SlideShare a Scribd company logo
1 of 74
Download to read offline
Introduction Power System Stabilityy y__
• The tendency of a power system to develop restoring forces equal to
or greater than the disturbing forces to maintain the state ofg g
equilibrium is know as stability.
• If the forces tending to hold machines in synchronism with one
another are sufficient to overcome the disturbing forces, the systemg , y
is said to remain stable.
• Stability Studies:
– TransientTransient
– Dynamic
– Steady‐state 
• The main purpose of transient stability studies is to determineThe main purpose of transient stability studies is to determine
whether a system will remain in synchronism following major
disturbances such as transmission system faults, sudden load
changes, loss of generating units, or line switching.
1
Introduction Power System Stabilityy y__
• Transient Stability Problems:
– First‐swing; short study period after disturbance, based on a reasonableFirst swing; short study period after disturbance, based on a reasonable
simple generator model, without control system.
– Multi‐swing; longer study period of time after disturbance, thus consider the 
effect of generator control systems.
• In all stability studies, the objective is to determine whether or not the
rotors of the machines being perturbed return to constant speed
operation.
• To simplify calculation, the following assumptions must be made:
– Only synchronous frequency currents and voltages are considered in the
stator windings and the power system. Consequently dc offset currents and
harmonic components are neglectedharmonic components are neglected.
– Symmetrical components are used in the representation of unbalanced
faults.
– Generated voltage is considered unaffected by machine speed variation.Generated voltage is considered unaffected by machine speed variation.
2
Introduction Power System Stabilityy y__
Mechanical analog of power system transient stability
3
Rotor dynamics and the swing equationy g q
• Accelerating torque is the product of the moment of inertia of 
the rotor times its angular accelerationthe rotor times its angular acceleration. 
ema
m
TTT
d
J −==2
2
θ (14.1)
ema
dt2
J the total moment of inertia of the rotor masses in kg m2
J the total moment of inertia of the rotor masses, in kg-m
mθ the angular displacement of the rotor with respect to stationary axis, in mechanical radians
t time, in seconds
mT the mechanical or shaft torque supplied by the prime mover less retarding torque due to rotationalm
losses, N-m
eT the net electrical or electromagnetic torque, in N-m
aT the net accelerating torque, in N-m
4
Rotor dynamics and the swing equationy g q
• The mechanical torque Tm and the electrical torque Te are considered
positive for the synchronous generator. Whereas for motor is another
way round.
• Tm is the resultant shaft torque that tends to accelerate the rotor in
the positive direction of rotation as shown in the figure.
• Under steady‐state operation of generator Tm and Te are equal and
l ti t T i
mθ
accelerating torque Ta is zero.
• In this case there is no acceleration or deceleration of the rotor
masses and the resultant constant speed is the synchronous speed.
5
Rotor dynamics and the swing equationy g q
• is measured with respect to a stationary reference axis on the stator, it is
an absolute measure of rotor angle.
• Rotor angular position with respect to a reference axis which rotates at
mθ
g p p
synchronous speed is given by:
msmm t δωθ += (14.2)
• Where is the synchronous speed of the machine in mechanical radians
per second and is the angular displacement of the rotor, in mechanical
radians, from the synchronously rotating reference axis.
smω
mδ
• The derivatives of (14.2) with respect to time are:
dd mm δ
ω
θ
+= (14.3)
dtdt
smω +=
2
2
2
2
d
d
d
d mm δθ
=
(14.3)
(14.4)
22
dtdt
6
Rotor dynamics and the swing equationy g q
• Equation (14.3) shows that the rotor angular velocity         is 
constant and equals the synchronous speed only when is
dt
d mθ
dδconstant and equals the synchronous speed only when          is 
equal zero.
• Thus, represents the deviation of rotor speed from
dt
d mδ
dt
d mδ
synchronism and the units of measure are mechanical radians
per second.
• Eq (14 4) represents the rotor acceleration measured in
dt
• Eq. (14.4) represents the rotor acceleration measured in
mechanical radians per second‐squared
• Substitute (14.4) into  (14.1):( ) ( )
mN2
2
−−== ema
m
TTT
dt
d
J
δ (14.5)
7
Rotor dynamics and the swing equationy g q
• Eq. (14.5) can be converted into power by multiplying with 
angular velocity in Eq (14 6) (**Power = Torque x Angularωangular velocity     in Eq. (14.6)  (**Power = Torque x Angular 
velocity).
dt
d m
m
θ
ω =
(14.6)
mω
W2
2
ema
m
m PPP
dt
d
J −==
δ
ω (14.7)
Where: 
P the shaft power input to the machine less rotational lossesPm  the shaft power input to the machine less rotational losses 
Pe  the electrical power crossing its air gap 
Pa  the accelerating power which account for any unbalance between Pm and Pe 
8
Rotor dynamics and the swing equationy g q
• Eq. (14.7) can also be written as in (14.8), whereby                  :mJM ω=
• M is inertia constant (joule‐seconds per mechanical radian)
W2
2
ema
m
PPP
dt
d
M −==
δ (14.8)
• M is inertia constant (joule‐seconds per mechanical radian)
• In machine data supplied for stability studies, another constant 
related to inertia is called H constant:
MVAinratingmachine
speedssynchronouatmegajoulesinenergykineticstored
H =
(14.9)
MVAMJ
S
M
S
J
H
mach
sm
mach
sm
/2
1
2
1 2
ωω
==
MVA.inmachinetheofratingphasethreethe−machS
9
Rotor dynamics and the swing equationy g q
• Solving for M in Eq. (14.9);
radmechMJS
H
M mach
sm
/
2
ω
= (14.10)
• Substitute the above equation in (14.8), we find;
PPPdH −2
2 δ
mechanical radians
mechanical radians per seconds
• Eq. (14.11) can also be written as;
mach
em
mach
am
sm S
PP
S
P
dt
dH
==2
2 δ
ω
(14.11)
perunitPPP
dt
dH
ema
s
−==2
2
2 δ
ω
(14.12) Swing Equation
s
10
Rotor dynamics and the swing equationy g q
• For a system with an electrical frequency of f hertz, Eq. (14.12) 
becomes ( in electrical radians)δbecomes (     in electrical radians)
(14.13)perunitPPP
dt
d
f
H
ema −==2
2
δ
π
δ
• If      in electrical degree
(14.14)perunitPPP
dH
==
2
δ
δ
• Eq. (14.12)                                                    can be written as the 
t fi t d diff ti l ti
(14.14)perunitPPP
dtf
ema −==2
180
perunitPPP
dt
dH
ema
s
−==2
2
2 δ
ω
two first‐order differential equations:
perunitPP
d
dH
em −=
ω2
s
dt
d
ωω
δ
−=(14.15) (14.16)p
dt
em
sω dt
11
Further Considerations of the swing equationg q
• In a stability study of a power system with many synchronous 
machines only one MVA base common to all parts of themachines, only  one MVA base common to all parts of the 
system can be chosen. 
• Thus, H constant for each machine must be converted into per 
unit base on common MVA base;
(14.17)mach
ht
S
HH =
• The constant moment inertia M is rarely used in practice and H
(14.17)
system
machsystem
S
HH
• The constant moment inertia M is rarely used in practice and H
is often used in stability study.
12
Further Considerations of the swing equationg q
• In a stability study for a large system with many machines
geographically dispersed over a wide area it is desirable togeographically dispersed over a wide area, it is desirable to
minimize the number of swing equations to be solved.
• This can be done if the transmission line fault, or other
disturbance on the system, affects the machines within the
plant so that their rotors swing together.
• Thus the machine within the plant can be combined into a• Thus, the machine within the plant can be combined into a
single equivalent machine just as if their rotors were
mechanically coupled and only one swing equation need to be
written for them.
13
Further Considerations of the swing equationg q
• Consider a power plant with two generators connected to the same
bus which is electrically remote from network disturbances the swingbus which is electrically remote from network disturbances, the swing
equations on the common system base are:
perunitPP
dt
dH
em 112
1
2
12
−=
δ
ω
(14.18)
dtsω
perunitPP
dt
dH
em
s
222
2
2
22
−=
δ
ω
(14.19)
• Adding the equation together, and denoting and by since the
rotor angle swing together;
1δ 2δ δ
dH 2
2 δ
where
peruniPP
dt
dH
em
s
−=2
2
2 δ
ω
(14.20)
21 HHH +=
PPPwhere 21
21 mmm PPP += 21 eee PPP +=
14
The Power‐Angle Equationg q __________________
• In the swing equation, the input mechanical power from the
prime mover P is assumed constantprime mover Pm is assumed constant.
• Thus, the Pe will determine whether the rotor accelerates,Thus, the Pe will determine whether the rotor accelerates,
decelerates, or remains at synchronous speed.
• Changes in Pe are determined by conditions on the transmission
and distribution networks and the loads on the system to which
the generator supply power.the generator supply power.
15
The Power‐Angle Equationg q __________________
• Each synchronous machine is represented for transient stability
studies by its transient internal voltage E’ in series with the transienty g
reactance X’d as shown in the Figure below.
• Armature resistance is negligible so that the phasor diagram is as
shown in the figure.g
• Since each machine must be considered relative to the system, the
phasor angles of the machine quantities are measured with respect
to the common system reference.y
+
jXd
'
I
E'
jIXd
'
Vt
_
E'
I
δ
α Vt
j d
Reference
(a) (b)
16
The Power‐Angle Equationg q __________________
• Consider a generator supplying power through a transmission
system to a receiving end system at bus 2system to a receiving‐end system at bus 2.
1I 2I E’1 is transient internal voltage of 
generator at bus 1
'
1E '
2E
E’2 is transient internal voltage of 
generator at bus 2
• The elements of the bus admittance matrix for the network
reduced to a two nodes in addition to the reference node is:
⎥
⎦
⎤
⎢
⎣
⎡
=
2221
1211
YY
YY
Ybas
(14.28)
17
The Power‐Angle Equationg q __________________
• Power equation at a bus k is given by:
• Let k =1 and N=2 and substituting E’ for V
nkn
N
n
kkk
VYVjQP 
1=
∗
∑=−
 
(14.29)
• Let k =1 and N=2, and substituting E 2 for V,
( ) ( )∗∗
+=+ '
212
'
1
'
111
'
111 EYEEYEjQP (14.30)
where
1I 2I
1
'
1
'
1 δ∠= EE 2
'
2
'
2 δ∠= EE
111111 jBGY += 121212 θ∠= YY
'
1E '
2E
18
The Power‐Angle Equationg q __________________
• We obtain:
2
)(cos 122112
'
2
'
111
2'
11 θδδ −−+= YEEGEP
)(sin 122112
'
2
'
111
2'
11 θδδ −−+−= YEEBEQ
(14.31)
(14.32)
• If we let                   and                   , we obtain from (14.31) and 
(14.32)  
21 δδδ −=
2
12
π
θγ −=
)-(sin12
'
2
'
111
2'
11 γδYEEGEP +=
2
(14.33)
)-(cos12
'
2
'
111
2'
11 γδYEEBEQ −−= (14.34)
19
The Power‐Angle Equationg q __________________
• Eq. (14.33) can be written more simply as
where
(14.35))sin(max γδ −+= PPP ce
• When the network is considered without resistance, all the 
elements of Y are susceptances so both G and becomes
(14.36)11
2'
1 GEPc = 12
'
2
'
1max YEEP =
γelements of Ybus are susceptances, so both G11 and    becomes 
zero and Eq. (14.35) becomes;
δsinmaxPPe = (14.37) Power Angle Equation
γ
where , with X is the transfer reactance between
E’1 and E’2
maxe
XEEP '
2
'
1max =
1 2
20
Example 1: Power‐angle equation before faultp g q
The single‐line diagram shows a generator connected through parallel
transmission lines to a large metropolitan system considered as an infinite
bus. The machine is delivering 1.0 pu power and both the terminal voltage
and the infinite‐bus voltage are 1.0 pu. The reactance of the line is shown
based on a common system base. The transient reactance of the generator is
0 20 pu as indicated Determine the power‐angle equation for the system0.20 pu as indicated. Determine the power‐angle equation for the system
applicable to the operating conditions.
21
Example 1: Power‐angle equation before faultp g q
The reactance diagram for the system is shown:
The series reactance between the terminal voltage (Vt) and the infinite bus is:
unitper3.0
2
4.0
10.0 =+=X
The series reactance between the terminal voltage (Vt) and the infinite bus is:
The 1.0 per unit power output of the generator is determined by the power‐angle
1.0sin
3.0
(1.0)(1.0)
sin == αα
X
VVt
The 1.0 per unit power output of the generator is determined by the power angle 
equation.
αV is the voltage of the infinite bus, and      is the angle of the terminal voltage 
relative to the infinite bus 
22
Example 1: Power‐angle equation before faultp g q
Solve  α
01 01
458.173.0sin == −
α
Terminal voltage, Vt : unitper300.0954.0458.170.1 0
jVt +=∠=
The output current from the generator is:
30
00.1458.170.1 00
j
I
∠−∠
= unitper729.8012.11535.00.1 0
∠=+= j
3.0j
pj
The transient internal voltage is
XIVE +=' XIVE t +=
)1535.00.1)(2.0()30.0954.0(' jjjE +++=
unitper44.28050.15.0923.0 0
∠=+= j
23
Example 1: Power‐angle equation before faultp g q
The power‐angle equation relating the transient internal voltage E’ and the 
infinite bus voltage V is determined by the total series reactanceinfinite bus voltage V is determined by the total series reactance 
unitper5.0
2
4.0
1.02.0 =++=X
Hence, the power‐angle equation is:
upPe .sin1.2sin
50
)0.1)(05.1(
δδ ==
5.0
δWhere      is the machine rotor angle with respect to infinite bus 
The swing equation for the machine isThe swing equation for the machine is
unitpersin10.20.1
180 2
2
δ
δ
−=
dt
d
f
H
H is in megajoules per megavoltampere, f is the electrical frequency of the system 
and     is in electrical degree δ
24
Example 1: Power‐angle equationp g q
The power‐angle equation is plotted:
Before fault
After fault
During fault
25
Example 2: Power‐angle equation During Faultp g q g
The same network in example 1 is used. Three phase fault
occurs at point P as shown in the Figure Determine the poweroccurs at point P as shown in the Figure. Determine the power‐
angle equation for the system with the fault and the
corresponding swing equation. Take H = 5 MJ/MVA
26
Example 2: Power‐angle equation During Faultp g q g
Approach 1:
Th di f h d i f l i h b lThe reactance diagram of the system during fault is shown below:
The value is admittance
per unitp
27
Example 2: Power‐angle equation During Faultp g q g
As been calculated in example 1, internal transient voltage remains
as (based on the assumption that flux linkage is°∠= 4428051'E
The Y bus is:
as (based on the assumption that flux linkage is
constant in the machine)
∠ 44.2805.1E
⎥
⎥
⎤
⎢
⎢
⎡
−
−
= 5025070
333.30333.3
jYb
⎥
⎥
⎦⎢
⎢
⎣ − 833.1050.2333.3
50.250.70jYbas
Since bus 3 has no external source connection and it may be removed by the node
li i ti d th Y b t i i d d telimination procedure, the Y bus matrix is reduced to:
[ ]5.2333.3
83310
1
52
333.3
570
0333.3
⎥
⎦
⎤
⎢
⎣
⎡
−⎥
⎦
⎤
⎢
⎣
⎡−
=busY
833.105.25.70 −⎥
⎦
⎢
⎣
⎥
⎦
⎢
⎣ −
⎥
⎤
⎢
⎡−
=⎥
⎤
⎢
⎡ 769.0308.21211
j
YY
⎥
⎦
⎢
⎣ −⎥
⎦
⎢
⎣ 923.6769.02221
j
YY
28
Example 2: Power‐angle equation During Faultp g q g
The magnitude of the transfer admittance is 0.769 and therefore,
The power‐angle equation with the fault on the system is therefore,
' ' '
max 1 2 12 (1.05)(1.0)(0.769) 0.808P E E Y per unit= = =
unitpersin808.0 δ=eP
The corresponding swing equation isThe corresponding swing equation is
5
180
10 0808
2
2
f
d
dt
δ
δ= −. . sin per unit
Because of the inertia, the rotor cannot change position instantly upon
occurrence of the fault. Therefore, the rotor angle is initially 28.440 and
the electrical power output is
δ
38504428i8080 °P 385.044.28sin808.0 =°=eP
29
Example 2: Power‐angle equation During Faultp g q g
The initial accelerating power is: Pa = − =10 0385 0615. . . per unit
and the initial acceleration is positive with the value given by
d
dt
f
f
2
2
180
5
0615 2214
δ
= =( . ) . elec deg / s2
30
Example 2: Power‐angle equation During Faultp g q g
Approach 2:
C h d li ( hi h i Y f ) i d l dCovert the read line (which in Y form) into delta to remove node
3 from the network:
j1.3
1
1
3
1
1 3
3
2
2
31
)4.0)(2.0()4.0)(3.0()2.0)(3.0( jjjjjj
R
++
j0.65 j0.8667
3.1
2.0
)4.0)(2.0()4.0)(3.0()2.0)(3.0(
j
j
jjjjjj
RAC =
++
=
65.0
4.0
)4.0)(2.0()4.0)(3.0()2.0)(3.0(
j
j
jjjjjj
RAB =
++
=
31
8667.0
3.0
)4.0)(2.0()4.0)(3.0()2.0)(3.0(
j
j
jjjjjj
RBC =
++
=
Example 2: Power‐angle equation During Faultp g q g
Approach 2:
Covert the read line which in Y form into delta to remove nodeCovert the read line, which in Y form into delta to remove node
3 from the network:
j0.1625
769.0)3.1/1(12 =−= jY12
'
2
'
1 YEEP = )(12 j
max (1.05)(1.0)(0.769) 0.808
0.808sine
P
P δ
= =
=
1221max YEEP
32
e
Example 3: Power‐angle equation After Fault Clearedp g q
The fault on the system cleared by simultaneous opening of
the circuit breakers at each end of the affected linethe circuit breakers at each end of the affected line.
Determine the power‐angle equation and the swing
equation for the post‐fault period
CB open CB open
33
Example 3: Power‐angle equation After Fault Clearedp g q
Upon removal of the faulted line, the net transfer admittance
across the system isacross the system is
y
j
j12
1
0 2 01 0 4
1429=
+ +
= −
( . . . )
. per unit 429.112 jY =or
The post‐fault power‐angle equation is
δδ sin5.1sin)429.1()0.1()05.1( ==eP )()()(e
and the swing equation is
5
180
10 1500
2
2
f
d
dt
δ
δ= −. . sin
34
Synchronizing Power Coefficients___________
• From the power‐angle
curve, two values of angle
satisfied the mechanical
Before fault
satisfied the mechanical
power i.e at 28.440 and
151.560.
H l th 28 440 After fault
• However, only the 28.440
is acceptable operating
point.
A t bl ti• Acceptable operating
point is that the
generator shall not lose
synchronism when small
During fault
synchronism when small
temporary changes occur
in the electrical power
output from the machineoutput from the machine.
35
Synchronizing Power Coefficients___________
Consider small incremental changes in the operating point parameters, that is:
Δ+= δδδ 0Δ+= eee PPP 0
(14.40)
Substituting above equation into Eq 14 37 (Power angle equation) δsinPP =Substituting above equation into Eq. 14.37 (Power‐angle equation)  
)sincoscos(sin
)sin(
00max
0max0
ΔΔ
ΔΔ
+=
+=+
δδδδ
δδ
P
PPP ee
δsinmaxPPe =
)scoscos(s 00max ΔΔ δδδδ
(14.41)
Since        is a small incremental displacement from  Δδ
0δ
ΔΔ ≅ δδsin 1cos ≅Δδ
Thus, the previous equation becomes:  
+=+ δδδ )cos(sin PPPP
(14.42)
ΔΔ +=+ δδδ )cos(sin 0max0max0 PPPP ee
36
Synchronizing Power Coefficients___________
At the initial operating point       :0δ
sinδPPP == (14 43)0max0 sinδPPP em == (14.43)
Equation (14.42) becomes:
(14 44)
ΔΔ −=+− δδ )cos()( 0max0 PPPP eem
(14.44)
Substitute Eq. (14.40) into swing equation;
)(
)(2
02
0
2
Δ
Δ
+−=
+
eem
s
PPP
dt
dH δδ
ω
(14.45)
Replacing the right‐hand side of this equation by (14.44);
0)cos(
2
0max2
2
=+ Δ
Δ
δδ
δ
P
d
dH
(14.46))( 0max2 Δ
ω dts
37
Synchronizing Power Coefficients___________
Since        is a constant value. Noting that                    is the slope of the power‐
angle curve at the angle    , we denote this slope as Sp and define it as:         
0δ 0max cosδP
0δ
(14.47)0max cos
0
δ
δ δδ
P
d
dP
S e
p ==
=
Where Sp is called the synchronizing power coefficient. Replacing Eq. (14.47) into (14.46);
0
2
Δ
δ
ωδ Sd ps (14 48)0
22
=+ Δ
Δ
δ
δ
Hdt
d ps (14.48)
The above equation is a linear, second‐order differential equation.
If Sp positive – the solution             corresponds to that of simple harmonic motion.
If Sp negative – the solution             increases exponentially without limit. 
)(tΔδ
)(tΔδp  g p y)(tΔδ
38
Synchronizing Power Coefficients___________
The angular frequency of the un‐damped oscillations is given by:
sradelec
H
Sps
n /
2
ω
ω =
(14.49)
which corresponds to a frequency of oscillation given by:
H
S
f
ps1 ω
(14.50)
Hz
H
f
ps
n
22
1
π
=
39
Synchronizing Power Coefficients___________
Example:
The machine in previous example is operating at when it is subjected
to a slight temporary electrical‐system disturbance. Determine the frequency
°= 44.28δ
to a slight temporary electrical system disturbance. Determine the frequency
and period of oscillation of the machine rotor if the disturbance is removed
before the prime mover responds. H = 5 MJ/MVA.
8466.144.28cos10.2 =°=pSThe synchronizing power coefficient is
The angular frequency of oscillation is therefore;
sradelec
H
S ps
n /343.8
52
8466.1377
2
=
×
×
==
ω
ω
3438
The corresponding frequency of oscillation is Hzfn 33.1
2
343.8
==
π
and the period of oscillation is  s
f
T
n
753.0
1
==
fn
40
Equal‐Area Criterion of Stability______________
The swing equation is non‐linear in nature and thus, formal solution 
cannot be explicitly found.cannot be explicitly found.
perunitPPP
dt
dH
ema −==2
2
2 δ
ω
To examine the stability of a two‐machine system without solving the 
dtsω
swing equation, a direct approach is possible to be used i.e using equal‐
area criterion.
41
Equal‐Area Criterion of Stability______________
Consider the following system:
At point P (close to the bus), a three‐phase fault occurs and cleared by circuit
breaker A after a short period of time.
Thus, the effective transmission system is unaltered except while the fault is on.
The short‐circuit caused by the fault is effectively at the bus and so theThe short circuit caused by the fault is effectively at the bus and so the
electrical power output from the generator becomes zero until fault is clear.
42
three‐phase fault 
Equal‐Area Criterion of Stability______________
To understand the physical condition before, during and after the fault,
power‐angle curve need to be analyzed.
Initially, generator operates at synchronous speed with rotor angle of
and the input mechanical power equals the output electrical power Pe.
0δ
Before fault, Pm = Pe
43
Equal‐Area Criterion of Stability______________
At t = 0, Pe = 0, Pm = 1.0 pu
Acceleration constant
The difference must be accounted for by a 
rate of change of stored kinetic energy in 
the rotor masses.
Speed increase due to the drop of Pe
constant acceleration from t = 0 to t = tc. 1.0 pu
For t<tc, the acceleration is constant given
by:
perunitP
dH
0
2
−=
ω
At t = 0, three phase fault occursd
Ps
2
2
δ ω
= (14.51)
perunitP
dt
m
s
0=
ω
dt H
Pm2
2
(14.51)
44
Equal‐Area Criterion of Stability______________
Acceleration constantWhile the fault is on, velocity increase 
above synchronous speed and can beabove synchronous speed and can be 
found by integrating this equation:
d tδ ω ω
∫
d
dt H
P dt
H
P ts
m
s
m
tδ ω ω
= =∫ 2 20
For rotor angular position,;
(14.52)
δ
ω
δ+s mP
t2 (14.53)
At t = 0, three phase fault occurs
δ δ= +s m
H
t
4
2
0
(14.53)
(14.52) 45
Equal‐Area Criterion of Stability______________
Acceleration constantEq. (14.52) & (14.53) show that the
velocity of the rotor increase linearlyvelocity of the rotor increase linearly
with time with angle move from to0δ cδ
At the instant of fault clearing t = tc,g ,
the increase in rotor speed is
d Ps mδ ω
dt H
tt t
s m
cc= =
2
angle separation between the generator 
and the infinite bus is
(14.54)
At t = 0, three phase fault occurs
and the infinite bus is 
( )δ
ω
δt
P
H
tt t
s m
cc= = +
4
2
0
(14.55)
(14.52) 46
Equal‐Area Criterion of Stability______________
When fault is cleared at       , Pe
increase abruptly to point d
cδ
At d, Pe > Pm , thus Pa is
negative
Rotor slow down as P goesRotor slow down as Pe goes
from d to e
At t = tc, fault is cleared
47
Equal‐Area Criterion of Stability______________
1. At e, the rotor speed is again
synchronous although rotor angle has
advance to xδ
2. The angle is determined by the
fact that A1 = A2
xδ
x
3. The acceleration power at e is still
negative (retarding), so the rotor
cannot remain at synchronous speed
but continue to slow down.
4. The relative velocity is negative and
the rotor angle moves back from pointthe rotor angle moves back from point
e to point a, which the rotor speed is
less than synchronous.
6 In the absence of damping rotor would5. From a to f, the Pm exceeds the Pe
and the rotor increase speed again until
reaches synchronous speed at f
6. In the absence of damping, rotor would
continue to oscillate in the sequence f‐a‐e, e‐a‐
f, etc 48
Equal‐Area Criterion of Stability______________
In a system where one machine is swinging with respect to infinite bus,
equal‐area criterion can be used to determine the stability of the system
d i di i b l i i iunder transient condition by solving swing equation.
Equal‐area criterion not applicable for multi‐machines.
The swing equation for the machine connected to the infinite bus is
dH 2
2 δ
(14.56)em
s
PP
dt
dH
−=2
2
2 δ
ω
Define the angular velocity of the rotor relative to synchronous speed by
ω
δ
ω ωr s
d
dt
= = − (14.57)s
dt
49
Equal‐Area Criterion of Stability______________
Differentiate (14.57) with respect to t and substitute in (14.56) ; 
(14.58)2H d
dt
P P
s
r
m e
ω
ω
= −
When rotor speed is synchronous,       equals       and      is zero. ω sω rω
Multiplying both side of Eq. (14.58) by                          ; dtdr /δω =
H d dω δ
( )H d
dt
P P
d
dts
r
r
m e
ω
ω
ω δ
2 = − (14.59)
The left‐hand side of the Eq. can be rewritten to give
(14.60)
dt
d
PP
dt
dH
em
r
s
δω
ω
)(
)(
2
−=
50
Equal‐Area Criterion of Stability______________
Multiplying by dt and integrating, we obtain;
δ
(14.61)
∫ −=−
2
1
)()( 2
1
2
2
δ
δ
δωω
ω
dPP
H
emrr
s
Since the rotor speed is synchronous at and then ;δ δ 0== ωωSince the rotor speed is synchronous at      and      , then                           ;1δ 2δ 021 == rr ωω
Under this condition, (14.61) becomes 
(14.59)( )P P dm e− =∫ δδ
δ
0
1
2
and        are any points on the power angle diagram provided that there are 
points at which the rotor speed is synchronous. 
1δ 2δ
51
Equal‐Area Criterion of Stability______________
In the figure, point a and e correspond to      and   1δ 2δ
If perform integration in two steps;If perform integration, in two steps;
0)()(
0
=−+− ∫∫ δδ
δ
δ
δ
δ
dPPdPP
x
c
c
emem
(14.63)
δδ
δ
δ
δ
δ
dPPdPP
x
c
c
meem ∫∫ −=− )()(
0
(14.64)
Fault period
Area A1
Post‐fault period
Area A2
The area under A1 and A4 are directly proportional toThe area under A1 and A4 are directly proportional to
the increase in kinetic energy of the rotor while it is
accelerating.
The area under A and A are directly proportional toThe area under A2 and A3 are directly proportional to
the decrease in kinetic energy of the rotor while it is
decelerating. 52
Equal‐Area Criterion of Stability______________
Equal‐area criterion states that whatever kinetic energy is added to the
rotor following a fault must be removed after the fault to restore the rotor
to synchronous speedto synchronous speed.
The shaded area A1 is dependent upon the time taken to 
clear the fault.
If the clearing has a delay, the angle       increase.
As a result, the area A2 will also increase. If the increase
cδ
As a result, the area A2 will also increase. If the increase
cause the rotor angle swing beyond , then the rotor
speed at that point on the power angle curve is above
synchronous speed when positive accelerating power is
i t d
maxδ
again encountered.
Under influence of this positive accelerating power the
angle will increase without limit and instability results.g y
53
Equal‐Area Criterion of Stability______________
There is a critical angle for clearing the fault in order to satisfy the
requirements of the equal‐area criterion for stability.
This angle is called the critical clearing angle
The corresponding critical time for removing the fault is called critical
crδ
The corresponding critical time for removing the fault is called critical
clearing time tcr
Power‐angle curve showing the
critical‐clearing angle . Area A1
and A2 are equal
crδ
54
Equal‐Area Criterion of Stability______________
The critical clearing angle and critical clearing time tcr can be calculated
by calculating the area of A1 and A2.
crδ
( )A P d Pm m cr
cr
1 00
= = −∫ δ δ δδ
δ
( )∫
δ
(14.65)
(14 66)( )A P P dmcr
2 = −∫ max sinmax
δ δδ
δ
)()cos(cos maxmaxmax crmcr PP δδδδ −−−=
(14.66)
)()( maxmaxmax crmcr
Equating the expressions for A1 and A2, and transposing terms, yields 
( )( )/δ δ δ δP P + (14.67)( )( )cos / cosmax max maxδ δ δ δcr mP P= − +0
55
Equal‐Area Criterion of Stability______________
From sinusoidal power‐angle curve, we see that
(14 68)δ π δ elec rad (14.68)δ π δmax = − 0 elec rad
P Pm = max sinδ0
(14.69)
Substitute           and         in Eq. (14.67), 
simplifying the result and solving for     
maxδ maxP
crδ
( )[ ]δ π δ δ δ= −
cos sin cos1
2 (14 70)( )[ ]δ π δ δ δcr = − −cos sin cos0 0 02 (14.70)
In order to get tcr, substitute critical angle equation into (14.55) and then solve to 
obtain tcr;
δ
ω
δcr
s m
cr
P
H
t= +
4
2
0
( )t
H
Pcr
cr
s m
=
−4 0δ δ
ω
(14.71) (14.72)
56
Equal‐Area Criterion of Stability ‐Example_____
Calculate the critical clearing angle and critical clearing time for the system shown 
below. When a three phase fault occurs at point P. The initial conditions are the 
same as in Example 1 and H = 5MJ/MVAp /
P Pe = =max sin . sinδ δ210
Solution
The power angle equation is
The initial rotor angle is
δ0
0
28 44 0 496= =. . elec rad
d h h l h f h l land the mechanical input power Pm is 1.0 pu. Therefore, the critical angle is 
calculated using Eq. (14.70)
( )[ ]δ πcr = − × −−
cos . sin . cos .1 0 0
2 0 496 28 44 28 44 = =81697 14260
. . elec rad
( )[ ]δ π δ δ δcr = − −−
cos sin cos1
0 0 02
and the critical clearing time is 
( )× −4 5 1426 0496. . = 0 222s( )
tcr =
×377 1
= 0.222s
57
Further Application of the Equal‐Area Criterion
• Equal‐Area Criterion can only be applied for
the case of two machines or one machine
and infinite busand infinite bus.
• When a generator is supplying power to an
infinite bus over two parallel lines, opening
one of the lines may cause the generator to
lose synchronismlose synchronism.
• If a three phase fault occurs on the bus on
which two parallel lines are connected, no
power can be transmitted over either the
lineline.
• If the fault is at the end of one of the lines, CB will operate and power can
flow through another line.
• In this condition, there is some impedance between the parallel buses and
the fault. Thus, some power is transmitted during the fault.
58
Further Application of the Equal‐Area Criterion
Considering the transmitted of power during fault, a general Equal‐area
criterion is applied;criterion is applied;
By evaluating the area A1 and A2 as in the previous approach, we can find that;
1max2maxmax coscos))(/(
cos
rrPP oom
cr
−+−
=
δδδδ
δ (14.73)
12 rr
cr
−
( )
59
Further Application of the Equal‐Area Criterion ‐ Example
Determine the critical clearing angle for the three phase fault described in the 
previous example.
The power‐angle equations obtained in the previous examples areThe power‐angle equations obtained in the previous examples are
δδ sin1.2sinmax =P δδ sin808.0sinmax1 =Pr
δδ sin5.1sinmax2 =Pr
Before fault: During fault:
After fault:
Hence 
385.0
1.2
808.0
1 ==r 714.0
1.2
5.1
2 ==r
rad412.219.138
5.1
0.1
sin180 1
max =°=−°= −
δ
)44.28cos(385.0)19.138cos(714.0)496.0412.2)(1.2/0.1(
cos
°−°+−
δ
127.0
385.0714.0
)()())((
cos
=
−
=crδ
°= 726.82crδ
To determine the critical clearing time, we must obtain the swing curve of     
versus t for this example.  
δ
60
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
For large systems we depend on the digital computer to determine δ versus t
for all the machines in which we are interested; and δ can be plotted versus tfor all the machines in which we are interested; and δ can be plotted versus t
for a machines to obtain the swing curve of that machine.
The angle δ is calculated as a function of time over a period long enough tog p g g
determine whether δ will increase without limit or reach a maximum and
start to decrease.
Although the latter result usually indicates stability, on an actual system
where a number of variable are taken into account it may be necessary to plot
δ versus t over a long enough interval to be sure δ will not increase again
ith t t i t l lwithout returning to a low value.
61
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
By determining swing curves for various clearing times the length of time
permitted before clearing a fault can be determined.
Standard interrupting times for circuit breakers and their associated relays
are commonly 8, 5, 3 or 2 cycles after a fault occurs, and thus breaker
speeds may be specified.
Calculations should be made for a fault in the position which will allow the
least transfer of power from the machine and for the most severe type of
fault for which protection against loss of stability is justified.
A number of different methods are available for the numerical evaluation
of second order differential equations in step by step computations forof second‐order differential equations in step‐by‐step computations for
small increments of the independent variable.
The more elaborate methods are practical only when the computations are
62
The more elaborate methods are practical only when the computations are
performed on a digital computer. The step‐by‐step method used for hand
calculation is necessarily simpler than some of the methods recommended
for digital computers.
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
In the method for hand calculation the change in the angular position of the
rotor during a short interval of time is computed by making the following
assumptions:assumptions:
•The accelerating power Pa computed at the beginning of an interval is
constant from the middle of the preceding interval to the middle of theconstant from the middle of the preceding interval to the middle of the
interval considered.
•The angular velocity is constant throughout any interval at the valueg y g y
computed for the idle of the interval.
**neither of the assumptions is true, since δ is changing continuously and both Pa
and ω are functions of δ.
63
As the time interval is decreased, the computed swing curve approaches the true
curve.
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
and
Figure 14.4 will help in visualizing the assumptions.
The accelerating power is computed for the pointsThe accelerating power is computed for the points
enclosed in circles at the ends of the n-2, n-1, and n
intervals, which are the beginnings of the n-1, n and
n+1 interval.
The step curve of Pa in Fig. 14.4 results from the
assumption that Pa is constant between midpoints of
the intervals.
Similarly, ωr, the excess of the angular velocity ω
over the synchronous angular velocity ωs, is shown
as a step curve that is constant throughout the
interval at the value computed for the midpoint.e v e v ue co pu ed o e dpo .
Between the ordinates (n-3/2) and (n-1/2) there
64
Between the ordinates (n 3/2) and (n 1/2) there
is a change of speed caused by the constant
accelerating power.
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
The change in speed in the product of the
acceleration and the time interval, thus:
ω ω
δ
r n r n a n
d
dt
t
f
H
P t, / , / ,1 2 3 2
2
2 1
180
− = = −Δ Δ (1)
The change in δ over any interval is the 
product of ω, for the interval and the time of 
the interval. Thus, the change in δ during the 
1 i l in‐1 interval is:
Δ Δδ δ δ ωn n n r nt− − − −= − =1 1 2 3 2, /
(2)
and during the nth interval
65
Δ Δδ δ δ ωn n n r nt= − =− −1 1 2, /
(3)
Fig. 14.14
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
Substracting Eq (2) from Eq. (3) and
substituting Eq. (1) in the resulting
equation to eliminate all values of ω,
(4)
yields
Δ Δδ δn n a nkP= +− −1 1,
where
( )k
f
t=
180 2
Δ
(5)
( )
H
66
Fig. 14.14
STEP‐BY‐STEP SOLUTION OF SWING CURVE____
Equation (4) is the important for the step-by-step solution of the swing equation with the necessary
assumption enumerated, for it shows how to calculate the change in δ for the previous interval and
the accelerating power for the interval in equation are known.
Equation (4) shows that (subject to the stated assumptions), the change in torque angle during a
given interval is equal to the change in torque angle during the preceding interval plus the
accelerating power at the beginning of the interval times k.
The accelerating power is calculated at the beginning of each new interval. The solution progresses
through enough intervals to obtain points for plotting the swing curve.
Greater accuracy is obtained when the duration of the interval is small. An interval of 0.05s isy
usually satisfactory.
The occurrence of a fault causes a discontinuity in the accelerating power Pa which is zero before
the fault and a definite amount immediately following the fault.y g
The discontinuity occurs at the beginning of the interval, when t=0. Reference to Fig. 14.14 shows
that our method of calculation assumes that the accelerating power computed at the beginning of an
interval considered.
67
When the fault occurs, we have two values of Pa at the beginning of the interval, and we must take
the average of these two values as our constant accelerating power.
EXAMPLE SOLUTION OF SWING CURVE____
Given a two‐bus system of 50 Hz system, with machine 1 delivering 0.9 p.u power
to infinite bus and the machine 1 has H = 4.5 MJ/MVA. Three phase fault
occurred at the middle of the line is cleared in 0.2s. The power angle equationsp g q
are given as below
Pre-fault: δsin0.2=eP
During fault: δsin091.1=eP
After fault cleared: δsin714.1=eP
Compute the swing curve using step-by-step method.
68
EXAMPLE SOLUTION OF SWING CURVE____
Solution:
Remember! Mechanical power doesn’t change during transient stability studies.
At the beginning machine 1 delivering 0 9 pu power At this steady stateAt the beginning, machine 1 delivering 0.9 pu power. At this steady state
condition, Pe = Pm = 0.9 pu.
Wh th f lt t 0 th t l i t th i iti l lWhen the fault occurs at t=0s the rotor angle is at the initial value:
deg7426
9.0
sin
9.0sin0.2
1
elec°=⎟
⎞
⎜
⎛
=
=
−
δ
δ
deg74.26
0.2
sin0 elec=⎟
⎠
⎜
⎝
=δ
5)05.0(
54
)50(180
)(
180 22
==Δ= t
H
f
k
69
5.4H
EXAMPLE SOLUTION OF SWING CURVE____
At the beginning of the first interval there is a discontinuity in the acceleration
power. Just before fault occurs, that is t=0-s Pa=0 since the machine is operating inp a p g
synchronism and the rotor angle is the initial steady-state rotor position 0δ
At t=0+s immediately after the fault has occurred;
409.0491.09.0
491.0)74.26sin(091.1
0
0
=−=−=
=°=
+
+
ema
e
PPP
P
The average value of Pa at t = 0 is 2045.02/409.0 ==avg
aP
Similarly, for representing any change in switching condition during stability
analysis, the accelerating power to be used is the average of the accelerating power
just before and just after the change in switching condition.
70
EXAMPLE SOLUTION OF SWING CURVE____
°=×= 02251204505kP
Then we can find
=×= 0225.12045.05akP
°=°+=Δ 0225.10225.101δ
tΔ
The interval
tΔis the change in rotor angle as time advances over the first interval from 0 to
At the end of the first interval, °=°+°=Δ+= 7625.270225.174.26101 δδδ
st 05.0=Δ °=°−=−= 9590.1)7625.27sin(091.19.0(5)(51 PePmkPAt st 05.0Δ 9590.1)7625.27sin(091.19.0(5)(51, PePmkPa
°=°+°=+Δ=Δ 9815.29590.10225.11,12 akPδδ
δδδ
At
and it follows that the increase in rotor angle over the second time interval is
°=°+°=Δ+= 744.309815.27625.27212 δδδHence, at the end of the second interval
The subsequent steps are shown in the following Table.
71
EXAMPLE SOLUTION OF SWING CURVE____
T (Sec) Pmax sin Po (pu) Pa (pu)
kPa (Elec
Degree (Elec Degree) (Elec Degree)
0‐ 2.0 0.450 0.9 0.0 26.74
0+ 1.091 0.450 0.491 0.409 26.74
0 Avg 1 5455 0 2045 1 0225
δδΔ
δ
0 Avg 1.5455 0.2045 1.0225
1.0225
0.05 1.091 0.465863 0.508257 0.391743 1.958716 27.7625
2.981216
0.1 1.091 0.511259 0.557783 0.342217 1.711084 30.74372
4.692301
0.15 1.091 0.579859 0.632626 0.267374 1.33687 35.43602
6.029171
0.2‐ 1.091 0.662 0.722 0.178 41.46
0.2+ 1.714 0.662 1.135 ‐0.235 41.46
0.2Avg 0.815 ‐0.0285 ‐0.1425
5 8866715.886671
0.25 1.714 0.735539 1.260714 ‐0.36071 ‐1.80357 47.34667
4.083099
0.3 1.714 0.781917 1.340206 ‐0.44021 ‐2.20103 51.42977
1.882069
0.35 1.714 0.801971 1.374579 ‐0.47458 ‐2.37289 53.31184
‐0.49082
0.4 1.714 0.796824 1.365756 ‐0.46576 ‐2.32878 52.82101
‐2.8196
0.45 1.714 0.766133 1.313152 ‐0.41315 ‐2.06576 50.00141
‐4.88536
0.5 1.714 0.70861 1.214557 ‐0.31456 ‐1.57278 45.11605
72
‐6.45815
EXAMPLE SOLUTION OF SWING CURVE____
0.5 1.714 0.70861 1.214557 ‐0.31456 ‐1.57278 45.11605
‐6.45815
0.55 1.714 0.624737 1.0708 ‐0.1708 ‐0.854 38.6579
‐7.31215
0.6 1.714 0.520262 0.891729 0.008271 0.041356 31.34575
‐7.27079
0.65 1.714 0.407981 0.69928 0.20072 1.003601 24.07496
‐6.26719
0.7 1.714 0.305863 0.524249 0.375751 1.878756 17.80777
‐4.38843
0.75 1.714 0.232106 0.397829 0.502171 2.510854 13.41934
‐1.87758
0 8 1 714 0 200108 0 342984 0 557016 2 785078 11 541760.8 1.714 0.200108 0.342984 0.557016 2.785078 11.54176
0.907497
0.85 1.714 0.215602 0.369542 0.530458 2.652288 12.44925
3.559785
0.9 1.714 0.275824 0.472762 0.427238 2.13619 16.00904
5 6959755.695975
0.95 1.714 0.369874 0.633964 0.266036 1.330182 21.70501
7.026157
1 1.714 0.480758 0.824019 0.075981 0.379907 28.73117
7.406064
73
1.05 1.714 0.589787 1.010896 ‐0.1109 ‐0.55448 36.13724
EXAMPLE SOLUTION OF SWING CURVE____
At t=0.2s, fault is cleared. Hence, the average of accelerating power just before and after should be
0 2
1 091 i (41 46 ) 0 223°
considered.
At t=0.2- s (just before fault cleared);
0.2
0.2 0.2
1.091sin(41.46 ) 0.7223
0.9 0.7223 0.1777
e
a m e
P
P P P
−
− −
= ° =
= − = − =
At t=0.2+ s (just after fault cleared);
2348.01348.19.0
1348.1)46.41sin(714.1
2.02.0
2.0
−=−=−=
=°=
++
+
ema
e
PPP
P
23480177702020 +
PP
(j );
02855.0
2
2348.01777.0
2
)(
2.02.0
−=
−
=
+
=
+−
aa
a
PP
averagePHence, average Pa;
The subsequent steps are shown in the following Table.
74

More Related Content

What's hot

Small signal stability analysis
Small signal stability analysisSmall signal stability analysis
Small signal stability analysisbhupendra kumar
 
02 1 synchronous-machines
02 1 synchronous-machines02 1 synchronous-machines
02 1 synchronous-machineshuseyin28
 
Load dispatch center
Load dispatch centerLoad dispatch center
Load dispatch centerddxdharmesh
 
Drives lec 13_14_Speed Control of DC Motors
Drives lec 13_14_Speed Control of DC MotorsDrives lec 13_14_Speed Control of DC Motors
Drives lec 13_14_Speed Control of DC MotorsMohammad Umar Rehman
 
CSI and vSI fed induction motor drives
CSI and vSI fed induction motor drivesCSI and vSI fed induction motor drives
CSI and vSI fed induction motor drivesraviarmugam
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlBirju Besra
 
Generation shift factor and line outage factor
Generation shift factor and line outage factorGeneration shift factor and line outage factor
Generation shift factor and line outage factorViren Pandya
 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stabilityAkash Choudhary
 
Planning and modern trends in hvdc
Planning and modern trends in hvdcPlanning and modern trends in hvdc
Planning and modern trends in hvdcjawaharramaya
 
Classification Of Power System Stability
Classification Of Power System StabilityClassification Of Power System Stability
Classification Of Power System StabilityAravind Shaji
 
Voltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridVoltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridLeonardo ENERGY
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relaysPremanandDesai
 
Control of active power &amp; reactive power
Control of active power &amp; reactive powerControl of active power &amp; reactive power
Control of active power &amp; reactive powerPavithran Selvam
 
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...SushovanRoy12
 
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROL
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROLLOAD FREQUENCY AND VOLTAGE GENERATION CONTROL
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROLPreet_patel
 

What's hot (20)

PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
Small signal stability analysis
Small signal stability analysisSmall signal stability analysis
Small signal stability analysis
 
Swing equation
Swing equationSwing equation
Swing equation
 
Static var compensator
Static var compensatorStatic var compensator
Static var compensator
 
02 1 synchronous-machines
02 1 synchronous-machines02 1 synchronous-machines
02 1 synchronous-machines
 
Unit commitment
Unit commitmentUnit commitment
Unit commitment
 
Load dispatch center
Load dispatch centerLoad dispatch center
Load dispatch center
 
Drives lec 13_14_Speed Control of DC Motors
Drives lec 13_14_Speed Control of DC MotorsDrives lec 13_14_Speed Control of DC Motors
Drives lec 13_14_Speed Control of DC Motors
 
CSI and vSI fed induction motor drives
CSI and vSI fed induction motor drivesCSI and vSI fed induction motor drives
CSI and vSI fed induction motor drives
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
Generation shift factor and line outage factor
Generation shift factor and line outage factorGeneration shift factor and line outage factor
Generation shift factor and line outage factor
 
TRANSIENT ANGLE STABILITY
TRANSIENT ANGLE STABILITYTRANSIENT ANGLE STABILITY
TRANSIENT ANGLE STABILITY
 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stability
 
Planning and modern trends in hvdc
Planning and modern trends in hvdcPlanning and modern trends in hvdc
Planning and modern trends in hvdc
 
Classification Of Power System Stability
Classification Of Power System StabilityClassification Of Power System Stability
Classification Of Power System Stability
 
Voltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridVoltage and Frequency Control of the Grid
Voltage and Frequency Control of the Grid
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relays
 
Control of active power &amp; reactive power
Control of active power &amp; reactive powerControl of active power &amp; reactive power
Control of active power &amp; reactive power
 
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
 
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROL
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROLLOAD FREQUENCY AND VOLTAGE GENERATION CONTROL
LOAD FREQUENCY AND VOLTAGE GENERATION CONTROL
 

Similar to Introduction to Power System Stability

Stability Stability Stability Stability Stability
Stability Stability Stability Stability StabilityStability Stability Stability Stability Stability
Stability Stability Stability Stability StabilityFaysalAhamed32
 
1 power system dyn (2)we
1 power system dyn  (2)we1 power system dyn  (2)we
1 power system dyn (2)wegetnetyilfu
 
EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxShoilieChakma
 
Iaetsd power-frequency transient studies
Iaetsd power-frequency transient studiesIaetsd power-frequency transient studies
Iaetsd power-frequency transient studiesIaetsd Iaetsd
 
Ee6501 psa-eee-vst-au-units-v (1)
Ee6501 psa-eee-vst-au-units-v (1)Ee6501 psa-eee-vst-au-units-v (1)
Ee6501 psa-eee-vst-au-units-v (1)Vara Prasad
 
Speed Control of The Three Phase Induction Motor via changing the line voltage
Speed Control of The Three Phase Induction Motor via changing the line voltageSpeed Control of The Three Phase Induction Motor via changing the line voltage
Speed Control of The Three Phase Induction Motor via changing the line voltageYazan Yousef
 
Simulation and Analysis of Modified DTC of PMSM
Simulation and Analysis of Modified DTC of PMSMSimulation and Analysis of Modified DTC of PMSM
Simulation and Analysis of Modified DTC of PMSMIJECEIAES
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine SystemShweta Yadav
 
Power System Analysis Unit - V
Power System Analysis Unit - VPower System Analysis Unit - V
Power System Analysis Unit - Varunatshare
 
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction MotorVector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction MotorIJERA Editor
 
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorNovelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorIRJET Journal
 
Chapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxChapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxasmasharab1
 
Control of Switched Reluctance Generator in Wind Energy System
Control of Switched Reluctance Generator in Wind Energy SystemControl of Switched Reluctance Generator in Wind Energy System
Control of Switched Reluctance Generator in Wind Energy SystemNereus Fernandes
 

Similar to Introduction to Power System Stability (20)

Stability Stability Stability Stability Stability
Stability Stability Stability Stability StabilityStability Stability Stability Stability Stability
Stability Stability Stability Stability Stability
 
1 power system dyn (2)we
1 power system dyn  (2)we1 power system dyn  (2)we
1 power system dyn (2)we
 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
 
EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptx
 
Control of Direct Current Machine by the Change of Resistance in Armature Cir...
Control of Direct Current Machine by the Change of Resistance in Armature Cir...Control of Direct Current Machine by the Change of Resistance in Armature Cir...
Control of Direct Current Machine by the Change of Resistance in Armature Cir...
 
Iaetsd power-frequency transient studies
Iaetsd power-frequency transient studiesIaetsd power-frequency transient studies
Iaetsd power-frequency transient studies
 
Ee6501 psa-eee-vst-au-units-v (1)
Ee6501 psa-eee-vst-au-units-v (1)Ee6501 psa-eee-vst-au-units-v (1)
Ee6501 psa-eee-vst-au-units-v (1)
 
2Stability-2.pptx
2Stability-2.pptx2Stability-2.pptx
2Stability-2.pptx
 
Speed Control of The Three Phase Induction Motor via changing the line voltage
Speed Control of The Three Phase Induction Motor via changing the line voltageSpeed Control of The Three Phase Induction Motor via changing the line voltage
Speed Control of The Three Phase Induction Motor via changing the line voltage
 
Simulation and Analysis of Modified DTC of PMSM
Simulation and Analysis of Modified DTC of PMSMSimulation and Analysis of Modified DTC of PMSM
Simulation and Analysis of Modified DTC of PMSM
 
L044065862
L044065862L044065862
L044065862
 
Exp 2 (1)2. To plot Swing Curve for one Machine System
Exp 2 (1)2.	To plot Swing Curve for one Machine SystemExp 2 (1)2.	To plot Swing Curve for one Machine System
Exp 2 (1)2. To plot Swing Curve for one Machine System
 
Power System Analysis Unit - V
Power System Analysis Unit - VPower System Analysis Unit - V
Power System Analysis Unit - V
 
F05113439
F05113439F05113439
F05113439
 
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction MotorVector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
 
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC MotorNovelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
Novelty Method of Speed Control Analysis of Permanent Magnet Brushless DC Motor
 
Lk3420692075
Lk3420692075Lk3420692075
Lk3420692075
 
Chapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxChapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptx
 
Control of Switched Reluctance Generator in Wind Energy System
Control of Switched Reluctance Generator in Wind Energy SystemControl of Switched Reluctance Generator in Wind Energy System
Control of Switched Reluctance Generator in Wind Energy System
 
Drives
DrivesDrives
Drives
 

Recently uploaded

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 

Recently uploaded (20)

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 

Introduction to Power System Stability

  • 1. Introduction Power System Stabilityy y__ • The tendency of a power system to develop restoring forces equal to or greater than the disturbing forces to maintain the state ofg g equilibrium is know as stability. • If the forces tending to hold machines in synchronism with one another are sufficient to overcome the disturbing forces, the systemg , y is said to remain stable. • Stability Studies: – TransientTransient – Dynamic – Steady‐state  • The main purpose of transient stability studies is to determineThe main purpose of transient stability studies is to determine whether a system will remain in synchronism following major disturbances such as transmission system faults, sudden load changes, loss of generating units, or line switching. 1
  • 2. Introduction Power System Stabilityy y__ • Transient Stability Problems: – First‐swing; short study period after disturbance, based on a reasonableFirst swing; short study period after disturbance, based on a reasonable simple generator model, without control system. – Multi‐swing; longer study period of time after disturbance, thus consider the  effect of generator control systems. • In all stability studies, the objective is to determine whether or not the rotors of the machines being perturbed return to constant speed operation. • To simplify calculation, the following assumptions must be made: – Only synchronous frequency currents and voltages are considered in the stator windings and the power system. Consequently dc offset currents and harmonic components are neglectedharmonic components are neglected. – Symmetrical components are used in the representation of unbalanced faults. – Generated voltage is considered unaffected by machine speed variation.Generated voltage is considered unaffected by machine speed variation. 2
  • 4. Rotor dynamics and the swing equationy g q • Accelerating torque is the product of the moment of inertia of  the rotor times its angular accelerationthe rotor times its angular acceleration.  ema m TTT d J −==2 2 θ (14.1) ema dt2 J the total moment of inertia of the rotor masses in kg m2 J the total moment of inertia of the rotor masses, in kg-m mθ the angular displacement of the rotor with respect to stationary axis, in mechanical radians t time, in seconds mT the mechanical or shaft torque supplied by the prime mover less retarding torque due to rotationalm losses, N-m eT the net electrical or electromagnetic torque, in N-m aT the net accelerating torque, in N-m 4
  • 5. Rotor dynamics and the swing equationy g q • The mechanical torque Tm and the electrical torque Te are considered positive for the synchronous generator. Whereas for motor is another way round. • Tm is the resultant shaft torque that tends to accelerate the rotor in the positive direction of rotation as shown in the figure. • Under steady‐state operation of generator Tm and Te are equal and l ti t T i mθ accelerating torque Ta is zero. • In this case there is no acceleration or deceleration of the rotor masses and the resultant constant speed is the synchronous speed. 5
  • 6. Rotor dynamics and the swing equationy g q • is measured with respect to a stationary reference axis on the stator, it is an absolute measure of rotor angle. • Rotor angular position with respect to a reference axis which rotates at mθ g p p synchronous speed is given by: msmm t δωθ += (14.2) • Where is the synchronous speed of the machine in mechanical radians per second and is the angular displacement of the rotor, in mechanical radians, from the synchronously rotating reference axis. smω mδ • The derivatives of (14.2) with respect to time are: dd mm δ ω θ += (14.3) dtdt smω += 2 2 2 2 d d d d mm δθ = (14.3) (14.4) 22 dtdt 6
  • 7. Rotor dynamics and the swing equationy g q • Equation (14.3) shows that the rotor angular velocity         is  constant and equals the synchronous speed only when is dt d mθ dδconstant and equals the synchronous speed only when          is  equal zero. • Thus, represents the deviation of rotor speed from dt d mδ dt d mδ synchronism and the units of measure are mechanical radians per second. • Eq (14 4) represents the rotor acceleration measured in dt • Eq. (14.4) represents the rotor acceleration measured in mechanical radians per second‐squared • Substitute (14.4) into  (14.1):( ) ( ) mN2 2 −−== ema m TTT dt d J δ (14.5) 7
  • 8. Rotor dynamics and the swing equationy g q • Eq. (14.5) can be converted into power by multiplying with  angular velocity in Eq (14 6) (**Power = Torque x Angularωangular velocity     in Eq. (14.6)  (**Power = Torque x Angular  velocity). dt d m m θ ω = (14.6) mω W2 2 ema m m PPP dt d J −== δ ω (14.7) Where:  P the shaft power input to the machine less rotational lossesPm  the shaft power input to the machine less rotational losses  Pe  the electrical power crossing its air gap  Pa  the accelerating power which account for any unbalance between Pm and Pe  8
  • 9. Rotor dynamics and the swing equationy g q • Eq. (14.7) can also be written as in (14.8), whereby                  :mJM ω= • M is inertia constant (joule‐seconds per mechanical radian) W2 2 ema m PPP dt d M −== δ (14.8) • M is inertia constant (joule‐seconds per mechanical radian) • In machine data supplied for stability studies, another constant  related to inertia is called H constant: MVAinratingmachine speedssynchronouatmegajoulesinenergykineticstored H = (14.9) MVAMJ S M S J H mach sm mach sm /2 1 2 1 2 ωω == MVA.inmachinetheofratingphasethreethe−machS 9
  • 10. Rotor dynamics and the swing equationy g q • Solving for M in Eq. (14.9); radmechMJS H M mach sm / 2 ω = (14.10) • Substitute the above equation in (14.8), we find; PPPdH −2 2 δ mechanical radians mechanical radians per seconds • Eq. (14.11) can also be written as; mach em mach am sm S PP S P dt dH ==2 2 δ ω (14.11) perunitPPP dt dH ema s −==2 2 2 δ ω (14.12) Swing Equation s 10
  • 11. Rotor dynamics and the swing equationy g q • For a system with an electrical frequency of f hertz, Eq. (14.12)  becomes ( in electrical radians)δbecomes (     in electrical radians) (14.13)perunitPPP dt d f H ema −==2 2 δ π δ • If      in electrical degree (14.14)perunitPPP dH == 2 δ δ • Eq. (14.12)                                                    can be written as the  t fi t d diff ti l ti (14.14)perunitPPP dtf ema −==2 180 perunitPPP dt dH ema s −==2 2 2 δ ω two first‐order differential equations: perunitPP d dH em −= ω2 s dt d ωω δ −=(14.15) (14.16)p dt em sω dt 11
  • 12. Further Considerations of the swing equationg q • In a stability study of a power system with many synchronous  machines only one MVA base common to all parts of themachines, only  one MVA base common to all parts of the  system can be chosen.  • Thus, H constant for each machine must be converted into per  unit base on common MVA base; (14.17)mach ht S HH = • The constant moment inertia M is rarely used in practice and H (14.17) system machsystem S HH • The constant moment inertia M is rarely used in practice and H is often used in stability study. 12
  • 13. Further Considerations of the swing equationg q • In a stability study for a large system with many machines geographically dispersed over a wide area it is desirable togeographically dispersed over a wide area, it is desirable to minimize the number of swing equations to be solved. • This can be done if the transmission line fault, or other disturbance on the system, affects the machines within the plant so that their rotors swing together. • Thus the machine within the plant can be combined into a• Thus, the machine within the plant can be combined into a single equivalent machine just as if their rotors were mechanically coupled and only one swing equation need to be written for them. 13
  • 14. Further Considerations of the swing equationg q • Consider a power plant with two generators connected to the same bus which is electrically remote from network disturbances the swingbus which is electrically remote from network disturbances, the swing equations on the common system base are: perunitPP dt dH em 112 1 2 12 −= δ ω (14.18) dtsω perunitPP dt dH em s 222 2 2 22 −= δ ω (14.19) • Adding the equation together, and denoting and by since the rotor angle swing together; 1δ 2δ δ dH 2 2 δ where peruniPP dt dH em s −=2 2 2 δ ω (14.20) 21 HHH += PPPwhere 21 21 mmm PPP += 21 eee PPP += 14
  • 15. The Power‐Angle Equationg q __________________ • In the swing equation, the input mechanical power from the prime mover P is assumed constantprime mover Pm is assumed constant. • Thus, the Pe will determine whether the rotor accelerates,Thus, the Pe will determine whether the rotor accelerates, decelerates, or remains at synchronous speed. • Changes in Pe are determined by conditions on the transmission and distribution networks and the loads on the system to which the generator supply power.the generator supply power. 15
  • 16. The Power‐Angle Equationg q __________________ • Each synchronous machine is represented for transient stability studies by its transient internal voltage E’ in series with the transienty g reactance X’d as shown in the Figure below. • Armature resistance is negligible so that the phasor diagram is as shown in the figure.g • Since each machine must be considered relative to the system, the phasor angles of the machine quantities are measured with respect to the common system reference.y + jXd ' I E' jIXd ' Vt _ E' I δ α Vt j d Reference (a) (b) 16
  • 17. The Power‐Angle Equationg q __________________ • Consider a generator supplying power through a transmission system to a receiving end system at bus 2system to a receiving‐end system at bus 2. 1I 2I E’1 is transient internal voltage of  generator at bus 1 ' 1E ' 2E E’2 is transient internal voltage of  generator at bus 2 • The elements of the bus admittance matrix for the network reduced to a two nodes in addition to the reference node is: ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = 2221 1211 YY YY Ybas (14.28) 17
  • 18. The Power‐Angle Equationg q __________________ • Power equation at a bus k is given by: • Let k =1 and N=2 and substituting E’ for V nkn N n kkk VYVjQP  1= ∗ ∑=−   (14.29) • Let k =1 and N=2, and substituting E 2 for V, ( ) ( )∗∗ +=+ ' 212 ' 1 ' 111 ' 111 EYEEYEjQP (14.30) where 1I 2I 1 ' 1 ' 1 δ∠= EE 2 ' 2 ' 2 δ∠= EE 111111 jBGY += 121212 θ∠= YY ' 1E ' 2E 18
  • 19. The Power‐Angle Equationg q __________________ • We obtain: 2 )(cos 122112 ' 2 ' 111 2' 11 θδδ −−+= YEEGEP )(sin 122112 ' 2 ' 111 2' 11 θδδ −−+−= YEEBEQ (14.31) (14.32) • If we let                   and                   , we obtain from (14.31) and  (14.32)   21 δδδ −= 2 12 π θγ −= )-(sin12 ' 2 ' 111 2' 11 γδYEEGEP += 2 (14.33) )-(cos12 ' 2 ' 111 2' 11 γδYEEBEQ −−= (14.34) 19
  • 20. The Power‐Angle Equationg q __________________ • Eq. (14.33) can be written more simply as where (14.35))sin(max γδ −+= PPP ce • When the network is considered without resistance, all the  elements of Y are susceptances so both G and becomes (14.36)11 2' 1 GEPc = 12 ' 2 ' 1max YEEP = γelements of Ybus are susceptances, so both G11 and    becomes  zero and Eq. (14.35) becomes; δsinmaxPPe = (14.37) Power Angle Equation γ where , with X is the transfer reactance between E’1 and E’2 maxe XEEP ' 2 ' 1max = 1 2 20
  • 21. Example 1: Power‐angle equation before faultp g q The single‐line diagram shows a generator connected through parallel transmission lines to a large metropolitan system considered as an infinite bus. The machine is delivering 1.0 pu power and both the terminal voltage and the infinite‐bus voltage are 1.0 pu. The reactance of the line is shown based on a common system base. The transient reactance of the generator is 0 20 pu as indicated Determine the power‐angle equation for the system0.20 pu as indicated. Determine the power‐angle equation for the system applicable to the operating conditions. 21
  • 22. Example 1: Power‐angle equation before faultp g q The reactance diagram for the system is shown: The series reactance between the terminal voltage (Vt) and the infinite bus is: unitper3.0 2 4.0 10.0 =+=X The series reactance between the terminal voltage (Vt) and the infinite bus is: The 1.0 per unit power output of the generator is determined by the power‐angle 1.0sin 3.0 (1.0)(1.0) sin == αα X VVt The 1.0 per unit power output of the generator is determined by the power angle  equation. αV is the voltage of the infinite bus, and      is the angle of the terminal voltage  relative to the infinite bus  22
  • 23. Example 1: Power‐angle equation before faultp g q Solve  α 01 01 458.173.0sin == − α Terminal voltage, Vt : unitper300.0954.0458.170.1 0 jVt +=∠= The output current from the generator is: 30 00.1458.170.1 00 j I ∠−∠ = unitper729.8012.11535.00.1 0 ∠=+= j 3.0j pj The transient internal voltage is XIVE +=' XIVE t += )1535.00.1)(2.0()30.0954.0(' jjjE +++= unitper44.28050.15.0923.0 0 ∠=+= j 23
  • 24. Example 1: Power‐angle equation before faultp g q The power‐angle equation relating the transient internal voltage E’ and the  infinite bus voltage V is determined by the total series reactanceinfinite bus voltage V is determined by the total series reactance  unitper5.0 2 4.0 1.02.0 =++=X Hence, the power‐angle equation is: upPe .sin1.2sin 50 )0.1)(05.1( δδ == 5.0 δWhere      is the machine rotor angle with respect to infinite bus  The swing equation for the machine isThe swing equation for the machine is unitpersin10.20.1 180 2 2 δ δ −= dt d f H H is in megajoules per megavoltampere, f is the electrical frequency of the system  and     is in electrical degree δ 24
  • 26. Example 2: Power‐angle equation During Faultp g q g The same network in example 1 is used. Three phase fault occurs at point P as shown in the Figure Determine the poweroccurs at point P as shown in the Figure. Determine the power‐ angle equation for the system with the fault and the corresponding swing equation. Take H = 5 MJ/MVA 26
  • 27. Example 2: Power‐angle equation During Faultp g q g Approach 1: Th di f h d i f l i h b lThe reactance diagram of the system during fault is shown below: The value is admittance per unitp 27
  • 28. Example 2: Power‐angle equation During Faultp g q g As been calculated in example 1, internal transient voltage remains as (based on the assumption that flux linkage is°∠= 4428051'E The Y bus is: as (based on the assumption that flux linkage is constant in the machine) ∠ 44.2805.1E ⎥ ⎥ ⎤ ⎢ ⎢ ⎡ − − = 5025070 333.30333.3 jYb ⎥ ⎥ ⎦⎢ ⎢ ⎣ − 833.1050.2333.3 50.250.70jYbas Since bus 3 has no external source connection and it may be removed by the node li i ti d th Y b t i i d d telimination procedure, the Y bus matrix is reduced to: [ ]5.2333.3 83310 1 52 333.3 570 0333.3 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −⎥ ⎦ ⎤ ⎢ ⎣ ⎡− =busY 833.105.25.70 −⎥ ⎦ ⎢ ⎣ ⎥ ⎦ ⎢ ⎣ − ⎥ ⎤ ⎢ ⎡− =⎥ ⎤ ⎢ ⎡ 769.0308.21211 j YY ⎥ ⎦ ⎢ ⎣ −⎥ ⎦ ⎢ ⎣ 923.6769.02221 j YY 28
  • 29. Example 2: Power‐angle equation During Faultp g q g The magnitude of the transfer admittance is 0.769 and therefore, The power‐angle equation with the fault on the system is therefore, ' ' ' max 1 2 12 (1.05)(1.0)(0.769) 0.808P E E Y per unit= = = unitpersin808.0 δ=eP The corresponding swing equation isThe corresponding swing equation is 5 180 10 0808 2 2 f d dt δ δ= −. . sin per unit Because of the inertia, the rotor cannot change position instantly upon occurrence of the fault. Therefore, the rotor angle is initially 28.440 and the electrical power output is δ 38504428i8080 °P 385.044.28sin808.0 =°=eP 29
  • 30. Example 2: Power‐angle equation During Faultp g q g The initial accelerating power is: Pa = − =10 0385 0615. . . per unit and the initial acceleration is positive with the value given by d dt f f 2 2 180 5 0615 2214 δ = =( . ) . elec deg / s2 30
  • 31. Example 2: Power‐angle equation During Faultp g q g Approach 2: C h d li ( hi h i Y f ) i d l dCovert the read line (which in Y form) into delta to remove node 3 from the network: j1.3 1 1 3 1 1 3 3 2 2 31 )4.0)(2.0()4.0)(3.0()2.0)(3.0( jjjjjj R ++ j0.65 j0.8667 3.1 2.0 )4.0)(2.0()4.0)(3.0()2.0)(3.0( j j jjjjjj RAC = ++ = 65.0 4.0 )4.0)(2.0()4.0)(3.0()2.0)(3.0( j j jjjjjj RAB = ++ = 31 8667.0 3.0 )4.0)(2.0()4.0)(3.0()2.0)(3.0( j j jjjjjj RBC = ++ =
  • 32. Example 2: Power‐angle equation During Faultp g q g Approach 2: Covert the read line which in Y form into delta to remove nodeCovert the read line, which in Y form into delta to remove node 3 from the network: j0.1625 769.0)3.1/1(12 =−= jY12 ' 2 ' 1 YEEP = )(12 j max (1.05)(1.0)(0.769) 0.808 0.808sine P P δ = = = 1221max YEEP 32 e
  • 33. Example 3: Power‐angle equation After Fault Clearedp g q The fault on the system cleared by simultaneous opening of the circuit breakers at each end of the affected linethe circuit breakers at each end of the affected line. Determine the power‐angle equation and the swing equation for the post‐fault period CB open CB open 33
  • 34. Example 3: Power‐angle equation After Fault Clearedp g q Upon removal of the faulted line, the net transfer admittance across the system isacross the system is y j j12 1 0 2 01 0 4 1429= + + = − ( . . . ) . per unit 429.112 jY =or The post‐fault power‐angle equation is δδ sin5.1sin)429.1()0.1()05.1( ==eP )()()(e and the swing equation is 5 180 10 1500 2 2 f d dt δ δ= −. . sin 34
  • 35. Synchronizing Power Coefficients___________ • From the power‐angle curve, two values of angle satisfied the mechanical Before fault satisfied the mechanical power i.e at 28.440 and 151.560. H l th 28 440 After fault • However, only the 28.440 is acceptable operating point. A t bl ti• Acceptable operating point is that the generator shall not lose synchronism when small During fault synchronism when small temporary changes occur in the electrical power output from the machineoutput from the machine. 35
  • 36. Synchronizing Power Coefficients___________ Consider small incremental changes in the operating point parameters, that is: Δ+= δδδ 0Δ+= eee PPP 0 (14.40) Substituting above equation into Eq 14 37 (Power angle equation) δsinPP =Substituting above equation into Eq. 14.37 (Power‐angle equation)   )sincoscos(sin )sin( 00max 0max0 ΔΔ ΔΔ += +=+ δδδδ δδ P PPP ee δsinmaxPPe = )scoscos(s 00max ΔΔ δδδδ (14.41) Since        is a small incremental displacement from  Δδ 0δ ΔΔ ≅ δδsin 1cos ≅Δδ Thus, the previous equation becomes:   +=+ δδδ )cos(sin PPPP (14.42) ΔΔ +=+ δδδ )cos(sin 0max0max0 PPPP ee 36
  • 37. Synchronizing Power Coefficients___________ At the initial operating point       :0δ sinδPPP == (14 43)0max0 sinδPPP em == (14.43) Equation (14.42) becomes: (14 44) ΔΔ −=+− δδ )cos()( 0max0 PPPP eem (14.44) Substitute Eq. (14.40) into swing equation; )( )(2 02 0 2 Δ Δ +−= + eem s PPP dt dH δδ ω (14.45) Replacing the right‐hand side of this equation by (14.44); 0)cos( 2 0max2 2 =+ Δ Δ δδ δ P d dH (14.46))( 0max2 Δ ω dts 37
  • 38. Synchronizing Power Coefficients___________ Since        is a constant value. Noting that                    is the slope of the power‐ angle curve at the angle    , we denote this slope as Sp and define it as:          0δ 0max cosδP 0δ (14.47)0max cos 0 δ δ δδ P d dP S e p == = Where Sp is called the synchronizing power coefficient. Replacing Eq. (14.47) into (14.46); 0 2 Δ δ ωδ Sd ps (14 48)0 22 =+ Δ Δ δ δ Hdt d ps (14.48) The above equation is a linear, second‐order differential equation. If Sp positive – the solution             corresponds to that of simple harmonic motion. If Sp negative – the solution             increases exponentially without limit.  )(tΔδ )(tΔδp  g p y)(tΔδ 38
  • 40. Synchronizing Power Coefficients___________ Example: The machine in previous example is operating at when it is subjected to a slight temporary electrical‐system disturbance. Determine the frequency °= 44.28δ to a slight temporary electrical system disturbance. Determine the frequency and period of oscillation of the machine rotor if the disturbance is removed before the prime mover responds. H = 5 MJ/MVA. 8466.144.28cos10.2 =°=pSThe synchronizing power coefficient is The angular frequency of oscillation is therefore; sradelec H S ps n /343.8 52 8466.1377 2 = × × == ω ω 3438 The corresponding frequency of oscillation is Hzfn 33.1 2 343.8 == π and the period of oscillation is  s f T n 753.0 1 == fn 40
  • 41. Equal‐Area Criterion of Stability______________ The swing equation is non‐linear in nature and thus, formal solution  cannot be explicitly found.cannot be explicitly found. perunitPPP dt dH ema −==2 2 2 δ ω To examine the stability of a two‐machine system without solving the  dtsω swing equation, a direct approach is possible to be used i.e using equal‐ area criterion. 41
  • 42. Equal‐Area Criterion of Stability______________ Consider the following system: At point P (close to the bus), a three‐phase fault occurs and cleared by circuit breaker A after a short period of time. Thus, the effective transmission system is unaltered except while the fault is on. The short‐circuit caused by the fault is effectively at the bus and so theThe short circuit caused by the fault is effectively at the bus and so the electrical power output from the generator becomes zero until fault is clear. 42 three‐phase fault 
  • 43. Equal‐Area Criterion of Stability______________ To understand the physical condition before, during and after the fault, power‐angle curve need to be analyzed. Initially, generator operates at synchronous speed with rotor angle of and the input mechanical power equals the output electrical power Pe. 0δ Before fault, Pm = Pe 43
  • 44. Equal‐Area Criterion of Stability______________ At t = 0, Pe = 0, Pm = 1.0 pu Acceleration constant The difference must be accounted for by a  rate of change of stored kinetic energy in  the rotor masses. Speed increase due to the drop of Pe constant acceleration from t = 0 to t = tc. 1.0 pu For t<tc, the acceleration is constant given by: perunitP dH 0 2 −= ω At t = 0, three phase fault occursd Ps 2 2 δ ω = (14.51) perunitP dt m s 0= ω dt H Pm2 2 (14.51) 44
  • 45. Equal‐Area Criterion of Stability______________ Acceleration constantWhile the fault is on, velocity increase  above synchronous speed and can beabove synchronous speed and can be  found by integrating this equation: d tδ ω ω ∫ d dt H P dt H P ts m s m tδ ω ω = =∫ 2 20 For rotor angular position,; (14.52) δ ω δ+s mP t2 (14.53) At t = 0, three phase fault occurs δ δ= +s m H t 4 2 0 (14.53) (14.52) 45
  • 46. Equal‐Area Criterion of Stability______________ Acceleration constantEq. (14.52) & (14.53) show that the velocity of the rotor increase linearlyvelocity of the rotor increase linearly with time with angle move from to0δ cδ At the instant of fault clearing t = tc,g , the increase in rotor speed is d Ps mδ ω dt H tt t s m cc= = 2 angle separation between the generator  and the infinite bus is (14.54) At t = 0, three phase fault occurs and the infinite bus is  ( )δ ω δt P H tt t s m cc= = + 4 2 0 (14.55) (14.52) 46
  • 47. Equal‐Area Criterion of Stability______________ When fault is cleared at       , Pe increase abruptly to point d cδ At d, Pe > Pm , thus Pa is negative Rotor slow down as P goesRotor slow down as Pe goes from d to e At t = tc, fault is cleared 47
  • 48. Equal‐Area Criterion of Stability______________ 1. At e, the rotor speed is again synchronous although rotor angle has advance to xδ 2. The angle is determined by the fact that A1 = A2 xδ x 3. The acceleration power at e is still negative (retarding), so the rotor cannot remain at synchronous speed but continue to slow down. 4. The relative velocity is negative and the rotor angle moves back from pointthe rotor angle moves back from point e to point a, which the rotor speed is less than synchronous. 6 In the absence of damping rotor would5. From a to f, the Pm exceeds the Pe and the rotor increase speed again until reaches synchronous speed at f 6. In the absence of damping, rotor would continue to oscillate in the sequence f‐a‐e, e‐a‐ f, etc 48
  • 49. Equal‐Area Criterion of Stability______________ In a system where one machine is swinging with respect to infinite bus, equal‐area criterion can be used to determine the stability of the system d i di i b l i i iunder transient condition by solving swing equation. Equal‐area criterion not applicable for multi‐machines. The swing equation for the machine connected to the infinite bus is dH 2 2 δ (14.56)em s PP dt dH −=2 2 2 δ ω Define the angular velocity of the rotor relative to synchronous speed by ω δ ω ωr s d dt = = − (14.57)s dt 49
  • 50. Equal‐Area Criterion of Stability______________ Differentiate (14.57) with respect to t and substitute in (14.56) ;  (14.58)2H d dt P P s r m e ω ω = − When rotor speed is synchronous,       equals       and      is zero. ω sω rω Multiplying both side of Eq. (14.58) by                          ; dtdr /δω = H d dω δ ( )H d dt P P d dts r r m e ω ω ω δ 2 = − (14.59) The left‐hand side of the Eq. can be rewritten to give (14.60) dt d PP dt dH em r s δω ω )( )( 2 −= 50
  • 51. Equal‐Area Criterion of Stability______________ Multiplying by dt and integrating, we obtain; δ (14.61) ∫ −=− 2 1 )()( 2 1 2 2 δ δ δωω ω dPP H emrr s Since the rotor speed is synchronous at and then ;δ δ 0== ωωSince the rotor speed is synchronous at      and      , then                           ;1δ 2δ 021 == rr ωω Under this condition, (14.61) becomes  (14.59)( )P P dm e− =∫ δδ δ 0 1 2 and        are any points on the power angle diagram provided that there are  points at which the rotor speed is synchronous.  1δ 2δ 51
  • 52. Equal‐Area Criterion of Stability______________ In the figure, point a and e correspond to      and   1δ 2δ If perform integration in two steps;If perform integration, in two steps; 0)()( 0 =−+− ∫∫ δδ δ δ δ δ dPPdPP x c c emem (14.63) δδ δ δ δ δ dPPdPP x c c meem ∫∫ −=− )()( 0 (14.64) Fault period Area A1 Post‐fault period Area A2 The area under A1 and A4 are directly proportional toThe area under A1 and A4 are directly proportional to the increase in kinetic energy of the rotor while it is accelerating. The area under A and A are directly proportional toThe area under A2 and A3 are directly proportional to the decrease in kinetic energy of the rotor while it is decelerating. 52
  • 53. Equal‐Area Criterion of Stability______________ Equal‐area criterion states that whatever kinetic energy is added to the rotor following a fault must be removed after the fault to restore the rotor to synchronous speedto synchronous speed. The shaded area A1 is dependent upon the time taken to  clear the fault. If the clearing has a delay, the angle       increase. As a result, the area A2 will also increase. If the increase cδ As a result, the area A2 will also increase. If the increase cause the rotor angle swing beyond , then the rotor speed at that point on the power angle curve is above synchronous speed when positive accelerating power is i t d maxδ again encountered. Under influence of this positive accelerating power the angle will increase without limit and instability results.g y 53
  • 54. Equal‐Area Criterion of Stability______________ There is a critical angle for clearing the fault in order to satisfy the requirements of the equal‐area criterion for stability. This angle is called the critical clearing angle The corresponding critical time for removing the fault is called critical crδ The corresponding critical time for removing the fault is called critical clearing time tcr Power‐angle curve showing the critical‐clearing angle . Area A1 and A2 are equal crδ 54
  • 55. Equal‐Area Criterion of Stability______________ The critical clearing angle and critical clearing time tcr can be calculated by calculating the area of A1 and A2. crδ ( )A P d Pm m cr cr 1 00 = = −∫ δ δ δδ δ ( )∫ δ (14.65) (14 66)( )A P P dmcr 2 = −∫ max sinmax δ δδ δ )()cos(cos maxmaxmax crmcr PP δδδδ −−−= (14.66) )()( maxmaxmax crmcr Equating the expressions for A1 and A2, and transposing terms, yields  ( )( )/δ δ δ δP P + (14.67)( )( )cos / cosmax max maxδ δ δ δcr mP P= − +0 55
  • 56. Equal‐Area Criterion of Stability______________ From sinusoidal power‐angle curve, we see that (14 68)δ π δ elec rad (14.68)δ π δmax = − 0 elec rad P Pm = max sinδ0 (14.69) Substitute           and         in Eq. (14.67),  simplifying the result and solving for      maxδ maxP crδ ( )[ ]δ π δ δ δ= − cos sin cos1 2 (14 70)( )[ ]δ π δ δ δcr = − −cos sin cos0 0 02 (14.70) In order to get tcr, substitute critical angle equation into (14.55) and then solve to  obtain tcr; δ ω δcr s m cr P H t= + 4 2 0 ( )t H Pcr cr s m = −4 0δ δ ω (14.71) (14.72) 56
  • 57. Equal‐Area Criterion of Stability ‐Example_____ Calculate the critical clearing angle and critical clearing time for the system shown  below. When a three phase fault occurs at point P. The initial conditions are the  same as in Example 1 and H = 5MJ/MVAp / P Pe = =max sin . sinδ δ210 Solution The power angle equation is The initial rotor angle is δ0 0 28 44 0 496= =. . elec rad d h h l h f h l land the mechanical input power Pm is 1.0 pu. Therefore, the critical angle is  calculated using Eq. (14.70) ( )[ ]δ πcr = − × −− cos . sin . cos .1 0 0 2 0 496 28 44 28 44 = =81697 14260 . . elec rad ( )[ ]δ π δ δ δcr = − −− cos sin cos1 0 0 02 and the critical clearing time is  ( )× −4 5 1426 0496. . = 0 222s( ) tcr = ×377 1 = 0.222s 57
  • 58. Further Application of the Equal‐Area Criterion • Equal‐Area Criterion can only be applied for the case of two machines or one machine and infinite busand infinite bus. • When a generator is supplying power to an infinite bus over two parallel lines, opening one of the lines may cause the generator to lose synchronismlose synchronism. • If a three phase fault occurs on the bus on which two parallel lines are connected, no power can be transmitted over either the lineline. • If the fault is at the end of one of the lines, CB will operate and power can flow through another line. • In this condition, there is some impedance between the parallel buses and the fault. Thus, some power is transmitted during the fault. 58
  • 59. Further Application of the Equal‐Area Criterion Considering the transmitted of power during fault, a general Equal‐area criterion is applied;criterion is applied; By evaluating the area A1 and A2 as in the previous approach, we can find that; 1max2maxmax coscos))(/( cos rrPP oom cr −+− = δδδδ δ (14.73) 12 rr cr − ( ) 59
  • 60. Further Application of the Equal‐Area Criterion ‐ Example Determine the critical clearing angle for the three phase fault described in the  previous example. The power‐angle equations obtained in the previous examples areThe power‐angle equations obtained in the previous examples are δδ sin1.2sinmax =P δδ sin808.0sinmax1 =Pr δδ sin5.1sinmax2 =Pr Before fault: During fault: After fault: Hence  385.0 1.2 808.0 1 ==r 714.0 1.2 5.1 2 ==r rad412.219.138 5.1 0.1 sin180 1 max =°=−°= − δ )44.28cos(385.0)19.138cos(714.0)496.0412.2)(1.2/0.1( cos °−°+− δ 127.0 385.0714.0 )()())(( cos = − =crδ °= 726.82crδ To determine the critical clearing time, we must obtain the swing curve of      versus t for this example.   δ 60
  • 61. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ For large systems we depend on the digital computer to determine δ versus t for all the machines in which we are interested; and δ can be plotted versus tfor all the machines in which we are interested; and δ can be plotted versus t for a machines to obtain the swing curve of that machine. The angle δ is calculated as a function of time over a period long enough tog p g g determine whether δ will increase without limit or reach a maximum and start to decrease. Although the latter result usually indicates stability, on an actual system where a number of variable are taken into account it may be necessary to plot δ versus t over a long enough interval to be sure δ will not increase again ith t t i t l lwithout returning to a low value. 61
  • 62. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ By determining swing curves for various clearing times the length of time permitted before clearing a fault can be determined. Standard interrupting times for circuit breakers and their associated relays are commonly 8, 5, 3 or 2 cycles after a fault occurs, and thus breaker speeds may be specified. Calculations should be made for a fault in the position which will allow the least transfer of power from the machine and for the most severe type of fault for which protection against loss of stability is justified. A number of different methods are available for the numerical evaluation of second order differential equations in step by step computations forof second‐order differential equations in step‐by‐step computations for small increments of the independent variable. The more elaborate methods are practical only when the computations are 62 The more elaborate methods are practical only when the computations are performed on a digital computer. The step‐by‐step method used for hand calculation is necessarily simpler than some of the methods recommended for digital computers.
  • 63. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ In the method for hand calculation the change in the angular position of the rotor during a short interval of time is computed by making the following assumptions:assumptions: •The accelerating power Pa computed at the beginning of an interval is constant from the middle of the preceding interval to the middle of theconstant from the middle of the preceding interval to the middle of the interval considered. •The angular velocity is constant throughout any interval at the valueg y g y computed for the idle of the interval. **neither of the assumptions is true, since δ is changing continuously and both Pa and ω are functions of δ. 63 As the time interval is decreased, the computed swing curve approaches the true curve.
  • 64. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ and Figure 14.4 will help in visualizing the assumptions. The accelerating power is computed for the pointsThe accelerating power is computed for the points enclosed in circles at the ends of the n-2, n-1, and n intervals, which are the beginnings of the n-1, n and n+1 interval. The step curve of Pa in Fig. 14.4 results from the assumption that Pa is constant between midpoints of the intervals. Similarly, ωr, the excess of the angular velocity ω over the synchronous angular velocity ωs, is shown as a step curve that is constant throughout the interval at the value computed for the midpoint.e v e v ue co pu ed o e dpo . Between the ordinates (n-3/2) and (n-1/2) there 64 Between the ordinates (n 3/2) and (n 1/2) there is a change of speed caused by the constant accelerating power.
  • 65. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ The change in speed in the product of the acceleration and the time interval, thus: ω ω δ r n r n a n d dt t f H P t, / , / ,1 2 3 2 2 2 1 180 − = = −Δ Δ (1) The change in δ over any interval is the  product of ω, for the interval and the time of  the interval. Thus, the change in δ during the  1 i l in‐1 interval is: Δ Δδ δ δ ωn n n r nt− − − −= − =1 1 2 3 2, / (2) and during the nth interval 65 Δ Δδ δ δ ωn n n r nt= − =− −1 1 2, / (3) Fig. 14.14
  • 66. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ Substracting Eq (2) from Eq. (3) and substituting Eq. (1) in the resulting equation to eliminate all values of ω, (4) yields Δ Δδ δn n a nkP= +− −1 1, where ( )k f t= 180 2 Δ (5) ( ) H 66 Fig. 14.14
  • 67. STEP‐BY‐STEP SOLUTION OF SWING CURVE____ Equation (4) is the important for the step-by-step solution of the swing equation with the necessary assumption enumerated, for it shows how to calculate the change in δ for the previous interval and the accelerating power for the interval in equation are known. Equation (4) shows that (subject to the stated assumptions), the change in torque angle during a given interval is equal to the change in torque angle during the preceding interval plus the accelerating power at the beginning of the interval times k. The accelerating power is calculated at the beginning of each new interval. The solution progresses through enough intervals to obtain points for plotting the swing curve. Greater accuracy is obtained when the duration of the interval is small. An interval of 0.05s isy usually satisfactory. The occurrence of a fault causes a discontinuity in the accelerating power Pa which is zero before the fault and a definite amount immediately following the fault.y g The discontinuity occurs at the beginning of the interval, when t=0. Reference to Fig. 14.14 shows that our method of calculation assumes that the accelerating power computed at the beginning of an interval considered. 67 When the fault occurs, we have two values of Pa at the beginning of the interval, and we must take the average of these two values as our constant accelerating power.
  • 68. EXAMPLE SOLUTION OF SWING CURVE____ Given a two‐bus system of 50 Hz system, with machine 1 delivering 0.9 p.u power to infinite bus and the machine 1 has H = 4.5 MJ/MVA. Three phase fault occurred at the middle of the line is cleared in 0.2s. The power angle equationsp g q are given as below Pre-fault: δsin0.2=eP During fault: δsin091.1=eP After fault cleared: δsin714.1=eP Compute the swing curve using step-by-step method. 68
  • 69. EXAMPLE SOLUTION OF SWING CURVE____ Solution: Remember! Mechanical power doesn’t change during transient stability studies. At the beginning machine 1 delivering 0 9 pu power At this steady stateAt the beginning, machine 1 delivering 0.9 pu power. At this steady state condition, Pe = Pm = 0.9 pu. Wh th f lt t 0 th t l i t th i iti l lWhen the fault occurs at t=0s the rotor angle is at the initial value: deg7426 9.0 sin 9.0sin0.2 1 elec°=⎟ ⎞ ⎜ ⎛ = = − δ δ deg74.26 0.2 sin0 elec=⎟ ⎠ ⎜ ⎝ =δ 5)05.0( 54 )50(180 )( 180 22 ==Δ= t H f k 69 5.4H
  • 70. EXAMPLE SOLUTION OF SWING CURVE____ At the beginning of the first interval there is a discontinuity in the acceleration power. Just before fault occurs, that is t=0-s Pa=0 since the machine is operating inp a p g synchronism and the rotor angle is the initial steady-state rotor position 0δ At t=0+s immediately after the fault has occurred; 409.0491.09.0 491.0)74.26sin(091.1 0 0 =−=−= =°= + + ema e PPP P The average value of Pa at t = 0 is 2045.02/409.0 ==avg aP Similarly, for representing any change in switching condition during stability analysis, the accelerating power to be used is the average of the accelerating power just before and just after the change in switching condition. 70
  • 71. EXAMPLE SOLUTION OF SWING CURVE____ °=×= 02251204505kP Then we can find =×= 0225.12045.05akP °=°+=Δ 0225.10225.101δ tΔ The interval tΔis the change in rotor angle as time advances over the first interval from 0 to At the end of the first interval, °=°+°=Δ+= 7625.270225.174.26101 δδδ st 05.0=Δ °=°−=−= 9590.1)7625.27sin(091.19.0(5)(51 PePmkPAt st 05.0Δ 9590.1)7625.27sin(091.19.0(5)(51, PePmkPa °=°+°=+Δ=Δ 9815.29590.10225.11,12 akPδδ δδδ At and it follows that the increase in rotor angle over the second time interval is °=°+°=Δ+= 744.309815.27625.27212 δδδHence, at the end of the second interval The subsequent steps are shown in the following Table. 71
  • 72. EXAMPLE SOLUTION OF SWING CURVE____ T (Sec) Pmax sin Po (pu) Pa (pu) kPa (Elec Degree (Elec Degree) (Elec Degree) 0‐ 2.0 0.450 0.9 0.0 26.74 0+ 1.091 0.450 0.491 0.409 26.74 0 Avg 1 5455 0 2045 1 0225 δδΔ δ 0 Avg 1.5455 0.2045 1.0225 1.0225 0.05 1.091 0.465863 0.508257 0.391743 1.958716 27.7625 2.981216 0.1 1.091 0.511259 0.557783 0.342217 1.711084 30.74372 4.692301 0.15 1.091 0.579859 0.632626 0.267374 1.33687 35.43602 6.029171 0.2‐ 1.091 0.662 0.722 0.178 41.46 0.2+ 1.714 0.662 1.135 ‐0.235 41.46 0.2Avg 0.815 ‐0.0285 ‐0.1425 5 8866715.886671 0.25 1.714 0.735539 1.260714 ‐0.36071 ‐1.80357 47.34667 4.083099 0.3 1.714 0.781917 1.340206 ‐0.44021 ‐2.20103 51.42977 1.882069 0.35 1.714 0.801971 1.374579 ‐0.47458 ‐2.37289 53.31184 ‐0.49082 0.4 1.714 0.796824 1.365756 ‐0.46576 ‐2.32878 52.82101 ‐2.8196 0.45 1.714 0.766133 1.313152 ‐0.41315 ‐2.06576 50.00141 ‐4.88536 0.5 1.714 0.70861 1.214557 ‐0.31456 ‐1.57278 45.11605 72 ‐6.45815
  • 73. EXAMPLE SOLUTION OF SWING CURVE____ 0.5 1.714 0.70861 1.214557 ‐0.31456 ‐1.57278 45.11605 ‐6.45815 0.55 1.714 0.624737 1.0708 ‐0.1708 ‐0.854 38.6579 ‐7.31215 0.6 1.714 0.520262 0.891729 0.008271 0.041356 31.34575 ‐7.27079 0.65 1.714 0.407981 0.69928 0.20072 1.003601 24.07496 ‐6.26719 0.7 1.714 0.305863 0.524249 0.375751 1.878756 17.80777 ‐4.38843 0.75 1.714 0.232106 0.397829 0.502171 2.510854 13.41934 ‐1.87758 0 8 1 714 0 200108 0 342984 0 557016 2 785078 11 541760.8 1.714 0.200108 0.342984 0.557016 2.785078 11.54176 0.907497 0.85 1.714 0.215602 0.369542 0.530458 2.652288 12.44925 3.559785 0.9 1.714 0.275824 0.472762 0.427238 2.13619 16.00904 5 6959755.695975 0.95 1.714 0.369874 0.633964 0.266036 1.330182 21.70501 7.026157 1 1.714 0.480758 0.824019 0.075981 0.379907 28.73117 7.406064 73 1.05 1.714 0.589787 1.010896 ‐0.1109 ‐0.55448 36.13724
  • 74. EXAMPLE SOLUTION OF SWING CURVE____ At t=0.2s, fault is cleared. Hence, the average of accelerating power just before and after should be 0 2 1 091 i (41 46 ) 0 223° considered. At t=0.2- s (just before fault cleared); 0.2 0.2 0.2 1.091sin(41.46 ) 0.7223 0.9 0.7223 0.1777 e a m e P P P P − − − = ° = = − = − = At t=0.2+ s (just after fault cleared); 2348.01348.19.0 1348.1)46.41sin(714.1 2.02.0 2.0 −=−=−= =°= ++ + ema e PPP P 23480177702020 + PP (j ); 02855.0 2 2348.01777.0 2 )( 2.02.0 −= − = + = +− aa a PP averagePHence, average Pa; The subsequent steps are shown in the following Table. 74