SlideShare a Scribd company logo
1 of 19
3D PASSWORD Page 5
ABSTRACT
Textual passwords are commonly used; however, users do not follow their requirements. Users tend
to choose meaningful words from dictionary or their pet names, girlfriends etc. Ten years back Klein
performed such tests and he could crack 10-15 passwords per day. On the other hand, if a password
is hard to guess, then it is often hard to remember. Users have difficulty remembering a password
that is long and random appearing. So, they create short, simple, and insecure passwords that are
susceptible to attack. Which make textual passwords easy to break and vulnerable to dictionary or
brute force attacks. Graphical passwords schemes have been proposed. The strength of graphical
passwords comes from the fact that users can recall and recognize pictures more than words. Most
graphical passwords are vulnerable for shoulder surfing attacks, where an attacker can observe or
record the legitimate user’s graphical password by camera. Token based systems such as ATMs are
widely applied in banking systems and in laboratories entrances as a mean of authentication.
However, Smart cards or tokens are vulnerable to loss or theft. Moreover, the user has to carry the
token whenever access required. Biometric scanning is your "natural" signature and Cards or Tokens
prove your validity. But some people hate the fact to carry around their cards, some refuse to undergo
strong IR exposure to their retinas (Biometric scanning).
3D PASSWORD Page 6
INDEX
S.No Topic Page No.
1.) Introduction 5
2.) Existing system 6
3.) Proposed system 7
4.) Brief description of system 8
5.) System Implementation 9
6.) 3D password selection and Input 11
7.) 3D virtual environment design guidelines 12
8.) 3D password application 14
9.) 3D State Diagram 16
10.) Security Analysis 17
11.) Conclusion 20
12.) References 23
3D PASSWORD Page 7
INTRODUCTION
Users nowadays are provided with major password stereotypes such as textual passwords,
biometric scanning, tokens or cards (such as an ATM) etc .Mostly textual passwords follow an
encryption algorithm as mentioned above. Biometric scanning is your "natural" signature and Cards
or Tokens prove your validity. But some people hate the fact to carry around their cards, some refuse
to undergo strong IR exposure to their retinas(Biometric scanning).Mostly textual passwords,
nowadays, are kept very simple say a word from the dictionary or their pet names, girlfriends etc.
Years back Klein performed such tests and he could crack 10-15 passwords per day. Now with the
technology change, fast processors and many tools on the Internet this has become a Child's Play.
Therefore we present our idea, the 3D passwords which are more customizable and very
interesting way of authentication. Now the passwords are based on the fact of Human memory.
Generally simple passwords are set so as to quickly recall them. The human memory, in our scheme
has to undergo the facts of Recognition, Recalling, Biometrics or Token based authentication. Once
implemented and you log in to a secure site, the 3D password GUI opens up. This is an additional
textual password which the user can simply put. Once he goes through the first authentication, a 3D
virtual room will open on the screen. In our case, let’s say a virtual garage. Now in a day to day
garage one will find all sorts of tools, equipments, etc.each of them having unique properties. The
user will then interact with these properties accordingly. Each object in the 3D space, can be moved
around in an (x,y,z) plane. That’s the moving attribute of each object. This property is common to all
the objects in the space. Suppose a user logs in and enters the garage. He sees and picks a screw-
driver (initial position in xyz coordinates (5, 5, 5)) and moves it 5 places to his right (in XY plane i.e.
(10, 5, 5).That can be identified as an authentication. Only the true user understands and recognizes
the object which he has to choose among many. This is the Recall and Recognition part of human
memory coming into play. Interestingly, a password can be set as approaching a radio and setting its
frequency to number only the user knows. Security can be enhanced by the fact of including Cards
and Biometric scanner as input. There can be levels of authentication a user can undergo.
3D PASSWORD Page 8
EXISTING SYSTEM
Current authentication systems suffer from many weaknesses. Textual passwords are
commonly used. Users tend to choose meaningful words from dictionaries, which make textual
passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical
passwords have a password space that is less than or equal to the textual password space. Smart
cards or tokens can be stolen. Many biometric authentications have been proposed. However, users
tend to resist using biometrics because of their intrusiveness and the effect on their privacy.
Moreover, biometrics cannot be revoked. The 3Dpassword is a multi factor authentication scheme.
The design of the 3D virtual environment and the type of objects selected determine the 3D password
key space. User have freedom to select whether the 3D password will be solely recall, recognition, or
token based, or combination of two schemes or more.
3D PASSWORD Page 9
PROPOSED SYSTEM
The proposed system is a multi factor authentication scheme that combines the benefits of
various authentication schemes. Users have the freedom to select whether the 3D password will be
solely recall, biometrics, recognition, or token based, or a combination of two schemes or more. This
freedom of selection is necessary because users are different and they have different requirements.
Therefore, to ensure high user acceptability, the user’s freedom of selection is important.
The following requirements are satisfied in the proposed scheme
1. The new scheme provide secrets that are easy to remember and very difficult for intruders to
guess.
2. The new scheme provides secrets that are not easy to write down on paper. Moreover, the scheme
secrets should be difficult to share with others.
3. The new scheme provides secrets that can be easily revoked or changed.
3D PASSWORD Page 10
BRIEF DESCRIPTION OF SYSTEM
The proposed system is a multi factor authentication scheme. It can combine all existing
authentication schemes into a single 3D virtual environment .This 3D virtual environment contains
several objects or items with which the user can interact. The user is presented with this 3D virtual
environment where the user navigates and interacts with various objects. The sequence of actions
and interactions toward the objects inside the 3D environment constructs the user’s 3D password.
The 3D password can combine most existing authentication schemes such as textual passwords,
graphical passwords, and various types of biometrics into a 3D virtual environment. The choice of
what authentication schemes will be part of the user's 3D password reflects the user's preferences
and requirements. A user who prefers to remember and recall a password might choose textual and
graphical password as part of their 3D password. On the other hand users who have more difficulty
with memory or recall might prefer to choose smart cards or biometrics as part of their 3D password.
Moreover user who prefers to keep any kind of biometric data private might not interact with object
that requires biometric information. Therefore it is the user's choice and decision to construct the
desired and preferred 3D password.
3D PASSWORD Page 11
SYSTEM IMPLIMENTATION
The 3D password is a multi factor authentication scheme. The 3D password presents a 3D
virtual environment containing various virtual objects. The user navigates through this environment
and interacts with the objects. The 3D password is simply the combination and the sequence of user
interactions that occur in the 3D virtual environment. The 3D password can combine recognition,
recall, token, and biometrics based systems into one authentication scheme. This can be done by
designing a 3D virtual environment that contains objects that request information to be recalled,
information to be recognized, tokens to be presented, and biometric data to be verified.
For example, the user can enter the virtual environment and type something on a computer
that exists in (x1 , y1 , z1 ) position, then enter a room that has a fingerprint recognition device that
exists in a position (x2 , y2 , z2 ) and provide his/her fingerprint. Then, the user can go to the virtual
garage, open the car door, and turn on the radio to a specific channel. The combination and the
sequence of the previous actions toward the specific objects construct the user’s 3D password.
Virtual objects can be any object that we encounter in real life. Any obvious actions and
interactions toward the real life objects can be done in the virtual 3D environment toward the virtual
objects. Moreover, any user input (such as speaking in a specific location) in the virtual 3D
environment can be considered as a part of the 3D password.
We can have the following objects:
1) A computer with which the user can type;
2) A fingerprint reader that requires the user’s fingerprint;
3) A biometric recognition device;
4) A paper or a white board that a user can write, sign, or draw on;
3D PASSWORD Page 12
5) An automated teller machine (ATM) that requests a token;
6) A light that can be switched on/off;
7) A television or radio where channels can be selected;
8) A staple that can be punched;
9) A car that can be driven;
10) A book that can be moved from one place to another;
11) Any graphical password scheme;
12) Any real life object;
13) Any upcoming authentication scheme.
The action toward an object (assume a fingerprint recognition device) that exists in location
(x1, y1 , z1 ) is different from the actions toward a similar object (another fingerprint recognition
device) that exists in location (x2 , y2 , z2 ), where x1 = x2 , y1 = y2 , and z1 = z2 . Therefore, to
perform the legitimate 3D password, the user must follow the same scenario performed by the
legitimate user. This means interacting with the same objects that reside at the exact locations and
perform the exact actions in the proper sequence.
3D PASSWORD Page 13
3D PASSWORD SELECTION AND INPUT
Let us consider a 3D virtual environment space of size G ×G × G. The 3D environment space
is represented by the coordinates (x, y, z) ∈ [1, . . . , G] ×[1, . . . , G] ×[1, . . . , G]. The objects are
distributed in the 3D virtual environment with unique (x, y, z) coordinates. We assume that the user
can navigate into the 3D virtual environment and interact with the objects using any input device such
as a mouse, key board, fingerprint scanner, iris scanner, stylus, card reader, and microphone. We
consider the sequence of those actions and interactions using the previous input devices as the
user’s 3D password.
For example, consider a user who navigates through the 3D virtual environment that consists
of an office and a meeting room. Let us assume that the user is in the virtual office and the user turns
around to the door located in (10, 24, 91) and opens it. Then, the user closes the door. The user then
finds a computer to the left, which exists in the position (4, 34, 18), and the user types “FALCON.”
Then, the user walks to the meeting room and picks up a pen located at (10, 24, 80) and draws only
one dot in a paper located in (1, 18, 30), which is the dot (x, y) coordinate relative to the paper space
is (330, 130). The user then presses the login button. The initial representation of user actions in the
3Dvirtual environment can be recorded as follows:
(10, 24, 91) Action = Open the office door;
(10, 24, 91) Action = Close the office door;
(4, 34, 18) Action = Typing, “F”;
(4, 34, 18) Action = Typing, “A”;
(4, 34, 18) Action = Typing, “L”;
(4, 34, 18) Action = Typing, “C”;
(4, 34, 18) Action = Typing, “O”;
(4, 34, 18) Action = Typing, “N”;
3D PASSWORD Page 14
3D VIRTUAL ENVIRONMENT DESIGN GUIDELINES
The design of the 3 D virtual environments affects the usability, effectiveness, acceptability of
3D password. The first step in building a 3D password system is to design a 3D environment that
reflects the administration needs and the security requirements. The design of 3D virtual
environments should follow these guidelines.
1) Real Life Similarity The prospective 3D virtual environment should reflect what people are
used to seeing in real life. Objects used in virtual environments should be relatively similar in
size to real objects (sized to scale). Possible actions and interactions toward virtual objects
should reflect real life situations. Object responses should be realistic. The target should have
a 3D virtual environment that users can interact
2) Object uniqueness and distinction every virtual object or item in the 3D virtual environment is
different from any other virtual object. The uniqueness comes from the fact that every virtual
object has its own attributes such as position. Thus, the prospective interaction with object 1 is
not equal to the interaction with object 2. How ever, having similar objects such as 20
computers in one place might confuse the user. Therefore, the design of the 3D virtual
environment should consider that every object should be distinguishable from other objects.
Similarly, in designing a 3D virtual environment, it should be easy for users to navigate through
and to distinguish between objects. The distinguishing factor increases the user’s recognition
of objects. Therefore, it improves the system usability.
3) Three Dimensional Virtual Environment Size A 3D virtual environment can depict a city or
even the world. On the other hand, it can depict a space as focused as a single room or office.
A large 3D virtual environment will increase the time required by the user to perform a 3D
password. Moreover, a large 3D virtual environment can contain a large number of virtual
objects. Therefore, the probable 3D password space broadens. However, a small 3D virtual
environment usually contains only a few objects, and thus, performing a 3D password will take
less time.
3D PASSWORD Page 15
4) Number of objects and their types Part of designing a 3D virtual environment is
determining the types of objects and how many objects should be placed in the environment.
The types of objects reflect what kind of responses the object will have. For simplicity, we can
consider requesting a textual password or a fingerprint as an object response type. Selecting
the right object response types and the number of objects affects the probable password
space of a 3D password.
5) System Importance The 3D virtual environment should consider what systems will be
protected by a 3D password The number of objects and the types of objects that Have been
used in the 3D virtual environment should reflect the importance of the protected system.
3D PASSWORD Page 16
3D PASSWORD APPLICATION
The 3D password can have a password space that is very large compared to other
authentication schemes, so the 3D password’s main application domains are protecting critical
systems and resources.
1. Critical server many large organizations have critical servers that are usually protected by a
textual password. A 3D password authentication proposes a sound replacement for a textual
password.
2. Nuclear and military facilities such facilities should be protected by the most
Powerful authentication systems. The 3D password has a very large probable password
space, and since it can contain token, biometrics, recognition and knowledge based
Authentications in a single authentication system, it is a sound choice for high level security
locations.
3. Airplanes and jet fighters Because of the possible threat of misusing airplanes
and jet fighters for religion, political agendas, usage of such airplanes should be protected by a
powerful authentication system.
In addition, 3D passwords can be used in less critical systems because the
3D virtual environment can be designed to fit to any system needs. A small virtual environment can
be used in the following systems like
1) ATM
2) Personal Digital Assistance
3D PASSWORD Page 17
3) Desktop Computers & laptop logins
4) Web Authentication
5) Security Analysis
To analyze and study how secure a system is, we have to consider,
• How hard it is for the attacker to break such a system
▪ A possible measurement is based on the information content of a password space. It is
important to have a scheme that has a very large possible password space which increases
the work required by the attacker to break the authentication system.
▪ Find a scheme that has no previous or existing knowledge of the most probable user
password selection.
STATE DIAGRAM OF A 3D PASSWORD APPLICATION
3D PASSWORD Page 18
3D PASSWORD Page 19
SECURITYANALYSIS
3D Password space size
To determine the password space, we have to count all possible 3D passwords that have a
certain number of actions, interactions, and inputs towards all objects that exist in the 3D virtual
environments.
3D password distribution knowledge
Users tend to use meaningful words for textual passwords. Therefore finding these different
words from dictionary is a relatively simple task which yields a high success rate for breaking textual
passwords. Pass faces users tend to choose faces that reflect their own taste on
facial attractiveness, race, and gender.
Every user has different requirements and preferences when selecting the appropriate 3D
Password. This fact will increase the effort required to find a pattern of user’s highly selected 3D
password. In addition, since the 3D password combines several authentication schemes into a single
authentication environment, the attacker has to study every single authentication scheme and has to
discover what the most probable selected secrets are. Since every 3D password system can be
designed according to the protected system requirements, the attacker has to separately study every
3D password system. Therefore, more effort is required to build the knowledge of most probable 3D
passwords.
Attacks and Countermeasures
To realize and understand how far an authentication scheme is secure, we have to consider all
possible attack methods. We have to study whether the authentication scheme proposed is immune
against such attacks or not. Moreover, if the proposed authentication scheme is not immune, we then
have to find the countermeasures that prevent such attacks. In this section, we try to cover most
possible attacks and whether the attack is valid or not. Moreover, we try to propose countermeasures
for such attacks.
3D PASSWORD Page 20
1)Brute Force Attack: The attacker has to try all possible 3D passwords. This kind of attack is very
difficult for the following reasons.
a. Time required to login The total time needed for a legitimate user to login
may vary depending on the number of interactions and actions, the size of
the 3D virtual environment, and the type of actions and interactions.
Therefore, a brute force attack on a 3D password is very difficult and time
consuming
b. Cost of attacks the 3D virtual environment contains biometric recognition
objects and token based objects. The attacker has to forge all possible
biometric information and forge all the required tokens. The cost of forging
such information is very high, therefore cracking the 3D password is more
challenging. The high number of possible 3D password spaces leaves the
attacker with almost no chance of breaking the 3D password.
2)Well-Studied Attack : The attacker tries to find the highest probable distribution of 3D passwords.
In order to launch such an attack, the attacker has to acquire knowledge of the most probable 3D
password distributions. This is very difficult because the attacker has to study all the existing
authentication schemes that are used in the 3D environment. It requires a study of the user’s
selection of objects for the 3D password. Moreover, a well studied attack is very hard to accomplish
since the attacker has to perform a customized attack for every different 3D virtual environment
design. This environment has a number of objects and types of object responses that differ from any
other 3D virtual environment. Therefore, a carefully customized study is required to initialize an
effective attack.
3)Shoulder Surfing Attack :An attacker uses a camera to record the user’s 3D password or tries to
watch the legitimate user while the 3D password is being performed. This attack is the most
successful type of attack against 3D passwords and some other graphical passwords. However, the
user’s 3D password may contain biometric data or textual passwords that cannot be seen from
3D PASSWORD Page 21
behind. Therefore, we assume that the 3D password should be performed in a secure place where a
shoulder surfing attack cannot be performed.
4)Timing Attack: In this attack, the attacker observes how long it takes the legitimate user to perform
a correct sign in using the 3D password. This observation gives the attacker an indication of the
legitimate user’s 3D password length. However, this kind of attack alone cannot be very successful
since it gives the attacker mere hints. Therefore, it would probably be launched as part of a well
studied or brute force attack. Timing attacks can be very effective if the 3D virtual environment is
poorly designed.
3D PASSWORD Page 22
CONCLUSION
The 3D password is a multi factor authentication scheme that combines the various
authentication schemes into a single 3D virtual environment. The virtual environment can contain any
existing authentication scheme or even any upcoming authentication scheme or even any upcoming
authentication schemes by adding it as a response to actions performed on an object. Therefore the
resulting password space becomes very large compared to any existing authentication schemes. The
design of the 3D virtual environment the selection of objects inside the environment and the object's
type reflect the resulted password space. It is the task of the system administrator to design the
environment and to select the appropriate object that reflects the protected system requirements.
Designing a simple and easy to use 3D virtual environment is a factor that leads to a higher user
acceptability of a 3D password system. The choice of what authentication scheme will be part of
user's 3D password reflects the user's preferences and requirements.
3D PASSWORD Page 23
REFERENCES
[1] X. Suo, Y. Zhu, and G. S. Owen, “Graphical passwords: A survey,” in Proc. 21st Annu. Comput.
Security Appl. Conf., Dec. 5–9, 2005, pp. 463–472.
[2] D. V. Klein, “Foiling the cracker: A survey of, and improvement to passwords security,” in Proc.
USENIX Security Workshop, 1990, pp. 5–14.
[3] NBC news, ATM Fraud: Banking on Your Money, Dateline Hidden Cameras Show Criminals
Owning ATMs, Dec. 11, 2003.
[4] T. Kitten, Keeping an Eye on the ATM. (2005, Jul. 11). [Online]. Available: ATMMarketPlace.com
[5] BBC news, Cash Machine Fraud up, Say Banks, Nov. 4, 2006.
[6] G. E. Blonder, “Graphical password,” U.S. Patent 5 559 961, Sep. 24, 1996.
[7] R. Dhamija and A. Perrig, “Déjà Vu: A user study using images for authentication,” in Proc. 9th
USINEX Security Symp., Denver, CO, Aug. 2000, pp. 45–58.

More Related Content

What's hot

Game Architecture and Programming
Game Architecture and ProgrammingGame Architecture and Programming
Game Architecture and Programming
Sumit Jain
 
Entity relationship Diagram for Online buy and Sale Project
Entity relationship Diagram for Online buy and Sale ProjectEntity relationship Diagram for Online buy and Sale Project
Entity relationship Diagram for Online buy and Sale Project
Naimul Arif
 

What's hot (20)

ゲームAI・実装事例の紹介
ゲームAI・実装事例の紹介ゲームAI・実装事例の紹介
ゲームAI・実装事例の紹介
 
Game development
Game developmentGame development
Game development
 
Social Media Impact On Gaming
Social Media Impact On GamingSocial Media Impact On Gaming
Social Media Impact On Gaming
 
Game Development Life Cycle
Game Development Life CycleGame Development Life Cycle
Game Development Life Cycle
 
game development
game  developmentgame  development
game development
 
【Unite Tokyo 2018】トゥーンシェーダートークセッション#1『リアルタイムトゥーンシェーダー徹底トーク』
【Unite Tokyo 2018】トゥーンシェーダートークセッション#1『リアルタイムトゥーンシェーダー徹底トーク』【Unite Tokyo 2018】トゥーンシェーダートークセッション#1『リアルタイムトゥーンシェーダー徹底トーク』
【Unite Tokyo 2018】トゥーンシェーダートークセッション#1『リアルタイムトゥーンシェーダー徹底トーク』
 
Game Development With HTML5
Game Development With HTML5Game Development With HTML5
Game Development With HTML5
 
Presentation of 3rd Semester C++ Project
Presentation of 3rd Semester C++ ProjectPresentation of 3rd Semester C++ Project
Presentation of 3rd Semester C++ Project
 
Game system design
Game system designGame system design
Game system design
 
「UXデザインと組織論」に、正面から向きあってみた:2016年2月27日 『人間中心デザイン』HCD導入設計論
「UXデザインと組織論」に、正面から向きあってみた:2016年2月27日 『人間中心デザイン』HCD導入設計論「UXデザインと組織論」に、正面から向きあってみた:2016年2月27日 『人間中心デザイン』HCD導入設計論
「UXデザインと組織論」に、正面から向きあってみた:2016年2月27日 『人間中心デザイン』HCD導入設計論
 
Final year project presentation
Final year project presentationFinal year project presentation
Final year project presentation
 
誰も教えてくれないペルソナのひみつ 〜ペルソナの上手な使いかた〜
誰も教えてくれないペルソナのひみつ 〜ペルソナの上手な使いかた〜誰も教えてくれないペルソナのひみつ 〜ペルソナの上手な使いかた〜
誰も教えてくれないペルソナのひみつ 〜ペルソナの上手な使いかた〜
 
Project presentation(View calender)
Project presentation(View calender)Project presentation(View calender)
Project presentation(View calender)
 
GUILTY GEAR Xrd開発スタッフが送るアニメ調キャラモデリングTIPS
GUILTY GEAR Xrd開発スタッフが送るアニメ調キャラモデリングTIPSGUILTY GEAR Xrd開発スタッフが送るアニメ調キャラモデリングTIPS
GUILTY GEAR Xrd開発スタッフが送るアニメ調キャラモデリングTIPS
 
Game Architecture and Programming
Game Architecture and ProgrammingGame Architecture and Programming
Game Architecture and Programming
 
Computer graphics tutorial
Computer graphics tutorialComputer graphics tutorial
Computer graphics tutorial
 
UX、デザイン思考、リーンスタートアップのためのオブザベーション(観察)入門:2014年7月5日 UXD/HCD ワイワイCAFE
UX、デザイン思考、リーンスタートアップのためのオブザベーション(観察)入門:2014年7月5日 UXD/HCD ワイワイCAFEUX、デザイン思考、リーンスタートアップのためのオブザベーション(観察)入門:2014年7月5日 UXD/HCD ワイワイCAFE
UX、デザイン思考、リーンスタートアップのためのオブザベーション(観察)入門:2014年7月5日 UXD/HCD ワイワイCAFE
 
Entity relationship Diagram for Online buy and Sale Project
Entity relationship Diagram for Online buy and Sale ProjectEntity relationship Diagram for Online buy and Sale Project
Entity relationship Diagram for Online buy and Sale Project
 
Indie Game Market Research Presentation
Indie Game Market Research PresentationIndie Game Market Research Presentation
Indie Game Market Research Presentation
 
実録 ペルソナが死ぬとき 〜ペルソナの上手な使いかた〜
実録 ペルソナが死ぬとき 〜ペルソナの上手な使いかた〜実録 ペルソナが死ぬとき 〜ペルソナの上手な使いかた〜
実録 ペルソナが死ぬとき 〜ペルソナの上手な使いかた〜
 

Viewers also liked

Viewers also liked (9)

VG Industries, Chennai, Bearing & Bush
VG Industries, Chennai, Bearing & BushVG Industries, Chennai, Bearing & Bush
VG Industries, Chennai, Bearing & Bush
 
What's New in Google Play's Developer's Policy
What's New in Google Play's Developer's PolicyWhat's New in Google Play's Developer's Policy
What's New in Google Play's Developer's Policy
 
Real estate crm software
Real estate crm softwareReal estate crm software
Real estate crm software
 
Delivering a commercially successful end-to end IoT Solution.
Delivering a commercially successful end-to end IoT Solution.Delivering a commercially successful end-to end IoT Solution.
Delivering a commercially successful end-to end IoT Solution.
 
Salmón en papillote
Salmón en papilloteSalmón en papillote
Salmón en papillote
 
Magento 2 Seminar - Andra Lungu - API in Magento 2
Magento 2 Seminar - Andra Lungu - API in Magento 2Magento 2 Seminar - Andra Lungu - API in Magento 2
Magento 2 Seminar - Andra Lungu - API in Magento 2
 
Estenosis hipertrófica del píloro
Estenosis hipertrófica del píloroEstenosis hipertrófica del píloro
Estenosis hipertrófica del píloro
 
Living things
Living thingsLiving things
Living things
 
UF Bookstore Price Match
UF Bookstore Price MatchUF Bookstore Price Match
UF Bookstore Price Match
 

Similar to Deepak 3 dpassword (2)

3dpassword.doc
3dpassword.doc3dpassword.doc
3dpassword.doc
Ajay Kumar
 
New era of authentication
New era of authenticationNew era of authentication
New era of authentication
sunil kumar
 
3D Password M Sc BHU Sem 1
3D Password M Sc BHU Sem 13D Password M Sc BHU Sem 1
3D Password M Sc BHU Sem 1
Swagato Dey
 
SRAVYA
SRAVYASRAVYA
SRAVYA
pvpsit
 
Volume 1 number-2pp-216-222
Volume 1 number-2pp-216-222Volume 1 number-2pp-216-222
Volume 1 number-2pp-216-222
Kailas Patil
 

Similar to Deepak 3 dpassword (2) (20)

Graphical authintication
Graphical authinticationGraphical authintication
Graphical authintication
 
3d passwords
3d passwords 3d passwords
3d passwords
 
3dpassword.doc
3dpassword.doc3dpassword.doc
3dpassword.doc
 
3dpassword
3dpassword3dpassword
3dpassword
 
3d
3d3d
3d
 
C0361419
C0361419C0361419
C0361419
 
A Novel Revolutionary highly secured Object authentication schema
A Novel Revolutionary highly secured Object authentication  schemaA Novel Revolutionary highly secured Object authentication  schema
A Novel Revolutionary highly secured Object authentication schema
 
3d pass words
3d pass words3d pass words
3d pass words
 
New era of authentication
New era of authenticationNew era of authentication
New era of authentication
 
3D Password M Sc BHU Sem 1
3D Password M Sc BHU Sem 13D Password M Sc BHU Sem 1
3D Password M Sc BHU Sem 1
 
3d authentication
3d authentication3d authentication
3d authentication
 
3D Password ppt
3D Password ppt 3D Password ppt
3D Password ppt
 
3dpasswordppt
3dpasswordppt3dpasswordppt
3dpasswordppt
 
SRAVYA
SRAVYASRAVYA
SRAVYA
 
3D-Password: A More Secure Authentication
3D-Password: A More Secure Authentication3D-Password: A More Secure Authentication
3D-Password: A More Secure Authentication
 
Volume 1 number-2pp-216-222
Volume 1 number-2pp-216-222Volume 1 number-2pp-216-222
Volume 1 number-2pp-216-222
 
3D PASSWORD
3D PASSWORD3D PASSWORD
3D PASSWORD
 
3D-Password
3D-Password 3D-Password
3D-Password
 
3d password ppt
3d password ppt3d password ppt
3d password ppt
 
3D PASSWORD
3D PASSWORD 3D PASSWORD
3D PASSWORD
 

Recently uploaded

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

Deepak 3 dpassword (2)

  • 1. 3D PASSWORD Page 5 ABSTRACT Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionary or their pet names, girlfriends etc. Ten years back Klein performed such tests and he could crack 10-15 passwords per day. On the other hand, if a password is hard to guess, then it is often hard to remember. Users have difficulty remembering a password that is long and random appearing. So, they create short, simple, and insecure passwords that are susceptible to attack. Which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Graphical passwords schemes have been proposed. The strength of graphical passwords comes from the fact that users can recall and recognize pictures more than words. Most graphical passwords are vulnerable for shoulder surfing attacks, where an attacker can observe or record the legitimate user’s graphical password by camera. Token based systems such as ATMs are widely applied in banking systems and in laboratories entrances as a mean of authentication. However, Smart cards or tokens are vulnerable to loss or theft. Moreover, the user has to carry the token whenever access required. Biometric scanning is your "natural" signature and Cards or Tokens prove your validity. But some people hate the fact to carry around their cards, some refuse to undergo strong IR exposure to their retinas (Biometric scanning).
  • 2. 3D PASSWORD Page 6 INDEX S.No Topic Page No. 1.) Introduction 5 2.) Existing system 6 3.) Proposed system 7 4.) Brief description of system 8 5.) System Implementation 9 6.) 3D password selection and Input 11 7.) 3D virtual environment design guidelines 12 8.) 3D password application 14 9.) 3D State Diagram 16 10.) Security Analysis 17 11.) Conclusion 20 12.) References 23
  • 3. 3D PASSWORD Page 7 INTRODUCTION Users nowadays are provided with major password stereotypes such as textual passwords, biometric scanning, tokens or cards (such as an ATM) etc .Mostly textual passwords follow an encryption algorithm as mentioned above. Biometric scanning is your "natural" signature and Cards or Tokens prove your validity. But some people hate the fact to carry around their cards, some refuse to undergo strong IR exposure to their retinas(Biometric scanning).Mostly textual passwords, nowadays, are kept very simple say a word from the dictionary or their pet names, girlfriends etc. Years back Klein performed such tests and he could crack 10-15 passwords per day. Now with the technology change, fast processors and many tools on the Internet this has become a Child's Play. Therefore we present our idea, the 3D passwords which are more customizable and very interesting way of authentication. Now the passwords are based on the fact of Human memory. Generally simple passwords are set so as to quickly recall them. The human memory, in our scheme has to undergo the facts of Recognition, Recalling, Biometrics or Token based authentication. Once implemented and you log in to a secure site, the 3D password GUI opens up. This is an additional textual password which the user can simply put. Once he goes through the first authentication, a 3D virtual room will open on the screen. In our case, let’s say a virtual garage. Now in a day to day garage one will find all sorts of tools, equipments, etc.each of them having unique properties. The user will then interact with these properties accordingly. Each object in the 3D space, can be moved around in an (x,y,z) plane. That’s the moving attribute of each object. This property is common to all the objects in the space. Suppose a user logs in and enters the garage. He sees and picks a screw- driver (initial position in xyz coordinates (5, 5, 5)) and moves it 5 places to his right (in XY plane i.e. (10, 5, 5).That can be identified as an authentication. Only the true user understands and recognizes the object which he has to choose among many. This is the Recall and Recognition part of human memory coming into play. Interestingly, a password can be set as approaching a radio and setting its frequency to number only the user knows. Security can be enhanced by the fact of including Cards and Biometric scanner as input. There can be levels of authentication a user can undergo.
  • 4. 3D PASSWORD Page 8 EXISTING SYSTEM Current authentication systems suffer from many weaknesses. Textual passwords are commonly used. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed. However, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. The 3Dpassword is a multi factor authentication scheme. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space. User have freedom to select whether the 3D password will be solely recall, recognition, or token based, or combination of two schemes or more.
  • 5. 3D PASSWORD Page 9 PROPOSED SYSTEM The proposed system is a multi factor authentication scheme that combines the benefits of various authentication schemes. Users have the freedom to select whether the 3D password will be solely recall, biometrics, recognition, or token based, or a combination of two schemes or more. This freedom of selection is necessary because users are different and they have different requirements. Therefore, to ensure high user acceptability, the user’s freedom of selection is important. The following requirements are satisfied in the proposed scheme 1. The new scheme provide secrets that are easy to remember and very difficult for intruders to guess. 2. The new scheme provides secrets that are not easy to write down on paper. Moreover, the scheme secrets should be difficult to share with others. 3. The new scheme provides secrets that can be easily revoked or changed.
  • 6. 3D PASSWORD Page 10 BRIEF DESCRIPTION OF SYSTEM The proposed system is a multi factor authentication scheme. It can combine all existing authentication schemes into a single 3D virtual environment .This 3D virtual environment contains several objects or items with which the user can interact. The user is presented with this 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The choice of what authentication schemes will be part of the user's 3D password reflects the user's preferences and requirements. A user who prefers to remember and recall a password might choose textual and graphical password as part of their 3D password. On the other hand users who have more difficulty with memory or recall might prefer to choose smart cards or biometrics as part of their 3D password. Moreover user who prefers to keep any kind of biometric data private might not interact with object that requires biometric information. Therefore it is the user's choice and decision to construct the desired and preferred 3D password.
  • 7. 3D PASSWORD Page 11 SYSTEM IMPLIMENTATION The 3D password is a multi factor authentication scheme. The 3D password presents a 3D virtual environment containing various virtual objects. The user navigates through this environment and interacts with the objects. The 3D password is simply the combination and the sequence of user interactions that occur in the 3D virtual environment. The 3D password can combine recognition, recall, token, and biometrics based systems into one authentication scheme. This can be done by designing a 3D virtual environment that contains objects that request information to be recalled, information to be recognized, tokens to be presented, and biometric data to be verified. For example, the user can enter the virtual environment and type something on a computer that exists in (x1 , y1 , z1 ) position, then enter a room that has a fingerprint recognition device that exists in a position (x2 , y2 , z2 ) and provide his/her fingerprint. Then, the user can go to the virtual garage, open the car door, and turn on the radio to a specific channel. The combination and the sequence of the previous actions toward the specific objects construct the user’s 3D password. Virtual objects can be any object that we encounter in real life. Any obvious actions and interactions toward the real life objects can be done in the virtual 3D environment toward the virtual objects. Moreover, any user input (such as speaking in a specific location) in the virtual 3D environment can be considered as a part of the 3D password. We can have the following objects: 1) A computer with which the user can type; 2) A fingerprint reader that requires the user’s fingerprint; 3) A biometric recognition device; 4) A paper or a white board that a user can write, sign, or draw on;
  • 8. 3D PASSWORD Page 12 5) An automated teller machine (ATM) that requests a token; 6) A light that can be switched on/off; 7) A television or radio where channels can be selected; 8) A staple that can be punched; 9) A car that can be driven; 10) A book that can be moved from one place to another; 11) Any graphical password scheme; 12) Any real life object; 13) Any upcoming authentication scheme. The action toward an object (assume a fingerprint recognition device) that exists in location (x1, y1 , z1 ) is different from the actions toward a similar object (another fingerprint recognition device) that exists in location (x2 , y2 , z2 ), where x1 = x2 , y1 = y2 , and z1 = z2 . Therefore, to perform the legitimate 3D password, the user must follow the same scenario performed by the legitimate user. This means interacting with the same objects that reside at the exact locations and perform the exact actions in the proper sequence.
  • 9. 3D PASSWORD Page 13 3D PASSWORD SELECTION AND INPUT Let us consider a 3D virtual environment space of size G ×G × G. The 3D environment space is represented by the coordinates (x, y, z) ∈ [1, . . . , G] ×[1, . . . , G] ×[1, . . . , G]. The objects are distributed in the 3D virtual environment with unique (x, y, z) coordinates. We assume that the user can navigate into the 3D virtual environment and interact with the objects using any input device such as a mouse, key board, fingerprint scanner, iris scanner, stylus, card reader, and microphone. We consider the sequence of those actions and interactions using the previous input devices as the user’s 3D password. For example, consider a user who navigates through the 3D virtual environment that consists of an office and a meeting room. Let us assume that the user is in the virtual office and the user turns around to the door located in (10, 24, 91) and opens it. Then, the user closes the door. The user then finds a computer to the left, which exists in the position (4, 34, 18), and the user types “FALCON.” Then, the user walks to the meeting room and picks up a pen located at (10, 24, 80) and draws only one dot in a paper located in (1, 18, 30), which is the dot (x, y) coordinate relative to the paper space is (330, 130). The user then presses the login button. The initial representation of user actions in the 3Dvirtual environment can be recorded as follows: (10, 24, 91) Action = Open the office door; (10, 24, 91) Action = Close the office door; (4, 34, 18) Action = Typing, “F”; (4, 34, 18) Action = Typing, “A”; (4, 34, 18) Action = Typing, “L”; (4, 34, 18) Action = Typing, “C”; (4, 34, 18) Action = Typing, “O”; (4, 34, 18) Action = Typing, “N”;
  • 10. 3D PASSWORD Page 14 3D VIRTUAL ENVIRONMENT DESIGN GUIDELINES The design of the 3 D virtual environments affects the usability, effectiveness, acceptability of 3D password. The first step in building a 3D password system is to design a 3D environment that reflects the administration needs and the security requirements. The design of 3D virtual environments should follow these guidelines. 1) Real Life Similarity The prospective 3D virtual environment should reflect what people are used to seeing in real life. Objects used in virtual environments should be relatively similar in size to real objects (sized to scale). Possible actions and interactions toward virtual objects should reflect real life situations. Object responses should be realistic. The target should have a 3D virtual environment that users can interact 2) Object uniqueness and distinction every virtual object or item in the 3D virtual environment is different from any other virtual object. The uniqueness comes from the fact that every virtual object has its own attributes such as position. Thus, the prospective interaction with object 1 is not equal to the interaction with object 2. How ever, having similar objects such as 20 computers in one place might confuse the user. Therefore, the design of the 3D virtual environment should consider that every object should be distinguishable from other objects. Similarly, in designing a 3D virtual environment, it should be easy for users to navigate through and to distinguish between objects. The distinguishing factor increases the user’s recognition of objects. Therefore, it improves the system usability. 3) Three Dimensional Virtual Environment Size A 3D virtual environment can depict a city or even the world. On the other hand, it can depict a space as focused as a single room or office. A large 3D virtual environment will increase the time required by the user to perform a 3D password. Moreover, a large 3D virtual environment can contain a large number of virtual objects. Therefore, the probable 3D password space broadens. However, a small 3D virtual environment usually contains only a few objects, and thus, performing a 3D password will take less time.
  • 11. 3D PASSWORD Page 15 4) Number of objects and their types Part of designing a 3D virtual environment is determining the types of objects and how many objects should be placed in the environment. The types of objects reflect what kind of responses the object will have. For simplicity, we can consider requesting a textual password or a fingerprint as an object response type. Selecting the right object response types and the number of objects affects the probable password space of a 3D password. 5) System Importance The 3D virtual environment should consider what systems will be protected by a 3D password The number of objects and the types of objects that Have been used in the 3D virtual environment should reflect the importance of the protected system.
  • 12. 3D PASSWORD Page 16 3D PASSWORD APPLICATION The 3D password can have a password space that is very large compared to other authentication schemes, so the 3D password’s main application domains are protecting critical systems and resources. 1. Critical server many large organizations have critical servers that are usually protected by a textual password. A 3D password authentication proposes a sound replacement for a textual password. 2. Nuclear and military facilities such facilities should be protected by the most Powerful authentication systems. The 3D password has a very large probable password space, and since it can contain token, biometrics, recognition and knowledge based Authentications in a single authentication system, it is a sound choice for high level security locations. 3. Airplanes and jet fighters Because of the possible threat of misusing airplanes and jet fighters for religion, political agendas, usage of such airplanes should be protected by a powerful authentication system. In addition, 3D passwords can be used in less critical systems because the 3D virtual environment can be designed to fit to any system needs. A small virtual environment can be used in the following systems like 1) ATM 2) Personal Digital Assistance
  • 13. 3D PASSWORD Page 17 3) Desktop Computers & laptop logins 4) Web Authentication 5) Security Analysis To analyze and study how secure a system is, we have to consider, • How hard it is for the attacker to break such a system ▪ A possible measurement is based on the information content of a password space. It is important to have a scheme that has a very large possible password space which increases the work required by the attacker to break the authentication system. ▪ Find a scheme that has no previous or existing knowledge of the most probable user password selection. STATE DIAGRAM OF A 3D PASSWORD APPLICATION
  • 15. 3D PASSWORD Page 19 SECURITYANALYSIS 3D Password space size To determine the password space, we have to count all possible 3D passwords that have a certain number of actions, interactions, and inputs towards all objects that exist in the 3D virtual environments. 3D password distribution knowledge Users tend to use meaningful words for textual passwords. Therefore finding these different words from dictionary is a relatively simple task which yields a high success rate for breaking textual passwords. Pass faces users tend to choose faces that reflect their own taste on facial attractiveness, race, and gender. Every user has different requirements and preferences when selecting the appropriate 3D Password. This fact will increase the effort required to find a pattern of user’s highly selected 3D password. In addition, since the 3D password combines several authentication schemes into a single authentication environment, the attacker has to study every single authentication scheme and has to discover what the most probable selected secrets are. Since every 3D password system can be designed according to the protected system requirements, the attacker has to separately study every 3D password system. Therefore, more effort is required to build the knowledge of most probable 3D passwords. Attacks and Countermeasures To realize and understand how far an authentication scheme is secure, we have to consider all possible attack methods. We have to study whether the authentication scheme proposed is immune against such attacks or not. Moreover, if the proposed authentication scheme is not immune, we then have to find the countermeasures that prevent such attacks. In this section, we try to cover most possible attacks and whether the attack is valid or not. Moreover, we try to propose countermeasures for such attacks.
  • 16. 3D PASSWORD Page 20 1)Brute Force Attack: The attacker has to try all possible 3D passwords. This kind of attack is very difficult for the following reasons. a. Time required to login The total time needed for a legitimate user to login may vary depending on the number of interactions and actions, the size of the 3D virtual environment, and the type of actions and interactions. Therefore, a brute force attack on a 3D password is very difficult and time consuming b. Cost of attacks the 3D virtual environment contains biometric recognition objects and token based objects. The attacker has to forge all possible biometric information and forge all the required tokens. The cost of forging such information is very high, therefore cracking the 3D password is more challenging. The high number of possible 3D password spaces leaves the attacker with almost no chance of breaking the 3D password. 2)Well-Studied Attack : The attacker tries to find the highest probable distribution of 3D passwords. In order to launch such an attack, the attacker has to acquire knowledge of the most probable 3D password distributions. This is very difficult because the attacker has to study all the existing authentication schemes that are used in the 3D environment. It requires a study of the user’s selection of objects for the 3D password. Moreover, a well studied attack is very hard to accomplish since the attacker has to perform a customized attack for every different 3D virtual environment design. This environment has a number of objects and types of object responses that differ from any other 3D virtual environment. Therefore, a carefully customized study is required to initialize an effective attack. 3)Shoulder Surfing Attack :An attacker uses a camera to record the user’s 3D password or tries to watch the legitimate user while the 3D password is being performed. This attack is the most successful type of attack against 3D passwords and some other graphical passwords. However, the user’s 3D password may contain biometric data or textual passwords that cannot be seen from
  • 17. 3D PASSWORD Page 21 behind. Therefore, we assume that the 3D password should be performed in a secure place where a shoulder surfing attack cannot be performed. 4)Timing Attack: In this attack, the attacker observes how long it takes the legitimate user to perform a correct sign in using the 3D password. This observation gives the attacker an indication of the legitimate user’s 3D password length. However, this kind of attack alone cannot be very successful since it gives the attacker mere hints. Therefore, it would probably be launched as part of a well studied or brute force attack. Timing attacks can be very effective if the 3D virtual environment is poorly designed.
  • 18. 3D PASSWORD Page 22 CONCLUSION The 3D password is a multi factor authentication scheme that combines the various authentication schemes into a single 3D virtual environment. The virtual environment can contain any existing authentication scheme or even any upcoming authentication scheme or even any upcoming authentication schemes by adding it as a response to actions performed on an object. Therefore the resulting password space becomes very large compared to any existing authentication schemes. The design of the 3D virtual environment the selection of objects inside the environment and the object's type reflect the resulted password space. It is the task of the system administrator to design the environment and to select the appropriate object that reflects the protected system requirements. Designing a simple and easy to use 3D virtual environment is a factor that leads to a higher user acceptability of a 3D password system. The choice of what authentication scheme will be part of user's 3D password reflects the user's preferences and requirements.
  • 19. 3D PASSWORD Page 23 REFERENCES [1] X. Suo, Y. Zhu, and G. S. Owen, “Graphical passwords: A survey,” in Proc. 21st Annu. Comput. Security Appl. Conf., Dec. 5–9, 2005, pp. 463–472. [2] D. V. Klein, “Foiling the cracker: A survey of, and improvement to passwords security,” in Proc. USENIX Security Workshop, 1990, pp. 5–14. [3] NBC news, ATM Fraud: Banking on Your Money, Dateline Hidden Cameras Show Criminals Owning ATMs, Dec. 11, 2003. [4] T. Kitten, Keeping an Eye on the ATM. (2005, Jul. 11). [Online]. Available: ATMMarketPlace.com [5] BBC news, Cash Machine Fraud up, Say Banks, Nov. 4, 2006. [6] G. E. Blonder, “Graphical password,” U.S. Patent 5 559 961, Sep. 24, 1996. [7] R. Dhamija and A. Perrig, “Déjà Vu: A user study using images for authentication,” in Proc. 9th USINEX Security Symp., Denver, CO, Aug. 2000, pp. 45–58.