SlideShare a Scribd company logo
1 of 92
Bioelementos, agua y sales minerales
Tema 1
Bioelementos
Estos elementos que se encuentran en la materia viva se llaman
bioelementos o elementos biogénicos (de bios, vida, y genos, origen).
Los bioelementos se pueden clasificar en dos grupos:
• bioelementos primarios
• bioelementos secundarios.
Si se hace un análisis químico de cada uno de los
diferentes tipos de seres vivos, se encuentra que la
materia viva está constituida por unos setenta
elementos, (casi la totalidad de los elementos
estables que existen en la Tierra, exceptuando los
gases nobles).
Eduardo Gómez 2
Porcentaje de elementos que encontramos en los seres vivos
Eduardo Gómez 3
Los bioelementos primarios. Se llaman primarios porque son indispensables
para la formación de las biomoléculas orgánicas (glúcidos, lípidos, proteínas
y ácidos nucleicos).
Son un grupo de seis elementos,
que constituyen el 96,2 % del
total de la materia viva.
Bioelementos
primarios
Carbono
(C)
Hidrógeno
(H)
Oxígeno
(O)
Nitrógeno
(N)
Azufre (S)
Fósforo
(P)
Eduardo Gómez 4
Los bioelementos secundarios: Son todos los bioelementos restantes. En este
grupo se pueden distinguir dos tipos:
• Los indispensables, no pueden faltar porque son imprescindibles para la
vida de la célula, y que, en mayor o menor proporción, se encuentran en
todos los seres vivos. Son bioelementos secundarios indispensables el
calcio (Ca), el sodio (Na), el potasio (K), el magnesio (Mg), el cloro (Cl), el
hierro (Fe), el silicio (Si), el cobre (Cu), el manganeso (Mn), el boro (B), el
flúor (F) y el yodo (I).
• Los variables, que son los que si pueden faltar en algunos organismos.
Son bioelementos secundarios variables, por ejemplo, el bromo (Br), el
cinc (Zn), el titanio (Ti), el vanadio (V), y el plomo (Pb).
Eduardo Gómez 5
Otra clasificación de los bioelementos es la basada en su abundancia. Los que se
encuentran en proporciones inferiores al 0.1 % se denominan oligoelementos y el
resto bioelementos plásticos.
No existe una relación directa entre abundancia y esencialidad.
Muchos bioelementos pueden ser, por ejemplo, oligoelementos, y a la vez ser
indispensables, debido a que su función no es estructural, sino catalizadora. Así,
una pequeña cantidad de ellos es suficiente para que el organismo viva, pero la
falta total provocaría su muerte.
Eduardo Gómez 6
Otra clasificación de los bioelementos establece tres categorías:
Bioelementos primarios o principales: C, H, O, N
Son los elementos mayoritarios de la materia viva, constituyen el 95%
de la masa total.
Bioelementos secundarios S, P, Mg, Ca, Na, K, Cl:
Los encontramos formando parte de todos los seres vivos, y en una
proporción del 4,5%.
Oligoelementos
Se denominan así al conjunto de elementos químicos que están
presentes en los organismos en forma vestigial, pero que son
indispensables para el desarrollo armónico del organismo.
Eduardo Gómez 7
Bioelementos primarios
Si se compara la composición atómica de la biosfera, con la composición de la
atmósfera, de la hidrosfera y de la litosfera, se pueden deducir las siguientes
conclusiones:
Los altos porcentajes de H y O en la biosfera se deben a que la materia viva está
constituida por agua en un porcentaje que varía entre un 65% y un 90% . A su
vez todas las reacciones químicas que se realizan en los seres vivos se
desarrollan en el medio acuoso. No es posible la materia viva sin agua. Todo esto
se relaciona con que la vida se originó en el medio acuático.
Los porcentajes del resto de los bioelementos primarios (C, N, S y P) de la biosfera
son muy diferentes de los encontrados en la atmósfera, hidrosfera o litosfera, por
lo que no se puede deducir que la materia viva se haya formado a partir de los
elementos más abundantes, sino a partir solo de aquellos (C, H, O, N, P y S) que
gracias a sus propiedades son capaces de constituirla.
Eduardo Gómez 8
Eduardo Gómez 9
62
20
10
3 2.5 1.1 0.2 0.1 0.1 0.1 0.1 0.01 0 0
0
10
20
30
40
50
60
70
O C H N Ca P Cl S K Na Mg Fe Si Al
Porcentajedeabundancia(%)
Tipos de elementos
Biosfera
21
0.03 0
78
0 0 0 0 0 0 0 0 0 0
0
10
20
30
40
50
60
70
80
90
O C H N Ca P Cl S K Na Mg Fe Si Al
Porcentajedeabundancia(%)
Tipos de elementos
Atmósfera
33
0
66
0 0 0 0.33 0.02 0.01 0.3 0.03 0 0 0
0
10
20
30
40
50
60
70
O C H N Ca P Cl S K Na Mg Fe Si Al
Porcentajedeabundancia(%)
Tipos de elementos
Hidrosfera
46.5
0.2 0.1 0
3.6
0.1 0 0.04
2.6 2.8 2.1
5
27.7
8.1
0
10
20
30
40
50
O C H N Ca P Cl S K Na Mg Fe Si Al
Porcentajedeabundancia(%)
Tipos de elementos
Litosfera
Eduardo Gómez 10
1. Masa atómica es relativamente pequeña, y su capa externa está incompleta y
esto favorece que al combinarse entre sí se establezcan enlaces covalentes
estables. Cuanto menor es un átomo, mayor es la tendencia del núcleo
positivo a completar su último orbital con los electrones que forman los
enlaces, y, por tanto, más estables son dichos enlaces.
Propiedades de los bioelementos primarios
Eduardo Gómez 11
2. Dado que el oxígeno y el nitrógeno son elementos muy electronegativos, al
establecer enlaces covalentes con los otros tipos de átomos con frecuencia
dan lugar a moléculas dipolares. Dado que el agua también es dipolar, estos
compuestos se disuelven bien en ella y pueden reaccionar entre sí, haciendo
posible los procesos bioquímicos imprescindibles para la vida. El C, N y O
pueden formar enlaces dobles o triples (posibilidad de formar moléculas
diferentes).
Eduardo Gómez 12
Eduardo Gómez 13
3. El C y el N, debido a su posición central en el Sistema Periódico presentan la
misma afinidad para unirse con el O que con el H, es decir, pueden pasar con
facilidad del estado oxidado (CO2, NO3H) al reducido (CH4, NH3).
Eduardo Gómez 14
4. Los bioelementos mayoritarios pueden incorporarse fácilmente a los seres
vivos desde el medio externo ya que se encuentra en moléculas que pueden
ser captadas de manera sencilla (CO2, H2O, nitratos). Este hecho asegura el
intercambio constante de materia entre los organismos vivos y su medio
ambiente
Nitratos,
Fosfatos
H2O,
fosfatos
CO2
O2
ATMÓSFERA
HIDRÓSFERA
GEOSFERA
Seres vivos
Eduardo Gómez 15
5. Los compuestos orgánicos formados por estos átomos se hallan en estado
reducido, y reaccionan con el oxígeno para dar compuestos inorgánicos (CO2 y
H2O), de baja energía. La energía desprendida en las reacciones de oxidación
se aprovecha para las funciones vitales de los organismos.
Eduardo Gómez 16
El carbono
1. Tiene cuatro electrones en su periferia y puede formar enlaces covalentes estables
con otros carbonos.
2. Puede constituir largas cadenas de átomos (macromoléculas).
3. Los enlaces pueden ser simples (C—C), dobles (C=C) o triples (C≡C), Puede unirse
a otros elementos (-H, =0, -OH, -NH2. -SH, -H2PO4, etc.), formando un gran
número de moléculas diferentes, que posibilitan una gran variabilidad de
reacciones químicas.
4. Por otro lado, los cuatro enlaces covalentes forman un tetraedro imaginario. Esto
permite la formación de estructuras tridimensionales que permiten forman
grandes macromoléculas. Los enlaces de carbono son lo suficientemente fuerte
para ser estable, pero no tanto como para impedir que se rompan.
Eduardo Gómez 17
Eduardo Gómez 18
El hidrógeno
1. Es el otro elemento que resulta indispensable para formar la materia orgánica
(algunos lípidos sólo están constituidos por carbono e hidrógeno y el petróleo y sus
derivados (butano, gasolina, gasóleo, etc.) también están constituidos sólo por
carbono e hidrógeno).
2. El único electrón que posee el átomo de hidrogeno le permite formar un enlace con
cualquiera de los otros bioelementos primarios. Entre el hidrógeno y el carbono se
forma un enlace covalente lo suficientemente fuerte como para ser estable, pero no
tanto como para impedir su rotura, y posibilitar así la síntesis de otras moléculas.
3. Las que están formadas sólo por carbono e hidrógeno son covalentes apolares
(insolubles en agua).
Eduardo Gómez 19
Es el bioelemento primario más electronegativo. Por ello cuando se enlaza con el
hidrógeno atrae hacia sí el único electrón del hidrógeno originándose polos eléctricos.
Debido a esto, los radicales -OH, -CHO y -COOH son radicales polares.
Debido a su electronegatividad el oxígeno es idóneo para quitar electrones a otros
átomos, es decir, para oxidarlos. Este proceso comporta la rotura de enlaces y la
liberación de energía (la reacción de los compuestos de carbono con el oxígeno es la
forma más común de obtener energía).
La oxidación de los compuestos biológicos se realiza mediante la sustracción de
hidrógenos a los átomos de carbono. Como el oxígeno atrae hacia sí el electrón del
hidrógeno con más fuerza que el carbono, consigue quitárselo. De este modo se forma
agua y se libera una gran cantidad de energía, que aprovechan los seres vivos.
C6H12O6 + 6O2  6CO2 + 6H2O + energía
El oxígeno
Eduardo Gómez 20
El nitrógeno
1. Al igual que el carbono y el azufre, presenta una gran facilidad para formar
compuestos tanto con el hidrógeno (NH3) como con el oxígeno (NO3
-), lo cual
permite, en el paso de una forma a la otra, la liberación de energía.
2. Principalmente se encuentra formando los grupos amino (—NH2) de los
aminoácidos (moléculas que constituyen las proteínas) y las bases nitrogenadas,
(componentes de los ácidos nucleicos).
3. Es de destacar que, pese a la gran abundancia de gas nitrógeno en la atmósfera,
muy pocos organismos son capaces de aprovecharlo. Prácticamente todo el
nitrógeno es incorporado al mundo vivo por las algas y las plantas, que lo
absorben disuelto en forma de ion nitrato (NO3
-).
Eduardo Gómez 21
El azufre
Básicamente se encuentra en forma de radical sulfhidrilo (—SH) en determinados
aminoácidos. Estos radicales permiten establecer, entre dos aminoácidos próximos,
unos enlaces covalentes fuertes denominados puentes disulfuro (-S-S-), que
mantienen la estructura de las proteínas.
Eduardo Gómez 22
El fósforo
Este elemento permite establecer enlaces ricos en energía. Al romperse el enlace que
une dos grupos fosfato —PO3-~PO3-~PO3
2-, generalmente de una molécula de ATP, se
libera al organismo la energía contenida en dicho enlace, (7,3 kcal/mol). En estos
enlaces se almacena la energía liberada en otras reacciones, como las oxidaciones de
la respiración.
Además, el fósforo interviene en la constitución de los ácidos nucleicos (ADN y ARN),
de los fosfolípidos de la membrana plasmática y de los huesos de los vertebrados, y
ayuda a mantener constante la acidez del medio interno del organismo.
Eduardo Gómez 23
Los bioelementos secundarios
Tienen diferentes funciones. Se puede distinguir entre los que son abundantes y los
oligoelementos.
Los más abundantes son el Na, K, Mg Cl y Ca.
Sus funciones son:
1. Los iones Na+, K+ y Cl-, que son los iones más abundantes en los medios internos y
en el interior de las células, intervienen en el mantenimiento del grado de salinidad
y en el equilibrio de cargas eléctricas a un lado y otro de la membrana plasmática.
2. Los iones Na+ y K+, además, son fundamentales en la transmisión del impulso
nervioso.
Eduardo Gómez 24
El magnesio es un componente de
muchas enzimas y del pigmento clorofila.
También interviene en la síntesis y
degradación del ATP, en la replicación del
ADN y en su estabilización, en la síntesis
del ARN, etc.
El calcio, en forma de carbonato (CaCO3), da lugar a
los caparazones de los moluscos y a los esqueletos
de otros muchos animales y, como ion (Ca2+),
actúa en muchas reacciones, como los mecanismos
de la contracción muscular, la permeabilidad de las
membranas celulares, la coagulación de la sangre,
etc.
Entre los oligoelementos cabe citar, por la importancia de sus funciones, el Fe, Zn,
Cu, Co, Mn, Li, Si, I y F.
Eduardo Gómez 25
El hierro es necesario para sintetizar la
hemoglobina de la sangre y la mioglobina, dos
transportadores de moléculas de oxígeno, y los
citocromos, enzimas que intervienen en la
respiración celular.
El cinc es abundante en el cerebro, en los órganos
sexuales y en el páncreas. En este último se asocia a la
acción de la hormona insulina para el control de la
concentración del azúcar en sangre.
El cobre se requiere para formar la hemocianina,
pigmento respiratorio de muchos invertebrados
acuáticos, y para algunas enzimas oxidasas.
Eduardo Gómez 26
El cobalto hace falta para sintetizar la vitamina B12 y
algunas enzimas que regulan la fijación del nitrógeno.
Eduardo Gómez 27
El manganeso actúa asociado a diversas enzimas
degradativas de proteínas, como factor de
crecimiento, y en los procesos fotosintéticos. Su
deficiencia origina por ello amarillamiento de las
hojas.
El litio actúa incrementando la secreción de los
neurotransmisores y favorece la estabilidad del
estado de ánimo en enfermos de depresiones
endógenas.
El silicio forma parte de los caparazones de las
diatomeas y da rigidez a los tallos de las
gramíneas y de los equisetos.
Eduardo Gómez 28
El yodo es necesario para formar la hormona
tiroidea, responsable del ritmo del metabolismo
energético. Su falta provoca el bocio.
El flúor se encuentra en el esmalte de
los dientes y en los huesos. Su
carencia favorece la caries de los
dientes.
Eduardo Gómez 29
Los principios inmediatos o biomoléculas
Los elementos biogénicos se combinan entre sí para formar sustancias compuestas
definidas.
Estos compuestos que se pueden aislar por medios puramente físicos como la
disolución, la filtración, la destilación, la centrifugación, etc. constituyen los llamados
principios inmediatos.
Pueden ser:
• Inorgánicos (agua y sales minerales)
• Orgánicos (glúcidos, lípidos, prótidos y ácidos nucleicos).
Los principios inmediatos también pueden ser simples o compuestos:
• Simples: Las moléculas están formadas por átomos del mismo tipo (02)
• Compuestos: Hay átomos de diferentes elementos (H2O, CO2).
Eduardo Gómez 30
PRINCIPIOS
INMEDIATOS Simples oxígeno molecular (02) y nitrógeno molecular (N2)
Compuestos
Inorgánicos
(unidos por enlaces
iónicos)
agua, dióxido de carbono y
sales minerales
Orgánicos
(unidos por enlaces
covalentes)
Glúcidos, lípidos, proteínas y
ácidos nucleicos
Eduardo Gómez 31
Los principios inmediatos pueden tener función estructural, como las proteínas y las
sales minerales de los huesos, o los lípidos de las membranas plasmáticas; función
energética, como las grasas; y función biocatalizadora, es decir, aceleradora de las
reacciones bioquímicas, como las proteínas enzimáticas.
Funciones
Eduardo Gómez 32
Principios inmediatos inorgánicos
El 02, el C02 y el N2 son tres sustancias gaseosas a temperatura ambiente.
• El 02 es necesario para la respiración aeróbica o un producto de excreción en la
fotosíntesis.
• El C02 es un producto de excreción, eliminándose directamente a través de las
membranas celulares en los organismos unicelulares o en los pluricelulares de
organización sencilla. Lo captan de la atmósfera las algas y las plantas al realizar
la fotosíntesis en sus cloroplastos.
• El N2 es prácticamente un gas inerte, y por ello los vegetales son incapaces de
tomarlo de la atmósfera; sólo algunas bacterias del suelo (por ejemplo,
Clostridium pasteurianum) y otras que son simbiontes de las raíces de las
leguminosas (algunas especies del género Rhizobium) son capaces de captarlo y
aprovecharlo para sintetizar proteínas.
Eduardo Gómez 33
El agua
El agua es la sustancia química más abundante en la materia viva.
La cantidad presente en un organismo depende de la especie, de la edad del
individuo y del órgano.
Organismo % agua Tejido % agua
Algas
Caracol
Crustáceos
Espárragos
Espinacas
Estrella mar
Persona adulta
Hongos
Lechuga
Lombriz
Maíz
Medusa
Pino
Semilla
Tabaco
Trébol
98
80
77
93
93
76
62
80
95
83
86
95
47
10
92
90
Líq. cefalorraquídeo
Sangre (plasma)
Sangre (Gl. rojos)
Tej. nervioso (s.gris)
Tej. nervioso (Médula)
Tej. nervioso (s.blanca)
Músculo
Piel
Hígado
Tej. conjuntivo
Hueso (sin medula)
Tej. adiposo
Dentina
99
91-93
60-65
85
75
70
75-80
72
70-75
60
20-25
10-20
3
Eduardo Gómez 34
CUADRO RESUMEN DE LAS
BIOMOLÉCULAS
Existe una relación directa entre contenido en agua y actividad fisiológica de un
organismo: Los más activos, como las reacciones bioquímicas se realizan en medio
acuático, tienen más cantidad de agua.
También tiene relación con el medio en el que se desenvuelve el organismo. Así, los
menores porcentajes se dan en seres con vida latente, como semillas, virus, etc., pero
también encontramos altos porcentajes de agua en seres como la medusa (95% de
agua) pese a su metabolismo poco intenso.
El contenido de agua de un organismo tiene
que ser más o menos constante, con
variaciones inferiores al 10%. En caso
contrario, se producen graves alteraciones
(hidratación y deshidratación) que sobre todo
en el último caso pueden producir la muerte.
Eduardo Gómez 35
El agua se encuentra en la materia viva en tres formas:
1. Como agua circulante, por ejemplo, en la sangre, en la savia, etc. Se encarga
principalmente del transporte de sustancias.
2. Como agua intersticial, entre las células, a veces fuertemente adherida a la
sustancia intercelular (agua de imbibición), como sucede en el tejido
conjuntivo.
3. Como agua intracelular, en el citosol y en el interior de los orgánulos
celulares.
En los seres humanos, el agua circulante supone el 8 % de su peso, el agua intersticial
el 15 %, y el agua intracelular el 40 %
Agua
intercelular
Células
Agua circulante (sangre, savia…)
Agua
intersticial
Eduardo Gómez 36
Los organismos pueden conseguir el agua
directamente a partir del agua exterior o a
partir de otras biomoléculas mediante
diferentes reacciones bioquímicas, es lo que se
denomina «agua metabólica» (en los camellos,
la degradación de la grasa de la joroba produce
agua y por ejemplo, a partir de la oxidación de
la glucosa, también aparece agua).
Eduardo Gómez 37
El agua, a temperatura ambiente, es líquida, (otras
moléculas de peso molecular parecido, como el SO2, el CO2
o el NO2 son gases).
Este comportamiento físico se debe a que en la molécula de
agua los dos electrones de los dos hidrógenos están
desplazados hacia el átomo de oxígeno, por lo que en la
molécula aparece un polo negativo, donde está el átomo de
oxígeno, debido a la mayor densidad electrónica, y dos
polos positivos donde están los dos núcleos de hidrógeno,
debido a la menor densidad electrónica. Las moléculas de
agua son dipolos.
Eduardo Gómez 38
Entre los dipolos del agua se establecen fuerzas de atracción llamadas puentes de
hidrógeno, formándose grupos de 3, 4 y hasta poco más de 9 moléculas.
Con ello se alcanzan pesos moleculares elevados y el H2O se comporta como un
líquido. Aunque son uniones débiles (30 veces más que los enlaces covalentes), el
hecho de que alrededor de cada molécula de agua se dispongan otras 4 moléculas
unidas por puentes de H (dos puentes con el oxígeno y uno con cada uno de los
hidrógenos) permite que se forme en el agua (líquida o sólida) una estructura
reticular, responsable de su comportamiento anómalo y de la peculiaridad de sus
propiedades fisicoquímicas.
Eduardo Gómez 39
Eduardo Gómez 40
La estabilidad del enlace
disminuye al aumentar la
temperatura, así, en el hielo, todas
las moléculas de agua están
unidas por puentes de hidrógeno.
Todas las restantes propiedades
del agua son, pues, consecuencia
de ésta.
Estas agrupaciones duran fracciones de segundo
(de 10-10 a 10-21 s), lo cual confiere al agua todas
sus propiedades de fluido. En la realidad,
coexisten estos pequeños polímeros de agua
con moléculas aisladas que rellenan los huecos.
Animación de la polaridad del agua y puentes de hidrógeno
Eduardo Gómez 41
Propiedades del agua
1. Elevada fuerza de cohesión
2. Elevada tensión superficial
3. Elevada fuerza de adhesión (capilaridad).
4. Elevado calor específico.
5. Elevado calor de vaporización.
6. Alta conductividad.
7. Mayor densidad en estado líquido que en estado sólido
(Coeficiente de dilatación negativo).
8. Elevada constante dieléctrica.
9. Transparencia.
10. Bajo grado de ionización.
Eduardo Gómez 42
1.- Elevada fuerza de cohesión entre sus
moléculas, debida a los puentes de hidrógeno
Ello explica que el agua sea un líquido
prácticamente incompresible, idóneo para dar
volumen a las células, provocar la turgencia de
las plantas, constituir el esqueleto hidrostático
de anélidos y celentéreos, etc.
Eduardo Gómez 43
2.- Elevada tensión superficial, es decir, que su superficie opone una gran
resistencia a romperse, a que se separen sus moléculas. Esto permite que muchos
organismos vivan asociados a esa película superficial y que se desplacen sobre ella.
Eduardo Gómez 44
3.- Elevada fuerza de adhesión (capilaridad). El fenómeno de la capilaridad depende
tanto de la adhesión de las moléculas de agua a las paredes de los conductos como de
la cohesión de las moléculas de agua entre sí. Esta propiedad explica, por ejemplo,
que la savia bruta ascienda por los tubos capilares
Eduardo Gómez 45
4.- Elevado calor específico.
• El agua puede absorber grandes cantidades de calor, mientras que,
proporcionalmente, su temperatura sólo se eleva ligeramente.
• El agua emplea esta energía en romper los puentes de H.
• El agua se convierte en estabilizador térmico del organismo frente a los cambios
bruscos de temperatura del ambiente.
• Su temperatura desciende con más lentitud que la de otros líquidos a medida que
va liberando energía al enfriarse.
• Esta propiedad permite que el contenido acuoso de las células sirva de protección a
las sensibles moléculas orgánicas ante los cambios bruscos de temperatura.
• El calor que se desprende en los procesos metabólicos no se acumula en los lugares
donde se produce, sino que se difunde en el medio acuoso y se disipa finalmente
hacia el medio externo.
Eduardo Gómez 46
5.- Elevado calor de vaporización. Ello se debe
a que para pasar del estado líquido al gaseoso
hay que romper todos los puentes de
hidrógeno. Los seres vivos utilizan esta
propiedad para refrescarse al evaporarse el
sudor.
El jadeo de los
animales es otra
forma de refrescarse
6.- Alta conductividad. Debido a esta propiedad, el calor se
distribuye fácilmente por toda la masa de agua, lo que evita
la acumulación de calor en un determinado punto del
organismo.
Eduardo Gómez 47
7.- Mayor densidad en estado líquido que en
estado sólido (Coeficiente de dilatación
negativo). Ello explica que el hielo flote en el
agua y que forme una capa superficial
termoaislante que permite la vida, bajo ella, en
ríos, mares y lagos. Si el hielo fuera más denso
que el agua, acabaría helándose toda el agua.
Esto se explica por que los puentes de
hidrógeno “congelados” mantienen las
moléculas más separadas que en el estado
líquido.
Eduardo Gómez 48
8.- Elevada constante dieléctrica. Por tener moléculas dipolares, el agua es un
gran medio disolvente de compuestos iónicos, como las sales minerales, y de
compuestos covalentes polares, como los glúcidos. El proceso de disolución se
debe a que las moléculas de agua, al ser polares, se disponen alrededor de los
grupos polares del soluto, llegando en el caso de los compuestos iónicos a
desdoblarlos en aniones y cationes, que quedan así rodeados por moléculas de
agua. Este fenómeno se denomina solvatación iónica.
Eduardo Gómez 49
Eduardo Gómez 50
Esta capacidad disolvente del agua y su
abundancia en el medio natural explican que
sea el vehículo de transporte (captación de
sales minerales por las plantas, por ejemplo) y
el medio donde se realizan todas las
reacciones químicas del organismo (caso de la
digestión de los alimentos)
Eduardo Gómez 51
9.- Transparencia. Debido a esta característica física del agua, es posible la vida de
especies fotosintéticas en el fondo de mares y ríos.
Eduardo Gómez 52
10.- Bajo grado de ionización. De cada 551000000 de moléculas de agua, sólo una
se encuentra ionizada:
Por eso, la concentración de iones hidronio (H30+) e hidroxilo (OH-) es muy baja,
concretamente 10-7 moles por litro ([H30+] = [OH-] = 10-7).
Dados los bajos niveles de H30+y de OH- , si al agua se le añade un ácido (se añade
H30+) o una base (se añade OH-), aunque sea en muy poca cantidad, estos niveles
varían bruscamente.
Eduardo Gómez 53
En los seres vivos existe siempre una cierta cantidad de hidrogeniones (H+) y de iones
hidroxilo (OH-) que proceden de:
• La disociación del agua que proporciona los dos iones:
• La disociación de cuerpos con función ácida que proporcionan H+:
ClH Cl- + H+
• La disociación de cuerpos con básicos que proporcionan OH-:
NaOH  Na+ + OH-
Eduardo Gómez 54
Por lo tanto la acidez o alcalinidad del medio interno de un organismo dependerá de
la proporción en que se encuentren los dos iones. Así será:
• Neutro cuando [H+]=[OH-]
• Ácido cuando [H+]>[OH-]
• Alcalino cuando [H+]<[OH-].
Para que los fenómenos vitales puedan
desarrollarse con normalidad es necesario que
la concentración de H+, que se expresa en
valores de pH sea más o menos constante y
próxima a la neutralidad, es decir, pH=7.
Acido Base
H+ OH-
7
6 8
Eduardo Gómez 55
La actividad biológica del medio interno celular se produce a un determinado
valor de pH.
Dados el bajo grado de ionización del H2O, si se le añade un ácido (se añade ) o
una base (se añade ), aunque sea en muy poca cantidad, estos niveles varían
bruscamente.
En los líquidos biológicos, sin embargo, y pese a estar constituidos únicamente
por agua, la adición de ácidos o bases no varía apenas su pH. Ello se debe a que
esos líquidos contienen sales minerales y proteínas disueltas que pueden
ionizarse en mayor o menor grado dando lugar a o a que contrarresten el efecto
de las bases, o ácidos añadidos.
Este efecto se denomina efecto tampón y estas disoluciones se las llama
disoluciones amortiguadoras.
Eduardo Gómez 56
Eduardo Gómez 57
En las reacciones metabólicas se liberan productos tanto ácidos como básicos que varían
la neutralidad si no fuera porque los organismos disponen de unos mecanismos químicos
que se oponen automáticamente a las variaciones de pH.
Estos mecanismos se denominan sistemas amortiguadores o sistemas tampón, y en ellos
intervienen de forma fundamental las sales minerales.
Lo más corriente es que el pH tienda a
desplazarse hacia el lado ácido por lo que los
sistemas tampón más importantes actúan
evitando este desplazamiento. Un tampón está
formado por una mezcla de un ácido débil y
una sal del mismo ácido; el más extendido es
el formado por el ácido carbónico (CO3H2) y el
bicarbonato sódico (CO3HNa).
Eduardo Gómez 58
Supongamos que el organismo se ve sometido a un exceso de ácido clorhídrico que,
en consecuencia liberará protones que harán disminuir el pH. En este momento entra
en funcionamiento el sistema amortiguador y ocurre lo siguiente:
1.- La sal (bicarbonato sódico) reacciona con el ácido clorhídrico:
CO3HNa + ClH  NaCl + H2CO3
La sal que se forma (NaCl) es neutra y, aunque se disocie, no libera protones y,
además, es habitualmente expulsada por la orina.
2.- El ácido carbónico que se ha formado podría incrementar la acidez, pero
rápidamente se descompone en CO2, que se libera con la respiración, y agua que es
neutra:
CO3H2  CO2 + H2O
En resumen, todos los hidrogeniones que podrían provocar un estado de acidez
desaparecen manteniéndose el estado de neutralidad.
Eduardo Gómez 59
Eduardo Gómez 60
El tampón bicarbonato es común en los líquidos extracelulares, mantiene el pH en
valores próximos a 7,4, gracias al equilibrio entre el ión bicarbonato y el ácido
carbónico, que a su vez se disocia en dióxido de carbono y agua.
El tampón fosfato es la otra solución tampón, formada por el ión PO3-
4 y H3PO4, y es
más común en los medios intracelulares.
Otra consecuencia de la capacidad de disociación del agua es que permite que actúe
como reactivo químico en las reacciones metabólicas de hidrólisis, introduciendo una
molécula de agua:
A-B + H2O  AH + BOH
El agua y los productos de ionización participan en las reacciones de hidrólisis (para
dividir grandes moléculas). El proceso inverso se llama condensación (moléculas
sencillas se unen para formar otras mayores) y origina o desprende moléculas de
agua que se denominan agua metabólica (camellos)
Eduardo Gómez 61
Funciones del agua
1. Función disolvente de las sustancias.
2. Función bioquímica.
3. Función de transporte.
4. Función estructural.
5. Función mecánica amortiguadora.
6. Función termorreguladora.
Eduardo Gómez 62
1. Función disolvente de las sustancias. El agua es básica para la vida, ya
que prácticamente todas las reacciones biológicas tienen lugar en el
medio acuoso.
Eduardo Gómez 63
2. Función bioquímica. El agua interviene en muchas reacciones químicas,
por ejemplo, en la hidrólisis (rotura de enlaces con intervención de
agua) que se da durante la digestión de los alimentos, como fuente de
hidrógenos en la fotosíntesis, etc.
Eduardo Gómez 64
3. Función de transporte. El agua es el
medio de transporte de las sustancias
desde el exterior al interior de los
organismos y en el propio organismo,
a veces con un gran trabajo como en
la ascensión de la savia bruta en los
árboles.
Eduardo Gómez 65
4. Función estructural. El volumen y forma de las células que carecen de
membrana rígida se mantienen gracias a la presión que ejerce el agua
interna. Al perder agua, las células pierden su turgencia natural, se
arrugan y hasta pueden llegar a romperse (lisis).
Eduardo Gómez 66
Presión de turgencia
Las paredes celulares rígidas de células vegetales, algas, bacterias y hongos hacen
posible que esos organismos vivan sin reventar en un medio externo muy diluido, que
contenga una concentración muy baja de solutos.
Las células son hipertónicas respecto al medio. El agua tiende llenar sus vacuolas
centrales y se hincha, acumulando presión, llamada presión de turgencia, contra las
paredes celulares rígidas de celulosa. La pared celular puede estirarse muy poco, y se
alcanza un estado de equilibrio cuando su resistencia impide que la célula se hinche
más.
La presión de turgencia es un factor importante en el sostén del cuerpo de las plantas
herbáceas. Por este motivo, una flor se marchita cuando la presión de turgencia de
sus células disminuye (las células han sufrido plasmólisis) por falta de agua.
Eduardo Gómez 67
5. Función mecánica amortiguadora. Por ejemplo, los vertebrados poseen
en sus articulaciones bolsas de líquido sinovial que evita el roce entre los
huesos.
Eduardo Gómez 68
4. Función termorreguladora. Se debe a su elevado calor específico y a su
elevado calor de vaporización. Es un material idóneo para mantener
constante la temperatura, absorbiendo el exceso de calor o cediendo
energía si es necesario.
• Por ejemplo, los animales, al sudar,
expulsan agua, la cual, para
evaporarse, toma calor del cuerpo y,
como consecuencia, éste se enfría.
Eduardo Gómez 69
FUNCIONES BIOLÓGICAS DEL AGUA
Aporta H+
y OH-
en reacciones
bioquímicas,
El agua pura es capaz de disociarse en ionesCapacidad de
disociación iónica
Mares y ríos se hielan sólo en su
superficie
Los puentes de hidrógeno “congelados”
mantienen las moléculas más separadas
Más densa líquida que
sólida
Mantiene forma y volumen de las
células; permite cambios y
deformaciones del citoplasma y
el ascenso de la savia bruta
Los puentes de hidrógeno mantienen juntas
las moléculas de agua
Alta cohesión y
adhesión
Transporte de sustancias y de
que en su seno se den todas las
reacciones metabólicas
La mayoría de las sustancias polares se
disuelven en ella al formar puentes de
hidrógeno.
Es un excelente
disolvente
Causa de deformaciones
celulares y de los movimientos
citoplasmáticos
Las moléculas superficiales están
fuertemente unidas a las del interior, pero no
a las externas de aire.
Elevada tensión
superficial
Para elevar su Tª ha de absorber mucho
calor, para romper los puentes de H.
Alto calor específico
Función termorreguladora: ayuda
a mantener constante la
temperatura corporal de los
animales homeotermos.
La energía calorífica debe ser tan alta que
rompa los puentes de hidrógeno.
Alto calor de
vaporización
Medio de transporte en el
organismo y medio lubricante
Los puentes de hidrógeno mantienen a las
moléculas unidas
Líquida a Tª
ambiente
FUNCIÓN BIOLÓGICADEBIDA APROPIEDAD
Eduardo Gómez 70
Sales minerales
Las sustancias minerales se pueden encontrar en los seres vivos de tres formas:
precipitadas, disueltas o asociadas a sustancias orgánicas.
1.- Las sustancias minerales precipitadas constituyen estructuras sólidas, insolubles,
con función esquelética. Por ejemplo, el carbonato cálcico en las conchas de los
moluscos, el fosfato cálcico, Ca3(P04)2, y el carbonato cálcico que, depositados sobre el
colágeno, constituyen los huesos, el cuarzo (SiO2) en los exoesqueletos de las
diatomeas y en las gramíneas, etc. Este tipo de sales pueden asociarse a
macromoléculas, generalmente de tipo proteico.
Eduardo Gómez 71
2.- Las sales minerales disueltas dan lugar a aniones y cationes. Los principales son:
Cationes: Na+ K+ Ca2+ y Mg2+.
Aniones: Cl-, S04
2-, PO4
3-, CO3
2-, HCO3
- y NO3
-.
Estos iones mantienen un grado de salinidad constante dentro del organismo, y
ayudan a mantener también constante su pH.
Cada ion desempeña funciones específicas y, a veces, antagónicas. Por ejemplo, el
K+ aumenta la turgencia de la célula, mientras que el Ca2+ la merma. Esto es debido a
que el K+ favorece la captación de moléculas de agua (inhibición) alrededor de las
partículas coloidales citoplasmáticas, mientras que el Ca2+ la dificulta.
Otro ejemplo es el corazón de la rana, que se para en sístole si hay exceso de Ca2+, y
en diástole si el exceso es de K+. El Ca2+ y el K+ son iones antagónicos.
El medio interno de los organismos presenta unas concentraciones iónicas
constantes. Una variación provoca alteraciones de la permeabilidad, excitabilidad y
contractilidad de las células.
Eduardo Gómez 72
3.- Las sustancias minerales asociadas a moléculas orgánicas suelen encontrarse
junto a proteínas, como las fosfoproteínas, junto a lípidos (fosfolípidos) y con glúcidos
(agar-agar)
Eduardo Gómez 73
Funciones de las sales minerales
Las principales funciones de las sales minerales disueltas son:
1. Estabilizar dispersiones coloidales.
2. Mantener un grado de salinidad en el medio interno. Este grado de
salinidad debe mantenerse constante.
3. Regulación del pH y constituir soluciones amortiguadoras. Se lleva a cabo
por los sistemas carbonato-bicarbonato, y también por el monofosfato-
bifosfato.
Eduardo Gómez 74
Funciones específicas
1. Funciones catalíticas. Algunos iones, como el Cu+, Mn2+, Mg2+,
Zn+,...actúan como cofactores enzimáticos
2. Funciones osmóticas. Intervienen en los procesos relacionados con la
distribución de agua entre el interior celular y el medio donde vive esa
célula, lo que ayuda al mantenimiento del volumen celular.
3. Generar potenciales eléctricos. Los iones de Na, K, Cl y Ca, participan en
la generación de gradientes electroquímicos, imprescindibles en el
mantenimiento del potencial de membrana y del potencial de acción y en
la sinapsis neuronal.
4. Regulación del volumen celular
Eduardo Gómez 75
Las principales funciones de las sales minerales precipitadas son:
• Formar estructuras esqueléticas y de protección (carbonato
cálcico, silicatos, fosfato cálcico)
Eduardo Gómez 76
DISOLUCIONES Y DISPERSIONES
En los seres vivos el estado líquido está constituido por dispersiones de muchos
tipos de moléculas dispersas o solutos y un solo tipo de fase dispersante o
disolvente, que es el agua.
Los solutos pueden ser de bajo peso molecular como, por ejemplo, el cloruro
sódico (PM = 58,5) y la glucosa (PM = 180), o pueden ser de elevado peso
molecular (se denominan coloides), como, por ejemplo, las proteínas de tipo
albúmina (PM entre 30 000 y 100 000).
Las dispersiones de solutos de bajo peso molecular se denominan disoluciones
verdaderas o simplemente disoluciones, y las de elevado peso molecular se
denominan dispersiones coloidales
Eduardo Gómez 77
Las propiedades de las disoluciones verdaderas
Las propiedades de las disoluciones verdaderas que más interés tienen en Biología
son la difusión, la osmosis y la estabilidad del grado de acidez o pH.
Difusión. Es la repartición homogénea de las partículas de un fluido (gas o líquido)
en el seno de otro, al ponerlos en contacto. Este proceso se debe al constante
movimiento en que se encuentran las partículas de líquidos y gases. La absorción
o disolución de oxígeno en el agua es un ejemplo de difusión.
Animación de
la difusión
Eduardo Gómez 78
Osmosis Es el paso del disolvente entre dos soluciones de diferente concentración a
través de una membrana semipermeable que impide el paso de las moléculas de
soluto.
El disolvente, que en los seres vivos es el agua, se mueve desde la disolución más
diluida a la más concentrada. Aparece un impulso de agua hacia la mas concentrada.
Eduardo Gómez 79
La membrana citoplasmática es una membrana semipermeable y da lugar a
diferentes respuestas frente a la presión osmótica del medio externo.
1. Si éste es isotónico respecto al medio interno celular, es decir, tiene la misma
concentración, la célula no se deforma.
2. Si el medio externo es hipotónico (menos concentrado), la célula se hinchará por
entrada de agua en su interior. Este fenómeno se llama turgencia y es
observable, por ejemplo, en los eritrocitos, añadiendo agua destilada a una gota
de sangre.
3. Si el medio externo es hipertónico (más concentrado), la célula perderá agua y se
arrugará, dándose un fenómeno de plasmólisis que acaba con la rotura de la
membrana. Esto sucede, por ejemplo, en los eritrocitos, cuando se añade agua
saturada de sal a una gota de sangre.
Eduardo Gómez 80
Eduardo Gómez 81
Los procesos de osmosis explican cómo las plantas consiguen absorber grandes
cantidades de agua del suelo, y por qué el agua del mar no sacia la sed, ya que al
estar más concentrada que el medio intracelular provoca la pérdida de agua en las
células.
Animación de ósmosis
http://www.consumer.es/web/es/medio_ambiente/urbano/2006/05/25/152370.php
http://www2.nl.edu/jste/osmosis.htm
Otras animaciones relacionadas:
Eduardo Gómez 82
Las propiedades de las dispersiones coloidales
La mayoría de los líquidos de los seres vivos son dispersiones coloidales, de ahí que
sea tan importante el estudio de sus propiedades. En estas soluciones, el tamaño de
las partículas del soluto es mucho mayor que en las soluciones verdaderas. Es el caso
de polisacáridos, proteínas y ácidos nucleicos. Sus principales propiedades son:
1. Efecto Tyndall
2. Movimiento browniano
3. Sedimentación
4. Elevada viscosidad
5. Elevada adsorción
6. Diálisis
7. Capacidad de presentarse en estado de gel
Eduardo Gómez 83
Efecto Tyndall.
El tamaño de las partículas coloidales oscila entre una milimicra y 0,2 micras, que es el
límite de observación en el microscopio óptico. Así pues, las dispersiones coloidales, al
igual que las disoluciones verdaderas, son transparentes y claras. Sin embargo, si se
iluminan lateralmente y sobre fondo oscuro, se observa una cierta opalescencia
provocada por la reflexión de los rayos luminosos. Es algo parecido a lo que ocurre
cuando un rayo de luz ilumina el polvo en una habitación a oscuras. Si la iluminación
es frontal, el polvo ya no resulta apreciable.
Eduardo Gómez 84
Sedimentación.
Las dispersiones coloidales son estables en condiciones normales, pero si se someten
a fuertes campos gravitatorios, se puede conseguir que sedimenten sus partículas.
Ello se realiza en las ultracentrifugadoras, que pueden alcanzar las 100000
revoluciones por minuto.
Movimiento browniano.
Las moléculas de los coloides se mueven
continuamente, impulsadas por el movimiento
browniano del agua (movimiento
desordenado y continuo de vibración que
tienen las partículas en suspensión). Este
movimiento aumenta las probabilidades de
encuentro de dos partículas reaccionantes.
Eduardo Gómez 85
Elevada viscosidad.
La viscosidad es la resistencia interna que presenta un líquido al movimiento relativo
de sus moléculas. Las dispersiones coloidales, dado el elevado tamaño de sus
moléculas, son muy viscosas.
Elevado poder adsorbente.
La adsorción es la atracción que ejerce la superficie de un sólido sobre las moléculas
de un líquido o de un gas. La misma cantidad de sustancia ejerce mayor adsorción si
se encuentra finamente dividida. Ejemplo biológico de adsorción son los contactos
«enzimas con sustratos»
Eduardo Gómez 86
Capacidad de presentarse en estado de gel. Las dispersiones coloidales pueden
presentar se en dos estados en forma de sol o estado líquido, y en forma de gel o
estado semisólido. La diferencia entre ambos estados es la cantidad de agua presente.
El sol tiene aspecto de líquido. El gel tiene aspecto semipastoso o gelatinoso.
La transformación de sol en gel, y viceversa, está en relación con la síntesis o con la
despolimerización, respectivamente, de proteínas fibrilares y permite la emisión de
pseudópodos, y, por tanto, el movimiento ameboide y la fagocitosis
Eduardo Gómez 87
Eduardo Gómez 88
Eduardo Gómez 89
Diálisis: Es la separación de las
partículas dispersas de elevado peso
molecular (coloides) de las de bajo
peso molecular (cristaloides), gracias
a una membrana semipermeable
cuyo tamaño de poro sólo deja pasar
las moléculas pequeñas (agua y
cristaloides), pero no las grandes.
Una aplicación clínica es la
hemodiálisis, que es la separación
de la urea de la sangre de individuos
con deficiencia renal.
Eduardo Gómez 90
Proceso de diálisis
Eduardo Gómez 91
Electroforesis: Es el transporte de las partículas coloidales gracias a la acción de un
campo eléctrico a través de un gel. Generalmente se utiliza para separar las distintas
proteínas que se extraen juntas en un tejido. La velocidad es mayor cuanto más alta
sea su carga eléctrica global y cuanto menor sea su tamaño (peso molecular). Se
suelen utilizar geles de almidón o de poliacrilamida.
Eduardo Gómez 92

More Related Content

What's hot (20)

Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Presentación compuestos quimicos
Presentación compuestos quimicosPresentación compuestos quimicos
Presentación compuestos quimicos
 
Bioelementos en el cuerpo humano
Bioelementos en el cuerpo humanoBioelementos en el cuerpo humano
Bioelementos en el cuerpo humano
 
Biomoleculas y macromoleculas
Biomoleculas y macromoleculasBiomoleculas y macromoleculas
Biomoleculas y macromoleculas
 
Macromoleculas
MacromoleculasMacromoleculas
Macromoleculas
 
Las biomoleculas
Las biomoleculasLas biomoleculas
Las biomoleculas
 
Moleculas biologicas
Moleculas biologicasMoleculas biologicas
Moleculas biologicas
 
Bioelementos
BioelementosBioelementos
Bioelementos
 
Biomoleculas inorganicas
Biomoleculas inorganicasBiomoleculas inorganicas
Biomoleculas inorganicas
 
Bioelementos
Bioelementos Bioelementos
Bioelementos
 
BIOELEMENTOS
BIOELEMENTOSBIOELEMENTOS
BIOELEMENTOS
 
Niveles De La Organizacion
Niveles De La OrganizacionNiveles De La Organizacion
Niveles De La Organizacion
 
Glucidos
GlucidosGlucidos
Glucidos
 
2. Metabolismo celular
2. Metabolismo celular2. Metabolismo celular
2. Metabolismo celular
 
Presentacion carbohidratos
Presentacion carbohidratosPresentacion carbohidratos
Presentacion carbohidratos
 
Proteinas
ProteinasProteinas
Proteinas
 
Organelos celulares y sus funciones PPT
Organelos celulares y sus funciones PPTOrganelos celulares y sus funciones PPT
Organelos celulares y sus funciones PPT
 
CARBOHIDRATOS
CARBOHIDRATOSCARBOHIDRATOS
CARBOHIDRATOS
 
Bioelementos Y BiomoléCulas
Bioelementos Y BiomoléCulasBioelementos Y BiomoléCulas
Bioelementos Y BiomoléCulas
 
Las biomoléculas
Las biomoléculasLas biomoléculas
Las biomoléculas
 

Viewers also liked

Los bioelementos, el agua y las sales minerales 2013
Los bioelementos, el agua y las sales minerales 2013Los bioelementos, el agua y las sales minerales 2013
Los bioelementos, el agua y las sales minerales 2013Alberto Hernandez
 
bioelementos, agua y sales minerales
bioelementos, agua y sales mineralesbioelementos, agua y sales minerales
bioelementos, agua y sales mineralesjuanapardo
 
Ud.2. bioelementos y agua
Ud.2. bioelementos y aguaUd.2. bioelementos y agua
Ud.2. bioelementos y aguabiologiahipatia
 
Bioelementos primarios y sus funciones en el cuerpo humano
Bioelementos primarios y sus funciones en el cuerpo humanoBioelementos primarios y sus funciones en el cuerpo humano
Bioelementos primarios y sus funciones en el cuerpo humanoIsabel97
 
Del ADN a las proteínas
Del ADN a las proteínasDel ADN a las proteínas
Del ADN a las proteínasEduardo Gómez
 
Mutaciones y evolución
Mutaciones y evoluciónMutaciones y evolución
Mutaciones y evoluciónEduardo Gómez
 
La diversidad de los microorganismos
La diversidad de los microorganismosLa diversidad de los microorganismos
La diversidad de los microorganismosEduardo Gómez
 
Tema 6 - 3 riesgos hidricos
Tema 6 - 3 riesgos hidricosTema 6 - 3 riesgos hidricos
Tema 6 - 3 riesgos hidricosEduardo Gómez
 
Tema 6 - 4 Riesgos de movimientos de laderas
Tema 6 - 4 Riesgos de movimientos de laderasTema 6 - 4 Riesgos de movimientos de laderas
Tema 6 - 4 Riesgos de movimientos de laderasEduardo Gómez
 
Tema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaTema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaEduardo Gómez
 
Tema 2 ctma-humanidad y medio ambiente
Tema 2 ctma-humanidad y medio ambienteTema 2 ctma-humanidad y medio ambiente
Tema 2 ctma-humanidad y medio ambienteEduardo Gómez
 
Tema 1. sistemas ambientales
Tema 1. sistemas ambientalesTema 1. sistemas ambientales
Tema 1. sistemas ambientalesEduardo Gómez
 
Principios inmediatos pp
Principios inmediatos ppPrincipios inmediatos pp
Principios inmediatos ppElviraSaez
 
Una australopiteca llamada lucy. ejercicio
Una australopiteca llamada lucy. ejercicioUna australopiteca llamada lucy. ejercicio
Una australopiteca llamada lucy. ejerciciomnmunaiz
 

Viewers also liked (20)

Los bioelementos, el agua y las sales minerales 2013
Los bioelementos, el agua y las sales minerales 2013Los bioelementos, el agua y las sales minerales 2013
Los bioelementos, el agua y las sales minerales 2013
 
bioelementos, agua y sales minerales
bioelementos, agua y sales mineralesbioelementos, agua y sales minerales
bioelementos, agua y sales minerales
 
Ud.2. bioelementos y agua
Ud.2. bioelementos y aguaUd.2. bioelementos y agua
Ud.2. bioelementos y agua
 
Bioelementos
BioelementosBioelementos
Bioelementos
 
Bioelementos primarios y sus funciones en el cuerpo humano
Bioelementos primarios y sus funciones en el cuerpo humanoBioelementos primarios y sus funciones en el cuerpo humano
Bioelementos primarios y sus funciones en el cuerpo humano
 
Del ADN a las proteínas
Del ADN a las proteínasDel ADN a las proteínas
Del ADN a las proteínas
 
T1 astronomía cmc
T1 astronomía cmcT1 astronomía cmc
T1 astronomía cmc
 
Leyes de la herencia
Leyes de la herenciaLeyes de la herencia
Leyes de la herencia
 
Mutaciones y evolución
Mutaciones y evoluciónMutaciones y evolución
Mutaciones y evolución
 
La diversidad de los microorganismos
La diversidad de los microorganismosLa diversidad de los microorganismos
La diversidad de los microorganismos
 
Tema 6 - 3 riesgos hidricos
Tema 6 - 3 riesgos hidricosTema 6 - 3 riesgos hidricos
Tema 6 - 3 riesgos hidricos
 
Lípidos
LípidosLípidos
Lípidos
 
Tema 6 - 4 Riesgos de movimientos de laderas
Tema 6 - 4 Riesgos de movimientos de laderasTema 6 - 4 Riesgos de movimientos de laderas
Tema 6 - 4 Riesgos de movimientos de laderas
 
Hominización
HominizaciónHominización
Hominización
 
Tema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaTema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genética
 
Tema 2 ctma-humanidad y medio ambiente
Tema 2 ctma-humanidad y medio ambienteTema 2 ctma-humanidad y medio ambiente
Tema 2 ctma-humanidad y medio ambiente
 
Tema 1. sistemas ambientales
Tema 1. sistemas ambientalesTema 1. sistemas ambientales
Tema 1. sistemas ambientales
 
Principios inmediatos pp
Principios inmediatos ppPrincipios inmediatos pp
Principios inmediatos pp
 
Ácidos nucleicos
Ácidos nucleicosÁcidos nucleicos
Ácidos nucleicos
 
Una australopiteca llamada lucy. ejercicio
Una australopiteca llamada lucy. ejercicioUna australopiteca llamada lucy. ejercicio
Una australopiteca llamada lucy. ejercicio
 

Similar to Bioelementos y sales minerales en los seres vivos

Similar to Bioelementos y sales minerales en los seres vivos (20)

Bioelementos y biomoleculas.
Bioelementos y biomoleculas. Bioelementos y biomoleculas.
Bioelementos y biomoleculas.
 
Tema 1 Bioelementos, agua y sales minerales.ppt
Tema 1 Bioelementos, agua y sales minerales.pptTema 1 Bioelementos, agua y sales minerales.ppt
Tema 1 Bioelementos, agua y sales minerales.ppt
 
Bioelementos
BioelementosBioelementos
Bioelementos
 
Kimik
KimikKimik
Kimik
 
BIOELEMENTOS.pdf
BIOELEMENTOS.pdfBIOELEMENTOS.pdf
BIOELEMENTOS.pdf
 
BIOELEMENTOS Y BIOMOLÉCULAS AGUA Y SALES MINERALES
BIOELEMENTOS Y BIOMOLÉCULAS AGUA Y SALES MINERALESBIOELEMENTOS Y BIOMOLÉCULAS AGUA Y SALES MINERALES
BIOELEMENTOS Y BIOMOLÉCULAS AGUA Y SALES MINERALES
 
Proyecto bloque ll ciencias maestra maite (1)
Proyecto bloque ll ciencias maestra maite (1)Proyecto bloque ll ciencias maestra maite (1)
Proyecto bloque ll ciencias maestra maite (1)
 
Proyecto bloque
Proyecto bloqueProyecto bloque
Proyecto bloque
 
Proyecto ii
Proyecto iiProyecto ii
Proyecto ii
 
Proyecto bloque2 ciencias
Proyecto bloque2 cienciasProyecto bloque2 ciencias
Proyecto bloque2 ciencias
 
Proyecto bloque2 ciencias
Proyecto bloque2 cienciasProyecto bloque2 ciencias
Proyecto bloque2 ciencias
 
Quimica bioinoganica de ca y mg
Quimica bioinoganica de ca y mgQuimica bioinoganica de ca y mg
Quimica bioinoganica de ca y mg
 
Tema 1
Tema 1Tema 1
Tema 1
 
Bioelementos Fisica 1
Bioelementos Fisica 1Bioelementos Fisica 1
Bioelementos Fisica 1
 
tema 0.pptx
tema 0.pptxtema 0.pptx
tema 0.pptx
 
Proyecto bloque ii
Proyecto bloque iiProyecto bloque ii
Proyecto bloque ii
 
11 1 taller biologa-
11 1 taller biologa-11 1 taller biologa-
11 1 taller biologa-
 
T9_BIOQUIMICA.pdf
T9_BIOQUIMICA.pdfT9_BIOQUIMICA.pdf
T9_BIOQUIMICA.pdf
 
BIOQUIMICA.pdf
BIOQUIMICA.pdfBIOQUIMICA.pdf
BIOQUIMICA.pdf
 
Bioelementos
BioelementosBioelementos
Bioelementos
 

More from Eduardo Gómez

Dinamica de poblaciones
Dinamica de poblacionesDinamica de poblaciones
Dinamica de poblacionesEduardo Gómez
 
Niveles troficos en el ecosistema 1
Niveles troficos en el ecosistema 1Niveles troficos en el ecosistema 1
Niveles troficos en el ecosistema 1Eduardo Gómez
 
Niveles troficos en el ecosistema 2
Niveles troficos en el ecosistema 2Niveles troficos en el ecosistema 2
Niveles troficos en el ecosistema 2Eduardo Gómez
 
Niveles troficos en el ecosistema 3
Niveles troficos en el ecosistema 3Niveles troficos en el ecosistema 3
Niveles troficos en el ecosistema 3Eduardo Gómez
 
Autorregulacion del ecosistema
Autorregulacion del ecosistemaAutorregulacion del ecosistema
Autorregulacion del ecosistemaEduardo Gómez
 
Relaciones intraespecíficas
Relaciones intraespecíficasRelaciones intraespecíficas
Relaciones intraespecíficasEduardo Gómez
 
Relaciones interespecíficas
Relaciones interespecíficasRelaciones interespecíficas
Relaciones interespecíficasEduardo Gómez
 
Tema 8. Clasificación y diversidad de los seres vivos
Tema 8. Clasificación y diversidad de los seres vivosTema 8. Clasificación y diversidad de los seres vivos
Tema 8. Clasificación y diversidad de los seres vivosEduardo Gómez
 
Anabolismo la fotosíntesis
Anabolismo la fotosíntesisAnabolismo la fotosíntesis
Anabolismo la fotosíntesisEduardo Gómez
 
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8Eduardo Gómez
 
Tema 2 organización celular de los seres vivos
Tema 2  organización celular de los seres vivosTema 2  organización celular de los seres vivos
Tema 2 organización celular de los seres vivosEduardo Gómez
 
Metamorfismo y rocas metamórficas
Metamorfismo y rocas metamórficasMetamorfismo y rocas metamórficas
Metamorfismo y rocas metamórficasEduardo Gómez
 
Deformaciones de la corteza
Deformaciones de la cortezaDeformaciones de la corteza
Deformaciones de la cortezaEduardo Gómez
 
Tema 15 dinamica litosferica y tectónica de placas
Tema 15  dinamica litosferica y tectónica de placasTema 15  dinamica litosferica y tectónica de placas
Tema 15 dinamica litosferica y tectónica de placasEduardo Gómez
 

More from Eduardo Gómez (20)

Sucesiones ecologicas
Sucesiones ecologicasSucesiones ecologicas
Sucesiones ecologicas
 
Dinamica de poblaciones
Dinamica de poblacionesDinamica de poblaciones
Dinamica de poblaciones
 
Niveles troficos en el ecosistema 1
Niveles troficos en el ecosistema 1Niveles troficos en el ecosistema 1
Niveles troficos en el ecosistema 1
 
Niveles troficos en el ecosistema 2
Niveles troficos en el ecosistema 2Niveles troficos en el ecosistema 2
Niveles troficos en el ecosistema 2
 
Niveles troficos en el ecosistema 3
Niveles troficos en el ecosistema 3Niveles troficos en el ecosistema 3
Niveles troficos en el ecosistema 3
 
Autorregulacion del ecosistema
Autorregulacion del ecosistemaAutorregulacion del ecosistema
Autorregulacion del ecosistema
 
Factores limitantes
Factores limitantesFactores limitantes
Factores limitantes
 
Las plagas
Las plagasLas plagas
Las plagas
 
Relaciones intraespecíficas
Relaciones intraespecíficasRelaciones intraespecíficas
Relaciones intraespecíficas
 
Relaciones interespecíficas
Relaciones interespecíficasRelaciones interespecíficas
Relaciones interespecíficas
 
Mimicry
MimicryMimicry
Mimicry
 
Mitocondrias
MitocondriasMitocondrias
Mitocondrias
 
Tema 8. Clasificación y diversidad de los seres vivos
Tema 8. Clasificación y diversidad de los seres vivosTema 8. Clasificación y diversidad de los seres vivos
Tema 8. Clasificación y diversidad de los seres vivos
 
Quimiosíntesis
QuimiosíntesisQuimiosíntesis
Quimiosíntesis
 
Anabolismo la fotosíntesis
Anabolismo la fotosíntesisAnabolismo la fotosíntesis
Anabolismo la fotosíntesis
 
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8
Ciclo celular, Replicación del ADN y Reproducción celular. Tema 8
 
Tema 2 organización celular de los seres vivos
Tema 2  organización celular de los seres vivosTema 2  organización celular de los seres vivos
Tema 2 organización celular de los seres vivos
 
Metamorfismo y rocas metamórficas
Metamorfismo y rocas metamórficasMetamorfismo y rocas metamórficas
Metamorfismo y rocas metamórficas
 
Deformaciones de la corteza
Deformaciones de la cortezaDeformaciones de la corteza
Deformaciones de la corteza
 
Tema 15 dinamica litosferica y tectónica de placas
Tema 15  dinamica litosferica y tectónica de placasTema 15  dinamica litosferica y tectónica de placas
Tema 15 dinamica litosferica y tectónica de placas
 

Recently uploaded

La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesRaquel Martín Contreras
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 

Recently uploaded (20)

La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materiales
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 

Bioelementos y sales minerales en los seres vivos

  • 1. Bioelementos, agua y sales minerales Tema 1
  • 2. Bioelementos Estos elementos que se encuentran en la materia viva se llaman bioelementos o elementos biogénicos (de bios, vida, y genos, origen). Los bioelementos se pueden clasificar en dos grupos: • bioelementos primarios • bioelementos secundarios. Si se hace un análisis químico de cada uno de los diferentes tipos de seres vivos, se encuentra que la materia viva está constituida por unos setenta elementos, (casi la totalidad de los elementos estables que existen en la Tierra, exceptuando los gases nobles). Eduardo Gómez 2
  • 3. Porcentaje de elementos que encontramos en los seres vivos Eduardo Gómez 3
  • 4. Los bioelementos primarios. Se llaman primarios porque son indispensables para la formación de las biomoléculas orgánicas (glúcidos, lípidos, proteínas y ácidos nucleicos). Son un grupo de seis elementos, que constituyen el 96,2 % del total de la materia viva. Bioelementos primarios Carbono (C) Hidrógeno (H) Oxígeno (O) Nitrógeno (N) Azufre (S) Fósforo (P) Eduardo Gómez 4
  • 5. Los bioelementos secundarios: Son todos los bioelementos restantes. En este grupo se pueden distinguir dos tipos: • Los indispensables, no pueden faltar porque son imprescindibles para la vida de la célula, y que, en mayor o menor proporción, se encuentran en todos los seres vivos. Son bioelementos secundarios indispensables el calcio (Ca), el sodio (Na), el potasio (K), el magnesio (Mg), el cloro (Cl), el hierro (Fe), el silicio (Si), el cobre (Cu), el manganeso (Mn), el boro (B), el flúor (F) y el yodo (I). • Los variables, que son los que si pueden faltar en algunos organismos. Son bioelementos secundarios variables, por ejemplo, el bromo (Br), el cinc (Zn), el titanio (Ti), el vanadio (V), y el plomo (Pb). Eduardo Gómez 5
  • 6. Otra clasificación de los bioelementos es la basada en su abundancia. Los que se encuentran en proporciones inferiores al 0.1 % se denominan oligoelementos y el resto bioelementos plásticos. No existe una relación directa entre abundancia y esencialidad. Muchos bioelementos pueden ser, por ejemplo, oligoelementos, y a la vez ser indispensables, debido a que su función no es estructural, sino catalizadora. Así, una pequeña cantidad de ellos es suficiente para que el organismo viva, pero la falta total provocaría su muerte. Eduardo Gómez 6
  • 7. Otra clasificación de los bioelementos establece tres categorías: Bioelementos primarios o principales: C, H, O, N Son los elementos mayoritarios de la materia viva, constituyen el 95% de la masa total. Bioelementos secundarios S, P, Mg, Ca, Na, K, Cl: Los encontramos formando parte de todos los seres vivos, y en una proporción del 4,5%. Oligoelementos Se denominan así al conjunto de elementos químicos que están presentes en los organismos en forma vestigial, pero que son indispensables para el desarrollo armónico del organismo. Eduardo Gómez 7
  • 8. Bioelementos primarios Si se compara la composición atómica de la biosfera, con la composición de la atmósfera, de la hidrosfera y de la litosfera, se pueden deducir las siguientes conclusiones: Los altos porcentajes de H y O en la biosfera se deben a que la materia viva está constituida por agua en un porcentaje que varía entre un 65% y un 90% . A su vez todas las reacciones químicas que se realizan en los seres vivos se desarrollan en el medio acuoso. No es posible la materia viva sin agua. Todo esto se relaciona con que la vida se originó en el medio acuático. Los porcentajes del resto de los bioelementos primarios (C, N, S y P) de la biosfera son muy diferentes de los encontrados en la atmósfera, hidrosfera o litosfera, por lo que no se puede deducir que la materia viva se haya formado a partir de los elementos más abundantes, sino a partir solo de aquellos (C, H, O, N, P y S) que gracias a sus propiedades son capaces de constituirla. Eduardo Gómez 8
  • 10. 62 20 10 3 2.5 1.1 0.2 0.1 0.1 0.1 0.1 0.01 0 0 0 10 20 30 40 50 60 70 O C H N Ca P Cl S K Na Mg Fe Si Al Porcentajedeabundancia(%) Tipos de elementos Biosfera 21 0.03 0 78 0 0 0 0 0 0 0 0 0 0 0 10 20 30 40 50 60 70 80 90 O C H N Ca P Cl S K Na Mg Fe Si Al Porcentajedeabundancia(%) Tipos de elementos Atmósfera 33 0 66 0 0 0 0.33 0.02 0.01 0.3 0.03 0 0 0 0 10 20 30 40 50 60 70 O C H N Ca P Cl S K Na Mg Fe Si Al Porcentajedeabundancia(%) Tipos de elementos Hidrosfera 46.5 0.2 0.1 0 3.6 0.1 0 0.04 2.6 2.8 2.1 5 27.7 8.1 0 10 20 30 40 50 O C H N Ca P Cl S K Na Mg Fe Si Al Porcentajedeabundancia(%) Tipos de elementos Litosfera Eduardo Gómez 10
  • 11. 1. Masa atómica es relativamente pequeña, y su capa externa está incompleta y esto favorece que al combinarse entre sí se establezcan enlaces covalentes estables. Cuanto menor es un átomo, mayor es la tendencia del núcleo positivo a completar su último orbital con los electrones que forman los enlaces, y, por tanto, más estables son dichos enlaces. Propiedades de los bioelementos primarios Eduardo Gómez 11
  • 12. 2. Dado que el oxígeno y el nitrógeno son elementos muy electronegativos, al establecer enlaces covalentes con los otros tipos de átomos con frecuencia dan lugar a moléculas dipolares. Dado que el agua también es dipolar, estos compuestos se disuelven bien en ella y pueden reaccionar entre sí, haciendo posible los procesos bioquímicos imprescindibles para la vida. El C, N y O pueden formar enlaces dobles o triples (posibilidad de formar moléculas diferentes). Eduardo Gómez 12
  • 14. 3. El C y el N, debido a su posición central en el Sistema Periódico presentan la misma afinidad para unirse con el O que con el H, es decir, pueden pasar con facilidad del estado oxidado (CO2, NO3H) al reducido (CH4, NH3). Eduardo Gómez 14
  • 15. 4. Los bioelementos mayoritarios pueden incorporarse fácilmente a los seres vivos desde el medio externo ya que se encuentra en moléculas que pueden ser captadas de manera sencilla (CO2, H2O, nitratos). Este hecho asegura el intercambio constante de materia entre los organismos vivos y su medio ambiente Nitratos, Fosfatos H2O, fosfatos CO2 O2 ATMÓSFERA HIDRÓSFERA GEOSFERA Seres vivos Eduardo Gómez 15
  • 16. 5. Los compuestos orgánicos formados por estos átomos se hallan en estado reducido, y reaccionan con el oxígeno para dar compuestos inorgánicos (CO2 y H2O), de baja energía. La energía desprendida en las reacciones de oxidación se aprovecha para las funciones vitales de los organismos. Eduardo Gómez 16
  • 17. El carbono 1. Tiene cuatro electrones en su periferia y puede formar enlaces covalentes estables con otros carbonos. 2. Puede constituir largas cadenas de átomos (macromoléculas). 3. Los enlaces pueden ser simples (C—C), dobles (C=C) o triples (C≡C), Puede unirse a otros elementos (-H, =0, -OH, -NH2. -SH, -H2PO4, etc.), formando un gran número de moléculas diferentes, que posibilitan una gran variabilidad de reacciones químicas. 4. Por otro lado, los cuatro enlaces covalentes forman un tetraedro imaginario. Esto permite la formación de estructuras tridimensionales que permiten forman grandes macromoléculas. Los enlaces de carbono son lo suficientemente fuerte para ser estable, pero no tanto como para impedir que se rompan. Eduardo Gómez 17
  • 19. El hidrógeno 1. Es el otro elemento que resulta indispensable para formar la materia orgánica (algunos lípidos sólo están constituidos por carbono e hidrógeno y el petróleo y sus derivados (butano, gasolina, gasóleo, etc.) también están constituidos sólo por carbono e hidrógeno). 2. El único electrón que posee el átomo de hidrogeno le permite formar un enlace con cualquiera de los otros bioelementos primarios. Entre el hidrógeno y el carbono se forma un enlace covalente lo suficientemente fuerte como para ser estable, pero no tanto como para impedir su rotura, y posibilitar así la síntesis de otras moléculas. 3. Las que están formadas sólo por carbono e hidrógeno son covalentes apolares (insolubles en agua). Eduardo Gómez 19
  • 20. Es el bioelemento primario más electronegativo. Por ello cuando se enlaza con el hidrógeno atrae hacia sí el único electrón del hidrógeno originándose polos eléctricos. Debido a esto, los radicales -OH, -CHO y -COOH son radicales polares. Debido a su electronegatividad el oxígeno es idóneo para quitar electrones a otros átomos, es decir, para oxidarlos. Este proceso comporta la rotura de enlaces y la liberación de energía (la reacción de los compuestos de carbono con el oxígeno es la forma más común de obtener energía). La oxidación de los compuestos biológicos se realiza mediante la sustracción de hidrógenos a los átomos de carbono. Como el oxígeno atrae hacia sí el electrón del hidrógeno con más fuerza que el carbono, consigue quitárselo. De este modo se forma agua y se libera una gran cantidad de energía, que aprovechan los seres vivos. C6H12O6 + 6O2  6CO2 + 6H2O + energía El oxígeno Eduardo Gómez 20
  • 21. El nitrógeno 1. Al igual que el carbono y el azufre, presenta una gran facilidad para formar compuestos tanto con el hidrógeno (NH3) como con el oxígeno (NO3 -), lo cual permite, en el paso de una forma a la otra, la liberación de energía. 2. Principalmente se encuentra formando los grupos amino (—NH2) de los aminoácidos (moléculas que constituyen las proteínas) y las bases nitrogenadas, (componentes de los ácidos nucleicos). 3. Es de destacar que, pese a la gran abundancia de gas nitrógeno en la atmósfera, muy pocos organismos son capaces de aprovecharlo. Prácticamente todo el nitrógeno es incorporado al mundo vivo por las algas y las plantas, que lo absorben disuelto en forma de ion nitrato (NO3 -). Eduardo Gómez 21
  • 22. El azufre Básicamente se encuentra en forma de radical sulfhidrilo (—SH) en determinados aminoácidos. Estos radicales permiten establecer, entre dos aminoácidos próximos, unos enlaces covalentes fuertes denominados puentes disulfuro (-S-S-), que mantienen la estructura de las proteínas. Eduardo Gómez 22
  • 23. El fósforo Este elemento permite establecer enlaces ricos en energía. Al romperse el enlace que une dos grupos fosfato —PO3-~PO3-~PO3 2-, generalmente de una molécula de ATP, se libera al organismo la energía contenida en dicho enlace, (7,3 kcal/mol). En estos enlaces se almacena la energía liberada en otras reacciones, como las oxidaciones de la respiración. Además, el fósforo interviene en la constitución de los ácidos nucleicos (ADN y ARN), de los fosfolípidos de la membrana plasmática y de los huesos de los vertebrados, y ayuda a mantener constante la acidez del medio interno del organismo. Eduardo Gómez 23
  • 24. Los bioelementos secundarios Tienen diferentes funciones. Se puede distinguir entre los que son abundantes y los oligoelementos. Los más abundantes son el Na, K, Mg Cl y Ca. Sus funciones son: 1. Los iones Na+, K+ y Cl-, que son los iones más abundantes en los medios internos y en el interior de las células, intervienen en el mantenimiento del grado de salinidad y en el equilibrio de cargas eléctricas a un lado y otro de la membrana plasmática. 2. Los iones Na+ y K+, además, son fundamentales en la transmisión del impulso nervioso. Eduardo Gómez 24
  • 25. El magnesio es un componente de muchas enzimas y del pigmento clorofila. También interviene en la síntesis y degradación del ATP, en la replicación del ADN y en su estabilización, en la síntesis del ARN, etc. El calcio, en forma de carbonato (CaCO3), da lugar a los caparazones de los moluscos y a los esqueletos de otros muchos animales y, como ion (Ca2+), actúa en muchas reacciones, como los mecanismos de la contracción muscular, la permeabilidad de las membranas celulares, la coagulación de la sangre, etc. Entre los oligoelementos cabe citar, por la importancia de sus funciones, el Fe, Zn, Cu, Co, Mn, Li, Si, I y F. Eduardo Gómez 25
  • 26. El hierro es necesario para sintetizar la hemoglobina de la sangre y la mioglobina, dos transportadores de moléculas de oxígeno, y los citocromos, enzimas que intervienen en la respiración celular. El cinc es abundante en el cerebro, en los órganos sexuales y en el páncreas. En este último se asocia a la acción de la hormona insulina para el control de la concentración del azúcar en sangre. El cobre se requiere para formar la hemocianina, pigmento respiratorio de muchos invertebrados acuáticos, y para algunas enzimas oxidasas. Eduardo Gómez 26
  • 27. El cobalto hace falta para sintetizar la vitamina B12 y algunas enzimas que regulan la fijación del nitrógeno. Eduardo Gómez 27
  • 28. El manganeso actúa asociado a diversas enzimas degradativas de proteínas, como factor de crecimiento, y en los procesos fotosintéticos. Su deficiencia origina por ello amarillamiento de las hojas. El litio actúa incrementando la secreción de los neurotransmisores y favorece la estabilidad del estado de ánimo en enfermos de depresiones endógenas. El silicio forma parte de los caparazones de las diatomeas y da rigidez a los tallos de las gramíneas y de los equisetos. Eduardo Gómez 28
  • 29. El yodo es necesario para formar la hormona tiroidea, responsable del ritmo del metabolismo energético. Su falta provoca el bocio. El flúor se encuentra en el esmalte de los dientes y en los huesos. Su carencia favorece la caries de los dientes. Eduardo Gómez 29
  • 30. Los principios inmediatos o biomoléculas Los elementos biogénicos se combinan entre sí para formar sustancias compuestas definidas. Estos compuestos que se pueden aislar por medios puramente físicos como la disolución, la filtración, la destilación, la centrifugación, etc. constituyen los llamados principios inmediatos. Pueden ser: • Inorgánicos (agua y sales minerales) • Orgánicos (glúcidos, lípidos, prótidos y ácidos nucleicos). Los principios inmediatos también pueden ser simples o compuestos: • Simples: Las moléculas están formadas por átomos del mismo tipo (02) • Compuestos: Hay átomos de diferentes elementos (H2O, CO2). Eduardo Gómez 30
  • 31. PRINCIPIOS INMEDIATOS Simples oxígeno molecular (02) y nitrógeno molecular (N2) Compuestos Inorgánicos (unidos por enlaces iónicos) agua, dióxido de carbono y sales minerales Orgánicos (unidos por enlaces covalentes) Glúcidos, lípidos, proteínas y ácidos nucleicos Eduardo Gómez 31
  • 32. Los principios inmediatos pueden tener función estructural, como las proteínas y las sales minerales de los huesos, o los lípidos de las membranas plasmáticas; función energética, como las grasas; y función biocatalizadora, es decir, aceleradora de las reacciones bioquímicas, como las proteínas enzimáticas. Funciones Eduardo Gómez 32
  • 33. Principios inmediatos inorgánicos El 02, el C02 y el N2 son tres sustancias gaseosas a temperatura ambiente. • El 02 es necesario para la respiración aeróbica o un producto de excreción en la fotosíntesis. • El C02 es un producto de excreción, eliminándose directamente a través de las membranas celulares en los organismos unicelulares o en los pluricelulares de organización sencilla. Lo captan de la atmósfera las algas y las plantas al realizar la fotosíntesis en sus cloroplastos. • El N2 es prácticamente un gas inerte, y por ello los vegetales son incapaces de tomarlo de la atmósfera; sólo algunas bacterias del suelo (por ejemplo, Clostridium pasteurianum) y otras que son simbiontes de las raíces de las leguminosas (algunas especies del género Rhizobium) son capaces de captarlo y aprovecharlo para sintetizar proteínas. Eduardo Gómez 33
  • 34. El agua El agua es la sustancia química más abundante en la materia viva. La cantidad presente en un organismo depende de la especie, de la edad del individuo y del órgano. Organismo % agua Tejido % agua Algas Caracol Crustáceos Espárragos Espinacas Estrella mar Persona adulta Hongos Lechuga Lombriz Maíz Medusa Pino Semilla Tabaco Trébol 98 80 77 93 93 76 62 80 95 83 86 95 47 10 92 90 Líq. cefalorraquídeo Sangre (plasma) Sangre (Gl. rojos) Tej. nervioso (s.gris) Tej. nervioso (Médula) Tej. nervioso (s.blanca) Músculo Piel Hígado Tej. conjuntivo Hueso (sin medula) Tej. adiposo Dentina 99 91-93 60-65 85 75 70 75-80 72 70-75 60 20-25 10-20 3 Eduardo Gómez 34
  • 35. CUADRO RESUMEN DE LAS BIOMOLÉCULAS Existe una relación directa entre contenido en agua y actividad fisiológica de un organismo: Los más activos, como las reacciones bioquímicas se realizan en medio acuático, tienen más cantidad de agua. También tiene relación con el medio en el que se desenvuelve el organismo. Así, los menores porcentajes se dan en seres con vida latente, como semillas, virus, etc., pero también encontramos altos porcentajes de agua en seres como la medusa (95% de agua) pese a su metabolismo poco intenso. El contenido de agua de un organismo tiene que ser más o menos constante, con variaciones inferiores al 10%. En caso contrario, se producen graves alteraciones (hidratación y deshidratación) que sobre todo en el último caso pueden producir la muerte. Eduardo Gómez 35
  • 36. El agua se encuentra en la materia viva en tres formas: 1. Como agua circulante, por ejemplo, en la sangre, en la savia, etc. Se encarga principalmente del transporte de sustancias. 2. Como agua intersticial, entre las células, a veces fuertemente adherida a la sustancia intercelular (agua de imbibición), como sucede en el tejido conjuntivo. 3. Como agua intracelular, en el citosol y en el interior de los orgánulos celulares. En los seres humanos, el agua circulante supone el 8 % de su peso, el agua intersticial el 15 %, y el agua intracelular el 40 % Agua intercelular Células Agua circulante (sangre, savia…) Agua intersticial Eduardo Gómez 36
  • 37. Los organismos pueden conseguir el agua directamente a partir del agua exterior o a partir de otras biomoléculas mediante diferentes reacciones bioquímicas, es lo que se denomina «agua metabólica» (en los camellos, la degradación de la grasa de la joroba produce agua y por ejemplo, a partir de la oxidación de la glucosa, también aparece agua). Eduardo Gómez 37
  • 38. El agua, a temperatura ambiente, es líquida, (otras moléculas de peso molecular parecido, como el SO2, el CO2 o el NO2 son gases). Este comportamiento físico se debe a que en la molécula de agua los dos electrones de los dos hidrógenos están desplazados hacia el átomo de oxígeno, por lo que en la molécula aparece un polo negativo, donde está el átomo de oxígeno, debido a la mayor densidad electrónica, y dos polos positivos donde están los dos núcleos de hidrógeno, debido a la menor densidad electrónica. Las moléculas de agua son dipolos. Eduardo Gómez 38
  • 39. Entre los dipolos del agua se establecen fuerzas de atracción llamadas puentes de hidrógeno, formándose grupos de 3, 4 y hasta poco más de 9 moléculas. Con ello se alcanzan pesos moleculares elevados y el H2O se comporta como un líquido. Aunque son uniones débiles (30 veces más que los enlaces covalentes), el hecho de que alrededor de cada molécula de agua se dispongan otras 4 moléculas unidas por puentes de H (dos puentes con el oxígeno y uno con cada uno de los hidrógenos) permite que se forme en el agua (líquida o sólida) una estructura reticular, responsable de su comportamiento anómalo y de la peculiaridad de sus propiedades fisicoquímicas. Eduardo Gómez 39
  • 41. La estabilidad del enlace disminuye al aumentar la temperatura, así, en el hielo, todas las moléculas de agua están unidas por puentes de hidrógeno. Todas las restantes propiedades del agua son, pues, consecuencia de ésta. Estas agrupaciones duran fracciones de segundo (de 10-10 a 10-21 s), lo cual confiere al agua todas sus propiedades de fluido. En la realidad, coexisten estos pequeños polímeros de agua con moléculas aisladas que rellenan los huecos. Animación de la polaridad del agua y puentes de hidrógeno Eduardo Gómez 41
  • 42. Propiedades del agua 1. Elevada fuerza de cohesión 2. Elevada tensión superficial 3. Elevada fuerza de adhesión (capilaridad). 4. Elevado calor específico. 5. Elevado calor de vaporización. 6. Alta conductividad. 7. Mayor densidad en estado líquido que en estado sólido (Coeficiente de dilatación negativo). 8. Elevada constante dieléctrica. 9. Transparencia. 10. Bajo grado de ionización. Eduardo Gómez 42
  • 43. 1.- Elevada fuerza de cohesión entre sus moléculas, debida a los puentes de hidrógeno Ello explica que el agua sea un líquido prácticamente incompresible, idóneo para dar volumen a las células, provocar la turgencia de las plantas, constituir el esqueleto hidrostático de anélidos y celentéreos, etc. Eduardo Gómez 43
  • 44. 2.- Elevada tensión superficial, es decir, que su superficie opone una gran resistencia a romperse, a que se separen sus moléculas. Esto permite que muchos organismos vivan asociados a esa película superficial y que se desplacen sobre ella. Eduardo Gómez 44
  • 45. 3.- Elevada fuerza de adhesión (capilaridad). El fenómeno de la capilaridad depende tanto de la adhesión de las moléculas de agua a las paredes de los conductos como de la cohesión de las moléculas de agua entre sí. Esta propiedad explica, por ejemplo, que la savia bruta ascienda por los tubos capilares Eduardo Gómez 45
  • 46. 4.- Elevado calor específico. • El agua puede absorber grandes cantidades de calor, mientras que, proporcionalmente, su temperatura sólo se eleva ligeramente. • El agua emplea esta energía en romper los puentes de H. • El agua se convierte en estabilizador térmico del organismo frente a los cambios bruscos de temperatura del ambiente. • Su temperatura desciende con más lentitud que la de otros líquidos a medida que va liberando energía al enfriarse. • Esta propiedad permite que el contenido acuoso de las células sirva de protección a las sensibles moléculas orgánicas ante los cambios bruscos de temperatura. • El calor que se desprende en los procesos metabólicos no se acumula en los lugares donde se produce, sino que se difunde en el medio acuoso y se disipa finalmente hacia el medio externo. Eduardo Gómez 46
  • 47. 5.- Elevado calor de vaporización. Ello se debe a que para pasar del estado líquido al gaseoso hay que romper todos los puentes de hidrógeno. Los seres vivos utilizan esta propiedad para refrescarse al evaporarse el sudor. El jadeo de los animales es otra forma de refrescarse 6.- Alta conductividad. Debido a esta propiedad, el calor se distribuye fácilmente por toda la masa de agua, lo que evita la acumulación de calor en un determinado punto del organismo. Eduardo Gómez 47
  • 48. 7.- Mayor densidad en estado líquido que en estado sólido (Coeficiente de dilatación negativo). Ello explica que el hielo flote en el agua y que forme una capa superficial termoaislante que permite la vida, bajo ella, en ríos, mares y lagos. Si el hielo fuera más denso que el agua, acabaría helándose toda el agua. Esto se explica por que los puentes de hidrógeno “congelados” mantienen las moléculas más separadas que en el estado líquido. Eduardo Gómez 48
  • 49. 8.- Elevada constante dieléctrica. Por tener moléculas dipolares, el agua es un gran medio disolvente de compuestos iónicos, como las sales minerales, y de compuestos covalentes polares, como los glúcidos. El proceso de disolución se debe a que las moléculas de agua, al ser polares, se disponen alrededor de los grupos polares del soluto, llegando en el caso de los compuestos iónicos a desdoblarlos en aniones y cationes, que quedan así rodeados por moléculas de agua. Este fenómeno se denomina solvatación iónica. Eduardo Gómez 49
  • 51. Esta capacidad disolvente del agua y su abundancia en el medio natural explican que sea el vehículo de transporte (captación de sales minerales por las plantas, por ejemplo) y el medio donde se realizan todas las reacciones químicas del organismo (caso de la digestión de los alimentos) Eduardo Gómez 51
  • 52. 9.- Transparencia. Debido a esta característica física del agua, es posible la vida de especies fotosintéticas en el fondo de mares y ríos. Eduardo Gómez 52
  • 53. 10.- Bajo grado de ionización. De cada 551000000 de moléculas de agua, sólo una se encuentra ionizada: Por eso, la concentración de iones hidronio (H30+) e hidroxilo (OH-) es muy baja, concretamente 10-7 moles por litro ([H30+] = [OH-] = 10-7). Dados los bajos niveles de H30+y de OH- , si al agua se le añade un ácido (se añade H30+) o una base (se añade OH-), aunque sea en muy poca cantidad, estos niveles varían bruscamente. Eduardo Gómez 53
  • 54. En los seres vivos existe siempre una cierta cantidad de hidrogeniones (H+) y de iones hidroxilo (OH-) que proceden de: • La disociación del agua que proporciona los dos iones: • La disociación de cuerpos con función ácida que proporcionan H+: ClH Cl- + H+ • La disociación de cuerpos con básicos que proporcionan OH-: NaOH  Na+ + OH- Eduardo Gómez 54
  • 55. Por lo tanto la acidez o alcalinidad del medio interno de un organismo dependerá de la proporción en que se encuentren los dos iones. Así será: • Neutro cuando [H+]=[OH-] • Ácido cuando [H+]>[OH-] • Alcalino cuando [H+]<[OH-]. Para que los fenómenos vitales puedan desarrollarse con normalidad es necesario que la concentración de H+, que se expresa en valores de pH sea más o menos constante y próxima a la neutralidad, es decir, pH=7. Acido Base H+ OH- 7 6 8 Eduardo Gómez 55
  • 56. La actividad biológica del medio interno celular se produce a un determinado valor de pH. Dados el bajo grado de ionización del H2O, si se le añade un ácido (se añade ) o una base (se añade ), aunque sea en muy poca cantidad, estos niveles varían bruscamente. En los líquidos biológicos, sin embargo, y pese a estar constituidos únicamente por agua, la adición de ácidos o bases no varía apenas su pH. Ello se debe a que esos líquidos contienen sales minerales y proteínas disueltas que pueden ionizarse en mayor o menor grado dando lugar a o a que contrarresten el efecto de las bases, o ácidos añadidos. Este efecto se denomina efecto tampón y estas disoluciones se las llama disoluciones amortiguadoras. Eduardo Gómez 56
  • 58. En las reacciones metabólicas se liberan productos tanto ácidos como básicos que varían la neutralidad si no fuera porque los organismos disponen de unos mecanismos químicos que se oponen automáticamente a las variaciones de pH. Estos mecanismos se denominan sistemas amortiguadores o sistemas tampón, y en ellos intervienen de forma fundamental las sales minerales. Lo más corriente es que el pH tienda a desplazarse hacia el lado ácido por lo que los sistemas tampón más importantes actúan evitando este desplazamiento. Un tampón está formado por una mezcla de un ácido débil y una sal del mismo ácido; el más extendido es el formado por el ácido carbónico (CO3H2) y el bicarbonato sódico (CO3HNa). Eduardo Gómez 58
  • 59. Supongamos que el organismo se ve sometido a un exceso de ácido clorhídrico que, en consecuencia liberará protones que harán disminuir el pH. En este momento entra en funcionamiento el sistema amortiguador y ocurre lo siguiente: 1.- La sal (bicarbonato sódico) reacciona con el ácido clorhídrico: CO3HNa + ClH  NaCl + H2CO3 La sal que se forma (NaCl) es neutra y, aunque se disocie, no libera protones y, además, es habitualmente expulsada por la orina. 2.- El ácido carbónico que se ha formado podría incrementar la acidez, pero rápidamente se descompone en CO2, que se libera con la respiración, y agua que es neutra: CO3H2  CO2 + H2O En resumen, todos los hidrogeniones que podrían provocar un estado de acidez desaparecen manteniéndose el estado de neutralidad. Eduardo Gómez 59
  • 61. El tampón bicarbonato es común en los líquidos extracelulares, mantiene el pH en valores próximos a 7,4, gracias al equilibrio entre el ión bicarbonato y el ácido carbónico, que a su vez se disocia en dióxido de carbono y agua. El tampón fosfato es la otra solución tampón, formada por el ión PO3- 4 y H3PO4, y es más común en los medios intracelulares. Otra consecuencia de la capacidad de disociación del agua es que permite que actúe como reactivo químico en las reacciones metabólicas de hidrólisis, introduciendo una molécula de agua: A-B + H2O  AH + BOH El agua y los productos de ionización participan en las reacciones de hidrólisis (para dividir grandes moléculas). El proceso inverso se llama condensación (moléculas sencillas se unen para formar otras mayores) y origina o desprende moléculas de agua que se denominan agua metabólica (camellos) Eduardo Gómez 61
  • 62. Funciones del agua 1. Función disolvente de las sustancias. 2. Función bioquímica. 3. Función de transporte. 4. Función estructural. 5. Función mecánica amortiguadora. 6. Función termorreguladora. Eduardo Gómez 62
  • 63. 1. Función disolvente de las sustancias. El agua es básica para la vida, ya que prácticamente todas las reacciones biológicas tienen lugar en el medio acuoso. Eduardo Gómez 63
  • 64. 2. Función bioquímica. El agua interviene en muchas reacciones químicas, por ejemplo, en la hidrólisis (rotura de enlaces con intervención de agua) que se da durante la digestión de los alimentos, como fuente de hidrógenos en la fotosíntesis, etc. Eduardo Gómez 64
  • 65. 3. Función de transporte. El agua es el medio de transporte de las sustancias desde el exterior al interior de los organismos y en el propio organismo, a veces con un gran trabajo como en la ascensión de la savia bruta en los árboles. Eduardo Gómez 65
  • 66. 4. Función estructural. El volumen y forma de las células que carecen de membrana rígida se mantienen gracias a la presión que ejerce el agua interna. Al perder agua, las células pierden su turgencia natural, se arrugan y hasta pueden llegar a romperse (lisis). Eduardo Gómez 66
  • 67. Presión de turgencia Las paredes celulares rígidas de células vegetales, algas, bacterias y hongos hacen posible que esos organismos vivan sin reventar en un medio externo muy diluido, que contenga una concentración muy baja de solutos. Las células son hipertónicas respecto al medio. El agua tiende llenar sus vacuolas centrales y se hincha, acumulando presión, llamada presión de turgencia, contra las paredes celulares rígidas de celulosa. La pared celular puede estirarse muy poco, y se alcanza un estado de equilibrio cuando su resistencia impide que la célula se hinche más. La presión de turgencia es un factor importante en el sostén del cuerpo de las plantas herbáceas. Por este motivo, una flor se marchita cuando la presión de turgencia de sus células disminuye (las células han sufrido plasmólisis) por falta de agua. Eduardo Gómez 67
  • 68. 5. Función mecánica amortiguadora. Por ejemplo, los vertebrados poseen en sus articulaciones bolsas de líquido sinovial que evita el roce entre los huesos. Eduardo Gómez 68
  • 69. 4. Función termorreguladora. Se debe a su elevado calor específico y a su elevado calor de vaporización. Es un material idóneo para mantener constante la temperatura, absorbiendo el exceso de calor o cediendo energía si es necesario. • Por ejemplo, los animales, al sudar, expulsan agua, la cual, para evaporarse, toma calor del cuerpo y, como consecuencia, éste se enfría. Eduardo Gómez 69
  • 70. FUNCIONES BIOLÓGICAS DEL AGUA Aporta H+ y OH- en reacciones bioquímicas, El agua pura es capaz de disociarse en ionesCapacidad de disociación iónica Mares y ríos se hielan sólo en su superficie Los puentes de hidrógeno “congelados” mantienen las moléculas más separadas Más densa líquida que sólida Mantiene forma y volumen de las células; permite cambios y deformaciones del citoplasma y el ascenso de la savia bruta Los puentes de hidrógeno mantienen juntas las moléculas de agua Alta cohesión y adhesión Transporte de sustancias y de que en su seno se den todas las reacciones metabólicas La mayoría de las sustancias polares se disuelven en ella al formar puentes de hidrógeno. Es un excelente disolvente Causa de deformaciones celulares y de los movimientos citoplasmáticos Las moléculas superficiales están fuertemente unidas a las del interior, pero no a las externas de aire. Elevada tensión superficial Para elevar su Tª ha de absorber mucho calor, para romper los puentes de H. Alto calor específico Función termorreguladora: ayuda a mantener constante la temperatura corporal de los animales homeotermos. La energía calorífica debe ser tan alta que rompa los puentes de hidrógeno. Alto calor de vaporización Medio de transporte en el organismo y medio lubricante Los puentes de hidrógeno mantienen a las moléculas unidas Líquida a Tª ambiente FUNCIÓN BIOLÓGICADEBIDA APROPIEDAD Eduardo Gómez 70
  • 71. Sales minerales Las sustancias minerales se pueden encontrar en los seres vivos de tres formas: precipitadas, disueltas o asociadas a sustancias orgánicas. 1.- Las sustancias minerales precipitadas constituyen estructuras sólidas, insolubles, con función esquelética. Por ejemplo, el carbonato cálcico en las conchas de los moluscos, el fosfato cálcico, Ca3(P04)2, y el carbonato cálcico que, depositados sobre el colágeno, constituyen los huesos, el cuarzo (SiO2) en los exoesqueletos de las diatomeas y en las gramíneas, etc. Este tipo de sales pueden asociarse a macromoléculas, generalmente de tipo proteico. Eduardo Gómez 71
  • 72. 2.- Las sales minerales disueltas dan lugar a aniones y cationes. Los principales son: Cationes: Na+ K+ Ca2+ y Mg2+. Aniones: Cl-, S04 2-, PO4 3-, CO3 2-, HCO3 - y NO3 -. Estos iones mantienen un grado de salinidad constante dentro del organismo, y ayudan a mantener también constante su pH. Cada ion desempeña funciones específicas y, a veces, antagónicas. Por ejemplo, el K+ aumenta la turgencia de la célula, mientras que el Ca2+ la merma. Esto es debido a que el K+ favorece la captación de moléculas de agua (inhibición) alrededor de las partículas coloidales citoplasmáticas, mientras que el Ca2+ la dificulta. Otro ejemplo es el corazón de la rana, que se para en sístole si hay exceso de Ca2+, y en diástole si el exceso es de K+. El Ca2+ y el K+ son iones antagónicos. El medio interno de los organismos presenta unas concentraciones iónicas constantes. Una variación provoca alteraciones de la permeabilidad, excitabilidad y contractilidad de las células. Eduardo Gómez 72
  • 73. 3.- Las sustancias minerales asociadas a moléculas orgánicas suelen encontrarse junto a proteínas, como las fosfoproteínas, junto a lípidos (fosfolípidos) y con glúcidos (agar-agar) Eduardo Gómez 73
  • 74. Funciones de las sales minerales Las principales funciones de las sales minerales disueltas son: 1. Estabilizar dispersiones coloidales. 2. Mantener un grado de salinidad en el medio interno. Este grado de salinidad debe mantenerse constante. 3. Regulación del pH y constituir soluciones amortiguadoras. Se lleva a cabo por los sistemas carbonato-bicarbonato, y también por el monofosfato- bifosfato. Eduardo Gómez 74
  • 75. Funciones específicas 1. Funciones catalíticas. Algunos iones, como el Cu+, Mn2+, Mg2+, Zn+,...actúan como cofactores enzimáticos 2. Funciones osmóticas. Intervienen en los procesos relacionados con la distribución de agua entre el interior celular y el medio donde vive esa célula, lo que ayuda al mantenimiento del volumen celular. 3. Generar potenciales eléctricos. Los iones de Na, K, Cl y Ca, participan en la generación de gradientes electroquímicos, imprescindibles en el mantenimiento del potencial de membrana y del potencial de acción y en la sinapsis neuronal. 4. Regulación del volumen celular Eduardo Gómez 75
  • 76. Las principales funciones de las sales minerales precipitadas son: • Formar estructuras esqueléticas y de protección (carbonato cálcico, silicatos, fosfato cálcico) Eduardo Gómez 76
  • 77. DISOLUCIONES Y DISPERSIONES En los seres vivos el estado líquido está constituido por dispersiones de muchos tipos de moléculas dispersas o solutos y un solo tipo de fase dispersante o disolvente, que es el agua. Los solutos pueden ser de bajo peso molecular como, por ejemplo, el cloruro sódico (PM = 58,5) y la glucosa (PM = 180), o pueden ser de elevado peso molecular (se denominan coloides), como, por ejemplo, las proteínas de tipo albúmina (PM entre 30 000 y 100 000). Las dispersiones de solutos de bajo peso molecular se denominan disoluciones verdaderas o simplemente disoluciones, y las de elevado peso molecular se denominan dispersiones coloidales Eduardo Gómez 77
  • 78. Las propiedades de las disoluciones verdaderas Las propiedades de las disoluciones verdaderas que más interés tienen en Biología son la difusión, la osmosis y la estabilidad del grado de acidez o pH. Difusión. Es la repartición homogénea de las partículas de un fluido (gas o líquido) en el seno de otro, al ponerlos en contacto. Este proceso se debe al constante movimiento en que se encuentran las partículas de líquidos y gases. La absorción o disolución de oxígeno en el agua es un ejemplo de difusión. Animación de la difusión Eduardo Gómez 78
  • 79. Osmosis Es el paso del disolvente entre dos soluciones de diferente concentración a través de una membrana semipermeable que impide el paso de las moléculas de soluto. El disolvente, que en los seres vivos es el agua, se mueve desde la disolución más diluida a la más concentrada. Aparece un impulso de agua hacia la mas concentrada. Eduardo Gómez 79
  • 80. La membrana citoplasmática es una membrana semipermeable y da lugar a diferentes respuestas frente a la presión osmótica del medio externo. 1. Si éste es isotónico respecto al medio interno celular, es decir, tiene la misma concentración, la célula no se deforma. 2. Si el medio externo es hipotónico (menos concentrado), la célula se hinchará por entrada de agua en su interior. Este fenómeno se llama turgencia y es observable, por ejemplo, en los eritrocitos, añadiendo agua destilada a una gota de sangre. 3. Si el medio externo es hipertónico (más concentrado), la célula perderá agua y se arrugará, dándose un fenómeno de plasmólisis que acaba con la rotura de la membrana. Esto sucede, por ejemplo, en los eritrocitos, cuando se añade agua saturada de sal a una gota de sangre. Eduardo Gómez 80
  • 82. Los procesos de osmosis explican cómo las plantas consiguen absorber grandes cantidades de agua del suelo, y por qué el agua del mar no sacia la sed, ya que al estar más concentrada que el medio intracelular provoca la pérdida de agua en las células. Animación de ósmosis http://www.consumer.es/web/es/medio_ambiente/urbano/2006/05/25/152370.php http://www2.nl.edu/jste/osmosis.htm Otras animaciones relacionadas: Eduardo Gómez 82
  • 83. Las propiedades de las dispersiones coloidales La mayoría de los líquidos de los seres vivos son dispersiones coloidales, de ahí que sea tan importante el estudio de sus propiedades. En estas soluciones, el tamaño de las partículas del soluto es mucho mayor que en las soluciones verdaderas. Es el caso de polisacáridos, proteínas y ácidos nucleicos. Sus principales propiedades son: 1. Efecto Tyndall 2. Movimiento browniano 3. Sedimentación 4. Elevada viscosidad 5. Elevada adsorción 6. Diálisis 7. Capacidad de presentarse en estado de gel Eduardo Gómez 83
  • 84. Efecto Tyndall. El tamaño de las partículas coloidales oscila entre una milimicra y 0,2 micras, que es el límite de observación en el microscopio óptico. Así pues, las dispersiones coloidales, al igual que las disoluciones verdaderas, son transparentes y claras. Sin embargo, si se iluminan lateralmente y sobre fondo oscuro, se observa una cierta opalescencia provocada por la reflexión de los rayos luminosos. Es algo parecido a lo que ocurre cuando un rayo de luz ilumina el polvo en una habitación a oscuras. Si la iluminación es frontal, el polvo ya no resulta apreciable. Eduardo Gómez 84
  • 85. Sedimentación. Las dispersiones coloidales son estables en condiciones normales, pero si se someten a fuertes campos gravitatorios, se puede conseguir que sedimenten sus partículas. Ello se realiza en las ultracentrifugadoras, que pueden alcanzar las 100000 revoluciones por minuto. Movimiento browniano. Las moléculas de los coloides se mueven continuamente, impulsadas por el movimiento browniano del agua (movimiento desordenado y continuo de vibración que tienen las partículas en suspensión). Este movimiento aumenta las probabilidades de encuentro de dos partículas reaccionantes. Eduardo Gómez 85
  • 86. Elevada viscosidad. La viscosidad es la resistencia interna que presenta un líquido al movimiento relativo de sus moléculas. Las dispersiones coloidales, dado el elevado tamaño de sus moléculas, son muy viscosas. Elevado poder adsorbente. La adsorción es la atracción que ejerce la superficie de un sólido sobre las moléculas de un líquido o de un gas. La misma cantidad de sustancia ejerce mayor adsorción si se encuentra finamente dividida. Ejemplo biológico de adsorción son los contactos «enzimas con sustratos» Eduardo Gómez 86
  • 87. Capacidad de presentarse en estado de gel. Las dispersiones coloidales pueden presentar se en dos estados en forma de sol o estado líquido, y en forma de gel o estado semisólido. La diferencia entre ambos estados es la cantidad de agua presente. El sol tiene aspecto de líquido. El gel tiene aspecto semipastoso o gelatinoso. La transformación de sol en gel, y viceversa, está en relación con la síntesis o con la despolimerización, respectivamente, de proteínas fibrilares y permite la emisión de pseudópodos, y, por tanto, el movimiento ameboide y la fagocitosis Eduardo Gómez 87
  • 90. Diálisis: Es la separación de las partículas dispersas de elevado peso molecular (coloides) de las de bajo peso molecular (cristaloides), gracias a una membrana semipermeable cuyo tamaño de poro sólo deja pasar las moléculas pequeñas (agua y cristaloides), pero no las grandes. Una aplicación clínica es la hemodiálisis, que es la separación de la urea de la sangre de individuos con deficiencia renal. Eduardo Gómez 90
  • 92. Electroforesis: Es el transporte de las partículas coloidales gracias a la acción de un campo eléctrico a través de un gel. Generalmente se utiliza para separar las distintas proteínas que se extraen juntas en un tejido. La velocidad es mayor cuanto más alta sea su carga eléctrica global y cuanto menor sea su tamaño (peso molecular). Se suelen utilizar geles de almidón o de poliacrilamida. Eduardo Gómez 92