even though they were jammed on the conveyor belt. This problem occurred because the photo eye at this location could not detect the pile of bags on the belt and hence could not signal the system to stop. The baggage system loaded bags into telecarts that were already full. Hence, some bags fell onto the tracks, again causing the telecarts to jam. This problem occurred because the system had lost track of which telecarts were loaded or unloaded during a previous jam. When the system came back on-line, it failed to show that the telecarts were loaded. The timing between the conveyor belts and the moving telecarts was not properly synchronized, causing bags to fall between the conveyor belt and the telecarts. The bags became wedged under the telecarts. This occurred because telecarts were bumping into each other near the load point.