SlideShare a Scribd company logo
1 of 55
Download to read offline
1
Recent Advances in Autoencoder-Based

Representation Learning
Presenter:Tatsuya Matsushima @__tmats__ , Matsuo Lab
Recent Advances in Autoencoder-Based Representation Learning
• https://arxiv.org/abs/1812.05069 (Submitted on 12 Dec 2018)
• Michael Tschannen, Olivier Bachem, Mario Lucic
• ETH Zurich, Google Brain
• NeurIPS 2018 Workshop (Bayesian Deep Learning)
• http://bayesiandeeplearning.org/
• 19 3 accept
•
•
• ( …)
※
2
TL; DR
•
•
• meta-prior
• ( )
• Rate-Distortion
3
• (SRL)
• [DL ] 

https://www.slideshare.net/DeepLearningJP2016/dl-124128933
• SRL VAE VAE
4
VAE
5
VAE
Variational Autoencoder (VAE) [Kingma+ 2014a]
•
• KL (ELBO)
• ELBO (VAE loss )
6
ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [
DKL (qϕ(z|x)∥p(z))]
※ VAE ELBO
𝔼 ̂p(x) [−log pθ(x)] = ℒVAE(θ, ϕ) − 𝔼 ̂p(x) [
DKL (qϕ(z|x)∥pθ(z|x))]
−ℒVAE 𝔼 ̂p(x) [−log pθ(x)]
ℒVAE
̂p(x)
VAE
VAE loss
• 1 reparametrization trick
• 2 closed-form
• ,
closed-form
•
7
ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [
DKL (qϕ(z|x)∥p(z))]
z(i)
∼ qϕ(z|x(i)
)
qϕ(z|x) = 𝒩
(
μϕ(x), diag (σϕ(x))) p(z) = 𝒩(0,I)
f-
• f- 





• KL divergence
• density-ratio trick f-
• GAN
8
f f(1) = 0 px py
Df (px∥py) =
∫
f
(
px(x)
py(x) )
py(x)dx
f(t) = t log t
Df (px∥py) = DKL (px∥py)
px py
GAN Density-ratio Trick KL
•
•
• 2
• Discriminator
• 



• i.i.d
9
c ∈ {0,1}px py
px(x) = p(x|c = 1) py(x) = p(x|c = 0)
Sη
px(x)
px(x)
py(x)
=
p(x|c = 1)
p(x|c = 0)
=
p(c = 1|x)
p(c = 0|x)
≈
Sη(x)
1 − Sη(x)
px N
DKL (px∥py) ≈
1
N
N
∑
i=1
log
(
Sη (x(i)
)
1 − Sη (x(i)
))
Maximum Mean Discrepancy (MMD)
MMD
• embedding
• ) MMD
•
10
k : 𝒳 → 𝒳 ℋ
φ : 𝒳 → ℋ px(x)
MMD (px, py) = 𝔼x∼px
[φ(x)] − 𝔼y∼py
[φ(y)]
2
ℋ
py(x)
𝒳 = ℋ = ℝd φ(x) = x
MMD (px, py) = μpx
− μpy
2
2
φ
Meta-Prior VAE
11
Meta-Prior
Meta-prior [Bengio+ 2013]
•
•
•
• But
• →meta-prior
12
Meta-Prior [Bengio+ 2013]
Disentanglement
•
• )
•
•
• ) ( )
13
Meta-Prior [Bengio+ 2013]
•
•
•
•
14
Meta-Prior
( ) 

• meta-prior
15
…

( )
Meta-Prior
• disentangle
•
• )
16
17
VAE
meta-prior
aggregate ( )
VAE
• aggregate ( )
• VAE
18
z ∼ qϕ(z|x)
ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [
R1 (qϕ(z|x))]
+ λ2R2 (qϕ(z))
qϕ(z|x) qϕ(z) = 𝔼 ̂p(x) [qϕ(z|x)] =
1
N
N
∑
i=1
qϕ(z|x(i)
)
qϕ(z)
ℒVAE
VAE
19
ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [
R1 (qϕ(z|x))]
+ λ2R2 (qϕ(z))
Optional
VAE
• aggregate ( )
• divergence
20
aggregate 

( ) 

qϕ(z)
Disentanglement
disentangle
•
• loss
21
v w
x ∼ p(x|v, w)
p(v|x) =
∏
j
p (vj |x)
qϕ(z|x) v
Disentanglement
Disentangle
•
• disentangle disentangle
• ( disentangle )
• [Locatello+ 2018]
•
• (a) ELBO
• (b) x z
• (c)
22
(a) ELBO
β-VAE [Higgins+ 2017]
• VAE Loss





2
•
23
ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))]
ℒβ−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [
DKL (qϕ(z|x)∥p(z))]
qϕ(z|x) p(z)
: [Higgins+ 2017]
(b) x z
VAE Loss



2
• 

aggregate ( ) KL [Hoffman+ 2016]
• FactorVAE[Kim+ 2018]
• β-TCVAE[Chen+ 2018] InfoVAE[Zhao+ 2017a] DIP-VAE[Kumar+ 2018]
24
ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))]
𝔼 ̂p(x) [
DKL (qϕ(z|x)∥p(z))]
= Iqϕ
(x; z) + DKL (qϕ(z)∥p(z))
x z Iqϕ
(x; z)
qϕ(z) p(z)
(b) x z
Factor VAE [Kim+ 2018]
• βVAE loss 

• toral correlation





• discriminator density ratio trick
• [DL ]Disentangling by Factorising

https://www.slideshare.net/DeepLearningJP2016/dldisentangling-by-factorising
25
ℒβ−VAE DKL (qϕ(z)∥p(z))
Iqϕ
(x; z)
TC (qϕ(z)) = DKL qϕ(z)∥
∏
j
qϕ (zj)
ℒFactorVAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2 TC (qϕ(z))
(c)
HSIC-VAE [Lopez+ 2018]
• Hilbert-Schmidt independence criterion (HSIC) [Gretton+2005] 

• HSIC ( AppendixA )
• 

•
HFVAE [Esmaeili+ 2018]
26
zG = {zk}k∈G
ℒHSIC−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2HSIC
(
qϕ (zG1), qϕ (zG2))
s
HSIC (qϕ(z), p(s))
p(s)
PixelGAN-AE [Makhzani+ 2017]
• PixelCNN[van den Oord+ 2016] 

•
• VAE loss KL 





• KL GAN
VIB[Alemi+ 2016] 

Information dropout[Achille+ 2018] 27
ℒPixelGAN−AE(θ, ϕ) = ℒVAE(θ, ϕ) − Iqϕ
(x; z)
𝔼 ̂p(x) [
DKL (qϕ(z|x)∥p(z))]
= Iqϕ
(x; z) + DKL (qϕ(z)∥p(z))
Iqϕ
(x; z)
DKL (qϕ(z)∥p(z)) : [Makhzani+ 2017]
Variational Fair Autoencoder (VFAE) [Louizos+ 2016]
•
• VAE loss MMD
•
• MMD HSIC HSIC-VAE[Lopez+ 2018]
• 2 VFAE[Louizos+ 2016] HSIC-VAE [Lopez+ 2018] 

Fader Network[Lample+ 2017] 

DC-IGN[Kulkarni+ 2015] 28
q(z|s = k)
s
s
s z
ℒVAEq(z|s = k′)
ℒVFAE(θ, ϕ) = ℒVAE + λ2
K
∑
ℓ=2
MMD (qϕ(z|s = ℓ), qϕ(z|s = 1))
qϕ(z|s = ℓ) =
∑
i:s(i)=ℓ
1
{i : s(i) = ℓ}
qϕ(z|x(i)
, s(i)
)
29
• )
30
H:
A:
N:
C: Categorical
L: Learned prior
VAE
M2 [Kingma+ 2014b]
•
•
• loss 

• M1 (M1+M2 )
•
• DL Hacks Semi-supervised Learning with Deep Generative Models

https://www.slideshare.net/YuusukeIwasawa/dl-hacks2015-0421iwasawa
• Semi-Supervised Learning with Deep Generative Models pixyz 

https://qiita.com/kogepan102/items/22b685ce7e9a51fbab98
31
qϕ(z, y|x) = qϕ(z|y, x)qϕ(y|x)
x z y
x
qϕ(z, y|x)
qϕ(z|y, x) ℒVAEy
VLAE
Varational Lossy Autoencoder (VLAE) [Chen+ 2017]
• 

• 

• ) 









PixelVAE[Gulrajani+ 2017] 

LadderVAE[Sønderby+ 2016] VLaAE[Zhao+ 2017b] 32
pθ(x|z) z
z
pθ(x|z) W(j)
pθ(x|z) =
∏
j
pθ (xj |z, xW( j))
j
33
meta-prior
• meta-prior
• ) MNIST 

) (SVAE) [Johnson+ 2016]
34
p(z)
N:
C: Categorical
M: mixture
G:
L; Learned Prior
JointVAE [Dupont 2018]
• disentanglement 

•
• Gumbel-Softmax
• KL (β-VAE 2 )
VQ-VAE[van den Oord+ 2017]
35
z c
qϕ(c|x)qϕ(z|x)
qϕ(c|x)
DKL (qϕ(z|x)qϕ(c|x)∥p(z)p(c)) = DKL (qϕ(z|x)∥p(z)) + DKL (qϕ(c|x)∥p(c))
ℒβ−VAE
36
• Denoising Autoencoder (DAE) [Vincent+ 2008]
• [Yingzhen+ 2018] [Hsieh+2018]
• [Villegas+ 2017] [Denton+ 2017] [Fraccaro+ 2017]
37
discriminator
•
• Adversarially Learned Inference (ALI) [Dumoulin+ 2017]
• Bidirectional GAN (BiGAN) [Donahue+ 2017]
38
qϕ(z|x) pθ(x|z)
pθ(x|z)p(z) qϕ(z|x) ̂p(x)
: [Dumoulin+ 2017]
: [Donahue+ 2017]
Rate-Distortion-Usefulness Tradeoff
39
Rate-Distortion Tradeoff
meta-prior
• ) βVAE [Higgins+ 2017]
FaderNetwork[Lample+ 2017]
”Rate-Distortion Tradeoff”[Alemi+ 2018a]
40
Rate-Distortion Tradeoff
•
• Distortion:
• Rate: KL
• VAE ELBO
41
H = −
∫
p(x)log p(x)dx = Ep(x)[−log p(x)]
D = −
∬
p(x)qϕ(z|x)log pθ(x|z)dxdz = Ep(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]]
R =
∬
p(x)qϕ(z|x)log
qϕ(z|x)
p(z)
dxdz = 𝔼p(x) [DKL (qθ(q|x)∥p(z))]
qϕ(z|x) p(z)
ELBO = − ℒVAE = − (D + R)
Rate-Distortion Tradeoff
Rate-Distortion Tradeoff [Alemi+ 2018a]
• Rate Distortion )
• ELBO
• Rate 

•
• [Alemi+ 2018a] Rate 

•
42
H − D ≤ R
: [Alemi+ 2018a]
D = H − R
min
ϕ,θ
D + |σ − R|
σ
Rate-Distortion Tradeoff
Rate
• ( )
• )
•
• ) 

Rate-Distortion Tradeoff
43
z
z
Rate-Distortion-Usefulness Tradeoff
Rate-Distortion-Usefulness Tradeoff
• 3 ”usefulness”
•
• 

R-D usefulness 

44
Rate-Distortion-Usefulness Tradeoff
Usefulness
•
•
•
• [Alemi+ 2018b] 

….?( )
45
Dy = −
∬
p(x, y)qϕ(z|x)log pθ(y|z)dxdydz = 𝔼p(x,y) [ 𝔼qϕ(z|x) [−log pθ(y|z)]]
y
R − Dy
46
• meta-prior 

• ( )
•
• supervision
• Rate-Distortion
• “usefulness”
47
• Rate-Distortion-Usefulness
• z
ex) GQN
• Meta-Prior
• meta-learning
• [DL ]Meta-Learning Probabilistic Inference for Prediction 

https://www.slideshare.net/DeepLearningJP2016/dlmetalearning-probabilistic-inference-for-
prediction-126167192
• usefulnes ( )
•
• Pixyz Pixyzoo ( )
48
Pixyz & Pixyzoo
Pixyz https://github.com/masa-su/pixyz
• (Pytorch )
• 



Pixyzoo https://github.com/masa-su/pixyzoo
• Pixyz
• GQN VIB
• [DLHacks]PyTorch, Pixyz Generative Query Network 

https://www.slideshare.net/DeepLearningJP2016/dlhackspytorch-pixyzgenerative-query-
network-126329901
49
Appendix
50
References
[Achille+ 2018] A. Achille and S. Soatto, “Information dropout: Learning optimal representations through noisy computation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. https://ieeexplore.ieee.org/document/8253482
[Alemi+ 2016] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,” in International
Conference on Learning Representations, 2016. https://openreview.net/forum?id=HyxQzBceg
[Alemi+ 2018a] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, “Fixing a broken ELBO,” in Proc. of the
International Conference on Machine Learning, 2018, pp. 159–168. http://proceedings.mlr.press/v80/alemi18a.html
[Alemi+ 2018b] A. A. Alemi and I. Fischer, “TherML: Thermodynamics of machine learning,” arXiv:1807.04162, 2018. https://
arxiv.org/abs/1807.04162
[Bengio+ 2013] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. https://ieeexplore.ieee.org/
document/6472238
[Chen+ 2017] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel, “Variational
lossy autoencoder,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?
id=BysvGP5ee
[Chen+ 2018] T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of disentanglement in variational
autoencoders,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/7527-isolating-
sources-of-disentanglement-in-variational-autoencoders
51
[Denton+ 2017] E. L. Denton and V. Birodkar, “Unsupervised learning of disentangled representations from video,” in Advances
in Neural Information Processing Systems, 2017, pp. 4414–4423. https://papers.nips.cc/paper/7028-unsupervised-learning-of-
disentangled-representations-from-video
[Donahue+ 2017] J. Donahue, P. Krahenb ¨ uhl, and T. Darrell, “Adversarial feature learning,” in ¨ International Conference on
Learning Representations, 2017. https://openreview.net/forum?id=BJtNZAFgg
[Dumoulin+ 2017] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville, “Adversarially
learned inference,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?id=B1ElR4cgg
[Dupont 2018] E. Dupont, “Learning disentangled joint continuous and discrete representations,” in Advances in Neural
Information Processing Systems, 2018. http://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete-
representations
[Esmaeili+ 2018] B.Esmaeili,H.Wu,S.Jain,A.Bozkurt,N.Siddharth,B.Paige,D.H.Brooks,J.Dy,andJ.-W. van de Meent, “Structured
disentangled representations,” arXiv:1804.02086, 2018. https://arxiv.org/abs/1804.02086
[Fraccaro+ 2017] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled recognition and nonlinear dynamics
model for unsupervised learning,” in Advances in Neural Information Processing Systems, 2017, pp. 3601–3610. https://
papers.nips.cc/paper/6951-a-disentangled-recognition-and-nonlinear-dynamics-model-for-unsupervised-learning
[Gretton+ 2005] A. Gretton, O. Bousquet, A. Smola, and B. Scho ̈lkopf, “Measuring statistical dependence with Hilbert-Schmidt
norms,” in International Conference on Algorithmic Learning Theory. Springer, 2005, pp. 63–77. https://link.springer.com/chapter/
10.1007/11564089_7
[Gulrajani+ 2017] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville, “PixelVAE: A latent
variable model for natural images,” in International Conference on Learning Representations, 2017. https://openreview.net/
forum?id=BJKYvt5lg
References
52
[Higgins+ 2017]  I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-VAE:
Learning basic visual concepts with a constrained variational framework,” in International Conference on Learning
Representations, 2017. https://openreview.net/forum?id=Sy2fzU9gl
[Hoffman+ 2016] M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another way to carve up the variational evidence lower
bound,” in Workshop in Advances in Approximate Bayesian Inference, NIPS, 2016. http://approximateinference.org/accepted/
HoffmanJohnson2016.pdf
[Hsieh+2018] J.-T. Hsieh, B. Liu, D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Learning to decompose and disentangle
representations for video prediction,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/
7333-learning-to-decompose-and-disentangle-representations-for-video-prediction
[Johnson+ 2016] M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta, “Composing graphical models with
neural networks for structured representations and fast inference,” in Advances in Neural Information Processing Systems,
2016, pp. 2946–2954. https://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured-
representations-and-fast-inference
[Kim+ 2018] H. Kim and A. Mnih, “Disentangling by factorising,” in Proc. of the International Conference on Machine Learning,
2018, pp. 2649–2658. http://proceedings.mlr.press/v80/kim18b.html
[Kingma+ 2014a] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International Conference on Learning
Representations, 2014. https://openreview.net/forum?id=33X9fd2-9FyZd
[Kingma+ 2014b]  D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep generative
models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. https://papers.nips.cc/paper/5352-semi-
supervised-learning-with-deep-generative-models
References
53
[Kulkarni+ 2015] T.D.Kulkarni, W.F.Whitney, P.Kohli, and J.Tenenbaum, “Deep convolutional inverse graphics network,” in
Advances in Neural Information Processing Systems, 2015, pp. 2539–2547. https://papers.nips.cc/paper/5851-deep-
convolutional-inverse-graphics-network
[Kumar+ 2018] A. Kumar, P. Sattigeri, and A. Balakrishnan, “Variational inference of disentangled latent concepts from
unlabeled observations,” in International Conference on Learning Representations, 2018. https://openreview.net/forum?
id=H1kG7GZAW
[Lample+ 2017] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer et al., “Fader networks: Manipulating images by
sliding attributes,” in Advances in Neural Information Processing Systems, 2017, pp. 5967–5976. https://papers.nips.cc/paper/
7178-fader-networksmanipulating-images-by-sliding-attributes
[Locatello+ 2018] F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Scho ̈lkopf, and O. Bachem, “Challenging common assumptions
in the unsupervised learning of disentangled representations,” arXiv:1811.12359, 2018. https://arxiv.org/abs/1811.12359
[Lopez+ 2018] R. Lopez, J. Regier, M. I. Jordan, and N. Yosef, “Information constraints on auto-encoding variational bayes,” in
Advances in Neural Information Processing Systems, 2018. https://papers.nips.cc/paper/7850-information-constraints-on-auto-
encoding-variational-bayes
[Louizos+ 2016] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The variational fair autoencoder,” in International
Conference on Learning Representations, 2016. https://arxiv.org/abs/1511.00830
[Makhzani+ 2017] A. Makhzani and B. J. Frey, “PixelGAN autoencoders,” in Advances in Neural Information Processing
Systems, 2017, pp. 1975–1985. https://papers.nips.cc/paper/6793-pixelgan-autoencoders
[Sønderby+ 2016] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “Ladder variational autoencoders,” in
Advances in Neural Information Processing Systems, 2016, pp. 3738–3746. https://papers.nips.cc/paper/6275-ladder-
variational-autoencoders
References
54
[van den Oord+ 2016] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, and A. Graves, “Conditional image
generation with PixelCNN decoders,” in Advances in Neural Information Processing Systems, 2016, pp. 4790–4798. https://
papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders
[van den Oord+ 2017] A. van den Oord, O. Vinyals et al., “Neural discrete representation learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 6306–6315. https://papers.nips.cc/paper/7210-neural-discrete-representation-
learning
[Villegas+ 2017] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing motion and content for natural video
sequence prediction,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?
id=rkEFLFqee
[Vincent+ 2008] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with
denoising autoencoders,” in Proc. of the International Conference on Machine Learning, 2008, pp. 1096–1103. https://
dl.acm.org/citation.cfm?id=1390294
[Yingzhen+ 2018] L. Yingzhen and S. Mandt, “Disentangled sequential autoencoder,” in Proc. of the International Conference
on Machine Learning, 2018, pp. 5656–5665. http://proceedings.mlr.press/v80/yingzhen18a.html
[Zhao+ 2017a] S.Zhao, J.Song, and S.Ermon,“InfoVAE: Information maximizing variational autoencoders,” arXiv:1706.02262,
2017. https://arxiv.org/abs/1706.02262
[Zhao+ 2017b] S. Zhao, J. Song, and S. Ermon, “Learning hierarchical features from deep generative models,” in Proc. of the
International Conference on Machine Learning, 2017, pp. 4091–4099. http://proceedings.mlr.press/v70/zhao17c.html
References
55

More Related Content

What's hot

強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習Eiji Uchibe
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門tmtm otm
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep LearningSeiya Tokui
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデルMasahiro Suzuki
 
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...Deep Learning JP
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by FactorisingDeep Learning JP
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)Masahiro Suzuki
 
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from PixelsDeep Learning JP
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展Deep Learning JP
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANsDeep Learning JP
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral CloningDeep Learning JP
 
深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習Masahiro Suzuki
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language SupervisionDeep Learning JP
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向ohken
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)cvpaper. challenge
 

What's hot (20)

強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
ELBO型VAEのダメなところ
ELBO型VAEのダメなところELBO型VAEのダメなところ
ELBO型VAEのダメなところ
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
 
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
 
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning
 
深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習深層生成モデルを用いたマルチモーダル学習
深層生成モデルを用いたマルチモーダル学習
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
 

Similar to [DL輪読会]Recent Advances in Autoencoder-Based Representation Learning

[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...Deep Learning JP
 
深層学習とベイズ統計
深層学習とベイズ統計深層学習とベイズ統計
深層学習とベイズ統計Yuta Kashino
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural SimulationClarkTony
 
[論文紹介] Towards Understanding Linear Word Analogies
[論文紹介] Towards Understanding Linear Word Analogies[論文紹介] Towards Understanding Linear Word Analogies
[論文紹介] Towards Understanding Linear Word AnalogiesMakoto Takenaka
 
All You Need is Fold
All You Need is FoldAll You Need is Fold
All You Need is FoldMike Harris
 
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習Deep Learning JP
 
Introduction to Polyhedral Compilation
Introduction to Polyhedral CompilationIntroduction to Polyhedral Compilation
Introduction to Polyhedral CompilationAkihiro Hayashi
 
[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習Deep Learning JP
 
Program Language - Fall 2013
Program Language - Fall 2013 Program Language - Fall 2013
Program Language - Fall 2013 Yun-Yan Chi
 
Outrageous Ideas for Graph Databases
Outrageous Ideas for Graph DatabasesOutrageous Ideas for Graph Databases
Outrageous Ideas for Graph DatabasesMax De Marzi
 
ggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphicsggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality GraphicsClaus Wilke
 
Pythonbrasil - 2018 - Acelerando Soluções com GPU
Pythonbrasil - 2018 - Acelerando Soluções com GPUPythonbrasil - 2018 - Acelerando Soluções com GPU
Pythonbrasil - 2018 - Acelerando Soluções com GPUPaulo Sergio Lemes Queiroz
 
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...PingCAP
 
DF1 - Py - Ovcharenko - Theano Tutorial
DF1 - Py - Ovcharenko - Theano TutorialDF1 - Py - Ovcharenko - Theano Tutorial
DF1 - Py - Ovcharenko - Theano TutorialMoscowDataFest
 
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...Hansol Kang
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingEelco Visser
 
The Uncertain Enterprise
The Uncertain EnterpriseThe Uncertain Enterprise
The Uncertain EnterpriseClarkTony
 

Similar to [DL輪読会]Recent Advances in Autoencoder-Based Representation Learning (20)

[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
深層学習とベイズ統計
深層学習とベイズ統計深層学習とベイズ統計
深層学習とベイズ統計
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural Simulation
 
[論文紹介] Towards Understanding Linear Word Analogies
[論文紹介] Towards Understanding Linear Word Analogies[論文紹介] Towards Understanding Linear Word Analogies
[論文紹介] Towards Understanding Linear Word Analogies
 
All You Need is Fold
All You Need is FoldAll You Need is Fold
All You Need is Fold
 
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習
[DL輪読会]Hindsight Experience Replayを応用した再ラベリングによる効率的な強化学習
 
Introduction to Polyhedral Compilation
Introduction to Polyhedral CompilationIntroduction to Polyhedral Compilation
Introduction to Polyhedral Compilation
 
[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習
 
Program Language - Fall 2013
Program Language - Fall 2013 Program Language - Fall 2013
Program Language - Fall 2013
 
Outrageous Ideas for Graph Databases
Outrageous Ideas for Graph DatabasesOutrageous Ideas for Graph Databases
Outrageous Ideas for Graph Databases
 
Triggering patterns of topology changes in dynamic attributed graphs
Triggering patterns of topology changes in dynamic attributed graphsTriggering patterns of topology changes in dynamic attributed graphs
Triggering patterns of topology changes in dynamic attributed graphs
 
ggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphicsggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphics
 
Pythonbrasil - 2018 - Acelerando Soluções com GPU
Pythonbrasil - 2018 - Acelerando Soluções com GPUPythonbrasil - 2018 - Acelerando Soluções com GPU
Pythonbrasil - 2018 - Acelerando Soluções com GPU
 
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...
[Paper Reading] Generalized Sub-Query Fusion for Eliminating Redundant I/O fr...
 
DF1 - Py - Ovcharenko - Theano Tutorial
DF1 - Py - Ovcharenko - Theano TutorialDF1 - Py - Ovcharenko - Theano Tutorial
DF1 - Py - Ovcharenko - Theano Tutorial
 
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
 
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
 
Introduction to MATLAB
Introduction to MATLABIntroduction to MATLAB
Introduction to MATLAB
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term Rewriting
 
The Uncertain Enterprise
The Uncertain EnterpriseThe Uncertain Enterprise
The Uncertain Enterprise
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 

Recently uploaded (20)

Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 

[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning

  • 1. 1 Recent Advances in Autoencoder-Based
 Representation Learning Presenter:Tatsuya Matsushima @__tmats__ , Matsuo Lab
  • 2. Recent Advances in Autoencoder-Based Representation Learning • https://arxiv.org/abs/1812.05069 (Submitted on 12 Dec 2018) • Michael Tschannen, Olivier Bachem, Mario Lucic • ETH Zurich, Google Brain • NeurIPS 2018 Workshop (Bayesian Deep Learning) • http://bayesiandeeplearning.org/ • 19 3 accept • • • ( …) ※ 2
  • 3. TL; DR • • • meta-prior • ( ) • Rate-Distortion 3
  • 4. • (SRL) • [DL ] 
 https://www.slideshare.net/DeepLearningJP2016/dl-124128933 • SRL VAE VAE 4
  • 6. VAE Variational Autoencoder (VAE) [Kingma+ 2014a] • • KL (ELBO) • ELBO (VAE loss ) 6 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] ※ VAE ELBO 𝔼 ̂p(x) [−log pθ(x)] = ℒVAE(θ, ϕ) − 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥pθ(z|x))] −ℒVAE 𝔼 ̂p(x) [−log pθ(x)] ℒVAE ̂p(x)
  • 7. VAE VAE loss • 1 reparametrization trick • 2 closed-form • , closed-form • 7 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] z(i) ∼ qϕ(z|x(i) ) qϕ(z|x) = 𝒩 ( μϕ(x), diag (σϕ(x))) p(z) = 𝒩(0,I)
  • 8. f- • f- 
 
 
 • KL divergence • density-ratio trick f- • GAN 8 f f(1) = 0 px py Df (px∥py) = ∫ f ( px(x) py(x) ) py(x)dx f(t) = t log t Df (px∥py) = DKL (px∥py) px py
  • 9. GAN Density-ratio Trick KL • • • 2 • Discriminator • 
 
 • i.i.d 9 c ∈ {0,1}px py px(x) = p(x|c = 1) py(x) = p(x|c = 0) Sη px(x) px(x) py(x) = p(x|c = 1) p(x|c = 0) = p(c = 1|x) p(c = 0|x) ≈ Sη(x) 1 − Sη(x) px N DKL (px∥py) ≈ 1 N N ∑ i=1 log ( Sη (x(i) ) 1 − Sη (x(i) ))
  • 10. Maximum Mean Discrepancy (MMD) MMD • embedding • ) MMD • 10 k : 𝒳 → 𝒳 ℋ φ : 𝒳 → ℋ px(x) MMD (px, py) = 𝔼x∼px [φ(x)] − 𝔼y∼py [φ(y)] 2 ℋ py(x) 𝒳 = ℋ = ℝd φ(x) = x MMD (px, py) = μpx − μpy 2 2 φ
  • 15. Meta-Prior ( ) 
 • meta-prior 15 …
 ( )
  • 17. 17
  • 18. VAE meta-prior aggregate ( ) VAE • aggregate ( ) • VAE 18 z ∼ qϕ(z|x) ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ R1 (qϕ(z|x))] + λ2R2 (qϕ(z)) qϕ(z|x) qϕ(z) = 𝔼 ̂p(x) [qϕ(z|x)] = 1 N N ∑ i=1 qϕ(z|x(i) ) qϕ(z) ℒVAE
  • 19. VAE 19 ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ R1 (qϕ(z|x))] + λ2R2 (qϕ(z)) Optional
  • 20. VAE • aggregate ( ) • divergence 20 aggregate 
 ( ) 
 qϕ(z)
  • 21. Disentanglement disentangle • • loss 21 v w x ∼ p(x|v, w) p(v|x) = ∏ j p (vj |x) qϕ(z|x) v
  • 22. Disentanglement Disentangle • • disentangle disentangle • ( disentangle ) • [Locatello+ 2018] • • (a) ELBO • (b) x z • (c) 22
  • 23. (a) ELBO β-VAE [Higgins+ 2017] • VAE Loss
 
 
 2 • 23 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))] ℒβ−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] qϕ(z|x) p(z) : [Higgins+ 2017]
  • 24. (b) x z VAE Loss
 
 2 • 
 aggregate ( ) KL [Hoffman+ 2016] • FactorVAE[Kim+ 2018] • β-TCVAE[Chen+ 2018] InfoVAE[Zhao+ 2017a] DIP-VAE[Kumar+ 2018] 24 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))] 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] = Iqϕ (x; z) + DKL (qϕ(z)∥p(z)) x z Iqϕ (x; z) qϕ(z) p(z)
  • 25. (b) x z Factor VAE [Kim+ 2018] • βVAE loss 
 • toral correlation
 
 
 • discriminator density ratio trick • [DL ]Disentangling by Factorising
 https://www.slideshare.net/DeepLearningJP2016/dldisentangling-by-factorising 25 ℒβ−VAE DKL (qϕ(z)∥p(z)) Iqϕ (x; z) TC (qϕ(z)) = DKL qϕ(z)∥ ∏ j qϕ (zj) ℒFactorVAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2 TC (qϕ(z))
  • 26. (c) HSIC-VAE [Lopez+ 2018] • Hilbert-Schmidt independence criterion (HSIC) [Gretton+2005] 
 • HSIC ( AppendixA ) • 
 • HFVAE [Esmaeili+ 2018] 26 zG = {zk}k∈G ℒHSIC−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2HSIC ( qϕ (zG1), qϕ (zG2)) s HSIC (qϕ(z), p(s)) p(s)
  • 27. PixelGAN-AE [Makhzani+ 2017] • PixelCNN[van den Oord+ 2016] 
 • • VAE loss KL 
 
 
 • KL GAN VIB[Alemi+ 2016] 
 Information dropout[Achille+ 2018] 27 ℒPixelGAN−AE(θ, ϕ) = ℒVAE(θ, ϕ) − Iqϕ (x; z) 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] = Iqϕ (x; z) + DKL (qϕ(z)∥p(z)) Iqϕ (x; z) DKL (qϕ(z)∥p(z)) : [Makhzani+ 2017]
  • 28. Variational Fair Autoencoder (VFAE) [Louizos+ 2016] • • VAE loss MMD • • MMD HSIC HSIC-VAE[Lopez+ 2018] • 2 VFAE[Louizos+ 2016] HSIC-VAE [Lopez+ 2018] 
 Fader Network[Lample+ 2017] 
 DC-IGN[Kulkarni+ 2015] 28 q(z|s = k) s s s z ℒVAEq(z|s = k′) ℒVFAE(θ, ϕ) = ℒVAE + λ2 K ∑ ℓ=2 MMD (qϕ(z|s = ℓ), qϕ(z|s = 1)) qϕ(z|s = ℓ) = ∑ i:s(i)=ℓ 1 {i : s(i) = ℓ} qϕ(z|x(i) , s(i) )
  • 29. 29
  • 31. VAE M2 [Kingma+ 2014b] • • • loss 
 • M1 (M1+M2 ) • • DL Hacks Semi-supervised Learning with Deep Generative Models
 https://www.slideshare.net/YuusukeIwasawa/dl-hacks2015-0421iwasawa • Semi-Supervised Learning with Deep Generative Models pixyz 
 https://qiita.com/kogepan102/items/22b685ce7e9a51fbab98 31 qϕ(z, y|x) = qϕ(z|y, x)qϕ(y|x) x z y x qϕ(z, y|x) qϕ(z|y, x) ℒVAEy
  • 32. VLAE Varational Lossy Autoencoder (VLAE) [Chen+ 2017] • 
 • 
 • ) 
 
 
 
 
 PixelVAE[Gulrajani+ 2017] 
 LadderVAE[Sønderby+ 2016] VLaAE[Zhao+ 2017b] 32 pθ(x|z) z z pθ(x|z) W(j) pθ(x|z) = ∏ j pθ (xj |z, xW( j)) j
  • 33. 33
  • 34. meta-prior • meta-prior • ) MNIST 
 ) (SVAE) [Johnson+ 2016] 34 p(z) N: C: Categorical M: mixture G: L; Learned Prior
  • 35. JointVAE [Dupont 2018] • disentanglement 
 • • Gumbel-Softmax • KL (β-VAE 2 ) VQ-VAE[van den Oord+ 2017] 35 z c qϕ(c|x)qϕ(z|x) qϕ(c|x) DKL (qϕ(z|x)qϕ(c|x)∥p(z)p(c)) = DKL (qϕ(z|x)∥p(z)) + DKL (qϕ(c|x)∥p(c)) ℒβ−VAE
  • 36. 36
  • 37. • Denoising Autoencoder (DAE) [Vincent+ 2008] • [Yingzhen+ 2018] [Hsieh+2018] • [Villegas+ 2017] [Denton+ 2017] [Fraccaro+ 2017] 37
  • 38. discriminator • • Adversarially Learned Inference (ALI) [Dumoulin+ 2017] • Bidirectional GAN (BiGAN) [Donahue+ 2017] 38 qϕ(z|x) pθ(x|z) pθ(x|z)p(z) qϕ(z|x) ̂p(x) : [Dumoulin+ 2017] : [Donahue+ 2017]
  • 40. Rate-Distortion Tradeoff meta-prior • ) βVAE [Higgins+ 2017] FaderNetwork[Lample+ 2017] ”Rate-Distortion Tradeoff”[Alemi+ 2018a] 40
  • 41. Rate-Distortion Tradeoff • • Distortion: • Rate: KL • VAE ELBO 41 H = − ∫ p(x)log p(x)dx = Ep(x)[−log p(x)] D = − ∬ p(x)qϕ(z|x)log pθ(x|z)dxdz = Ep(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] R = ∬ p(x)qϕ(z|x)log qϕ(z|x) p(z) dxdz = 𝔼p(x) [DKL (qθ(q|x)∥p(z))] qϕ(z|x) p(z) ELBO = − ℒVAE = − (D + R)
  • 42. Rate-Distortion Tradeoff Rate-Distortion Tradeoff [Alemi+ 2018a] • Rate Distortion ) • ELBO • Rate 
 • • [Alemi+ 2018a] Rate 
 • 42 H − D ≤ R : [Alemi+ 2018a] D = H − R min ϕ,θ D + |σ − R| σ
  • 43. Rate-Distortion Tradeoff Rate • ( ) • ) • • ) 
 Rate-Distortion Tradeoff 43 z z
  • 44. Rate-Distortion-Usefulness Tradeoff Rate-Distortion-Usefulness Tradeoff • 3 ”usefulness” • • 
 R-D usefulness 
 44
  • 45. Rate-Distortion-Usefulness Tradeoff Usefulness • • • • [Alemi+ 2018b] 
 ….?( ) 45 Dy = − ∬ p(x, y)qϕ(z|x)log pθ(y|z)dxdydz = 𝔼p(x,y) [ 𝔼qϕ(z|x) [−log pθ(y|z)]] y R − Dy
  • 46. 46
  • 47. • meta-prior 
 • ( ) • • supervision • Rate-Distortion • “usefulness” 47
  • 48. • Rate-Distortion-Usefulness • z ex) GQN • Meta-Prior • meta-learning • [DL ]Meta-Learning Probabilistic Inference for Prediction 
 https://www.slideshare.net/DeepLearningJP2016/dlmetalearning-probabilistic-inference-for- prediction-126167192 • usefulnes ( ) • • Pixyz Pixyzoo ( ) 48
  • 49. Pixyz & Pixyzoo Pixyz https://github.com/masa-su/pixyz • (Pytorch ) • 
 
 Pixyzoo https://github.com/masa-su/pixyzoo • Pixyz • GQN VIB • [DLHacks]PyTorch, Pixyz Generative Query Network 
 https://www.slideshare.net/DeepLearningJP2016/dlhackspytorch-pixyzgenerative-query- network-126329901 49
  • 51. References [Achille+ 2018] A. Achille and S. Soatto, “Information dropout: Learning optimal representations through noisy computation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. https://ieeexplore.ieee.org/document/8253482 [Alemi+ 2016] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,” in International Conference on Learning Representations, 2016. https://openreview.net/forum?id=HyxQzBceg [Alemi+ 2018a] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, “Fixing a broken ELBO,” in Proc. of the International Conference on Machine Learning, 2018, pp. 159–168. http://proceedings.mlr.press/v80/alemi18a.html [Alemi+ 2018b] A. A. Alemi and I. Fischer, “TherML: Thermodynamics of machine learning,” arXiv:1807.04162, 2018. https:// arxiv.org/abs/1807.04162 [Bengio+ 2013] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. https://ieeexplore.ieee.org/ document/6472238 [Chen+ 2017] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel, “Variational lossy autoencoder,” in International Conference on Learning Representations, 2017. https://openreview.net/forum? id=BysvGP5ee [Chen+ 2018] T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of disentanglement in variational autoencoders,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/7527-isolating- sources-of-disentanglement-in-variational-autoencoders 51
  • 52. [Denton+ 2017] E. L. Denton and V. Birodkar, “Unsupervised learning of disentangled representations from video,” in Advances in Neural Information Processing Systems, 2017, pp. 4414–4423. https://papers.nips.cc/paper/7028-unsupervised-learning-of- disentangled-representations-from-video [Donahue+ 2017] J. Donahue, P. Krahenb ¨ uhl, and T. Darrell, “Adversarial feature learning,” in ¨ International Conference on Learning Representations, 2017. https://openreview.net/forum?id=BJtNZAFgg [Dumoulin+ 2017] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville, “Adversarially learned inference,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?id=B1ElR4cgg [Dupont 2018] E. Dupont, “Learning disentangled joint continuous and discrete representations,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete- representations [Esmaeili+ 2018] B.Esmaeili,H.Wu,S.Jain,A.Bozkurt,N.Siddharth,B.Paige,D.H.Brooks,J.Dy,andJ.-W. van de Meent, “Structured disentangled representations,” arXiv:1804.02086, 2018. https://arxiv.org/abs/1804.02086 [Fraccaro+ 2017] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled recognition and nonlinear dynamics model for unsupervised learning,” in Advances in Neural Information Processing Systems, 2017, pp. 3601–3610. https:// papers.nips.cc/paper/6951-a-disentangled-recognition-and-nonlinear-dynamics-model-for-unsupervised-learning [Gretton+ 2005] A. Gretton, O. Bousquet, A. Smola, and B. Scho ̈lkopf, “Measuring statistical dependence with Hilbert-Schmidt norms,” in International Conference on Algorithmic Learning Theory. Springer, 2005, pp. 63–77. https://link.springer.com/chapter/ 10.1007/11564089_7 [Gulrajani+ 2017] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville, “PixelVAE: A latent variable model for natural images,” in International Conference on Learning Representations, 2017. https://openreview.net/ forum?id=BJKYvt5lg References 52
  • 53. [Higgins+ 2017]  I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual concepts with a constrained variational framework,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?id=Sy2fzU9gl [Hoffman+ 2016] M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another way to carve up the variational evidence lower bound,” in Workshop in Advances in Approximate Bayesian Inference, NIPS, 2016. http://approximateinference.org/accepted/ HoffmanJohnson2016.pdf [Hsieh+2018] J.-T. Hsieh, B. Liu, D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Learning to decompose and disentangle representations for video prediction,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/ 7333-learning-to-decompose-and-disentangle-representations-for-video-prediction [Johnson+ 2016] M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta, “Composing graphical models with neural networks for structured representations and fast inference,” in Advances in Neural Information Processing Systems, 2016, pp. 2946–2954. https://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured- representations-and-fast-inference [Kim+ 2018] H. Kim and A. Mnih, “Disentangling by factorising,” in Proc. of the International Conference on Machine Learning, 2018, pp. 2649–2658. http://proceedings.mlr.press/v80/kim18b.html [Kingma+ 2014a] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International Conference on Learning Representations, 2014. https://openreview.net/forum?id=33X9fd2-9FyZd [Kingma+ 2014b]  D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. https://papers.nips.cc/paper/5352-semi- supervised-learning-with-deep-generative-models References 53
  • 54. [Kulkarni+ 2015] T.D.Kulkarni, W.F.Whitney, P.Kohli, and J.Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in Neural Information Processing Systems, 2015, pp. 2539–2547. https://papers.nips.cc/paper/5851-deep- convolutional-inverse-graphics-network [Kumar+ 2018] A. Kumar, P. Sattigeri, and A. Balakrishnan, “Variational inference of disentangled latent concepts from unlabeled observations,” in International Conference on Learning Representations, 2018. https://openreview.net/forum? id=H1kG7GZAW [Lample+ 2017] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer et al., “Fader networks: Manipulating images by sliding attributes,” in Advances in Neural Information Processing Systems, 2017, pp. 5967–5976. https://papers.nips.cc/paper/ 7178-fader-networksmanipulating-images-by-sliding-attributes [Locatello+ 2018] F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Scho ̈lkopf, and O. Bachem, “Challenging common assumptions in the unsupervised learning of disentangled representations,” arXiv:1811.12359, 2018. https://arxiv.org/abs/1811.12359 [Lopez+ 2018] R. Lopez, J. Regier, M. I. Jordan, and N. Yosef, “Information constraints on auto-encoding variational bayes,” in Advances in Neural Information Processing Systems, 2018. https://papers.nips.cc/paper/7850-information-constraints-on-auto- encoding-variational-bayes [Louizos+ 2016] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The variational fair autoencoder,” in International Conference on Learning Representations, 2016. https://arxiv.org/abs/1511.00830 [Makhzani+ 2017] A. Makhzani and B. J. Frey, “PixelGAN autoencoders,” in Advances in Neural Information Processing Systems, 2017, pp. 1975–1985. https://papers.nips.cc/paper/6793-pixelgan-autoencoders [Sønderby+ 2016] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “Ladder variational autoencoders,” in Advances in Neural Information Processing Systems, 2016, pp. 3738–3746. https://papers.nips.cc/paper/6275-ladder- variational-autoencoders References 54
  • 55. [van den Oord+ 2016] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, and A. Graves, “Conditional image generation with PixelCNN decoders,” in Advances in Neural Information Processing Systems, 2016, pp. 4790–4798. https:// papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders [van den Oord+ 2017] A. van den Oord, O. Vinyals et al., “Neural discrete representation learning,” in Advances in Neural Information Processing Systems, 2017, pp. 6306–6315. https://papers.nips.cc/paper/7210-neural-discrete-representation- learning [Villegas+ 2017] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing motion and content for natural video sequence prediction,” in International Conference on Learning Representations, 2017. https://openreview.net/forum? id=rkEFLFqee [Vincent+ 2008] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proc. of the International Conference on Machine Learning, 2008, pp. 1096–1103. https:// dl.acm.org/citation.cfm?id=1390294 [Yingzhen+ 2018] L. Yingzhen and S. Mandt, “Disentangled sequential autoencoder,” in Proc. of the International Conference on Machine Learning, 2018, pp. 5656–5665. http://proceedings.mlr.press/v80/yingzhen18a.html [Zhao+ 2017a] S.Zhao, J.Song, and S.Ermon,“InfoVAE: Information maximizing variational autoencoders,” arXiv:1706.02262, 2017. https://arxiv.org/abs/1706.02262 [Zhao+ 2017b] S. Zhao, J. Song, and S. Ermon, “Learning hierarchical features from deep generative models,” in Proc. of the International Conference on Machine Learning, 2017, pp. 4091–4099. http://proceedings.mlr.press/v70/zhao17c.html References 55