SlideShare a Scribd company logo
1 of 37
Download to read offline
Marker Assisted Selection
Prof. Dina El-Khishin
Agricultural Genetic Engineering Research Institute
(AGERI)
Utilization of Molecular Markers for PGRFA
Characterization and Pre-Breeding for Climate Changes Aug. 31st- Sept. 4th, 2014
Marker-Assisted Selection
A method of selecting desirable individuals
in a breeding scheme based on DNA
molecular marker patterns instead of, or in
addition to, their trait values.
A tool that can help plant breeders select
more efficiently for desirable crop traits.
MAS is not always advantageous, so careful
analysis of the costs and benefits relative
to conventional breeding methods is
necessary.
F2
P2
F1
P1 x
large populations consisting of
thousands of plants
PHENOTYPIC SELECTION
Field trialsGlasshouse trials
DonorRecipient
CONVENTIONAL PLANT BREEDING
Salinity screening in phytotron Bacterial blight screening Phosphorus deficiency plot
F2
P2
F1
P1 x
large populations consisting of
thousands of plants
ResistantSusceptible
MARKER-ASSISTED SELECTION (MAS)
MARKER-ASSISTED BREEDING
Method whereby phenotypic selection is based on DNA markers
Prerequisites for an efficient marker-assisted
selection program
 High throughput DNA
extraction
 Markers
Markers (morphological, protein, cytological) can
also be used in MAS programs.
RFLP, SSR, RAPD, AFLP, SCAR, and SNP
For efficient MAS:
Ease of use
Small amount of DNA required
Low cost
Repeatability of results
High rate of polymorphism
Occurrence throughout the genome
Codominance
 Genetic maps.
Linkage maps provide a framework for detecting
marker-trait associations and for choosing markers
to employ in MAS.
Once a marker is found to be associated with a trait
in a given population, a dense molecular marker map
in a standard reference population will help identify
markers that are closer to, or that flank, the target
gene.
 Knowledge of associations
between molecular markers and
traits of interest.
The most crucial ingredient for
MAS is knowledge of markers that
are associated with traits
important to a breeding program.
 Data management system
Large numbers of samples are handled
in a MAS program, with each sample
potentially evaluated for multiple
markers.
This situation requires an efficient
system for labeling, storing, retrieving,
and analyzing large data sets, and
producing reports useful to the
breeder.
Potential advantages of MAS
 It can be performed on seedling material
thus reducing the time required before a plant’s
genotype is known.
In contrast, many important plant traits are
observable only when the plant has reached
flowering or harvest maturity.
Knowing a plant’s genotype before flowering can
be particularly useful in order to plan the
appropriate crosses between selected individuals.
 MAS is not affected by environmental
conditions.
Some crop production constraints (such as
disease, insect pests, temperature and moisture
stress) occur sporadically or non-uniformly.
Therefore, evaluating resistance to those
constraints may not be possible in a given year or
location.
MAS offers the chance to determine a plant’s
resistance level independent of environment.
 When recessive alleles determine traits of
interest
they cannot be detected through phenotypic
evaluation of heterozygous plants, because their
presence is masked by the dominant allele.
In a traditional backcross program, plants with
recessive alleles are identified by progeny
evaluation after self-pollination or testcrossing to a
recessive tester.
This time-consuming step can be eliminated in a
MAS program, because recessive alleles are
identified by linked markers.
 when multiple resistance genes are
pyramided together in the same variety
or breeding line,
the presence of each individual gene is
difficult to verify phenotypically.
The presence of one resistance gene may
conceal the effect of additional genes.
This problem can be overcome if markers
are available for each of the resistance
genes.
 Environmental variation in the field reduces
a trait’s heritability , the proportion of
phenotypic variation that is due to genetics.
In a low heritability situation,
progress from phenotypic selection will be slow,
because so much of the variation for the trait is
due to environmental variation, experimental
error, or genotype x environment interaction, and
will not be passed on to the next generation.
If a reliable marker for a trait is available, MAS
can result in greater progress than phenotypic
selection in such a situation.
 MAS may be cheaper and faster than conventional
phenotypic assays, depending on the trait.
e.g., evaluating nematode resistance is usually an
expensive operation because it requires artificial
inoculation of plants with nematode eggs, followed by a
labor-intensive technique to count the number of
nematodes present.
Selecting on the basis of a reliable marker would
probably be cost-effective in this case.
On the other hand, plant height is cheap and easy to
measure, so there may not be an economic advantage in
using markers for that trait.
 A consideration that may affect cost
effectiveness of MAS is that multiple
markers can be evaluated using the same
DNA sample.
Extraction of DNA from plant tissue is one of
the bottlenecks of MAS.
Once DNA is extracted and purified, it may be
used for multiple markers, for the same or
different traits, thus reducing the time and
cost per marker.
Potential drawbacks of MAS
Linkage maps of two chromosomes showing positions of
two resistance genes and nearby markers.
 MAS may be more expensive than conventional
techniques, especially for startup expenses and
labor costs.
Recombination between the marker and the
gene of interest may occur, leading to false
positives.
e.g., if the marker and the gene of interest are separated by 5 cM and selection
is based on the marker pattern, there is an approximately 5% chance of
selecting the wrong plant.
This is based on the general guideline that across short distances, 1 cM of
genetic distance is approximately equal to 1% recombination.
The breeder will need to decide the error rate that is acceptable in the MAS
program, keeping in mind that errors are also usually involved in phenotypic
evaluation.
Markers must be
tightly-linked to target loci!
• Ideally markers should be <5 cM from a gene or QTL
• Using a pair of flanking markers can greatly improve reliability but
increases time and cost
Marker A
QTL
5 cM
RELIABILITY FOR
SELECTION
Using marker A only:
1 – rA = ~95%
Marker A
QTL
Marker
B
5 cM 5 cM
Using markers A and B:
1 - 2 rArB = ~99.5%
To avoid this last problem it may
be necessary to use flanking
markers on either side of the locus of
interest to increase the probability
that the desired gene is selected.
 Sometimes markers that were
used to detect a locus must be
converted to 'breeder-friendly'
markers that are more reliable and
easier to use.
Examples :
RFLP markers converted to STS markers
RFLP requires several steps and a large quantity of highly
purified DNA. STS can be detected via PCR using primers
developed from RFLP probe sequences.
Thus the same locus can be detected with the two types of
marker, but the STS marker is far more efficient.
 RAPD markers converted to SCAR markers
Results of RAPD reactions may vary from lab to lab, and
may be considered less reliable for MAS.
SCAR markers are developed by sequencing RAPD bands
and designing more specific 18-25 base PCR primers to
amplify the same DNA segment more reliably.
Markers must be polymorphic
1 2 3 4 5 6 7
8
1 2 3 4 5 6 7 8
RM84 RM296
P1 P2
P1 P2
Not polymorphic Polymorphic!
 Imprecise estimates of QTL locations and
effects may result in slower progress than
expected.
Many QTLs have large confidence intervals of 20
cM or more or their relative importance in
explaining trait inheritance has been over-
estimated.
 Markers developed for MAS in one
population may not be transferrable to other
populations,
either due to lack of marker polymorphism or the
absence of a marker-trait association.
(1) TISSUE SAMPLING
(2) DNA EXTRACTION
(3) PCR
(4) GEL ELECTROPHORESIS
(5) MARKER ANALYSIS
Conducting a MAS
program
MAS BREEDING SCHEMES
1. Marker-assisted backcrossing
2. Pyramiding
3. Early generation selection
4. ‘Combined’ approaches
Marker-assisted backcrossing
(MAB)
• MAB has several advantages over conventional
backcrossing:
– Effective selection of target loci
– Minimize linkage drag
– Accelerated recovery of recurrent parent
1 2 3 4
Target locus
1 2 3 4
RECOMBINANT
SELECTION
1 2 3 4
BACKGROUND
SELECTION
TARGET LOCUS
SELECTION
FOREGROUND SELECTION BACKGROUND SELECTION
Pyramiding
• Widely used for combining multiple disease
resistance genes for specific races of a
pathogen
• Pyramiding is extremely difficult to achieve
using conventional methods
– Consider: phenotyping a single plant for multiple
forms of seedling resistance – almost impossible
• Important to develop ‘durable’ disease
resistance against different races
• Process of combining several genes, usually from 2
different parents, together into a single genotype
F2
F1
Gene A + B
P1
Gene A
x P1
Gene B
MAS
Select F2 plants that have Gene
A and Gene B
Genotypes
P1: AAbb P2: aaBB
F1: AaBb
F2
AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb
x
Breeding plan
Hittalmani et al. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance
in riceTheor. Appl. Genet. 100: 1121-1128
Liu et al. (2000). Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat.
Plant Breeding 119: 21-24.
Early generation MAS
• MAS conducted at F2 or F3 stage
• Plants with desirable genes/QTLs are
selected and alleles can be ‘fixed’ in the
homozygous state
– plants with undesirable gene combinations can
be discarded
• Advantage for later stages of breeding
program because resources can be used
to focus on fewer lines
References:
Ribaut & Betran (1999). Single large-scale marker assisted selection (SLS-MAS). Mol Breeding 5: 21-24.
F2
P2
F1
P1 x
large populations (e.g. 2000 plants)
ResistantSusceptible
MAS for 1 QTL – 75% elimination of (3/4) unwanted genotypes
MAS for 2 QTLs – 94% elimination of (15/16) unwanted genotypes
P1 x P2
F1
PEDIGREE METHOD
F2
F3
F4
F5
F6
F7
F8 – F12
Phenotypic
screening
Plants space-
planted in rows
for individual
plant selection
Families grown in
progeny rows for
selection.
Preliminary yield
trials. Select
single plants.
Further
yield trials
Multi-location testing, licensing, seed
increase and cultivar release
P1 x P2
F1
F2
F3
MAS
SINGLE-LARGE SCALE MARKER-
ASSISTED SELECTION (SLS-
MAS)
F4
Families grown in
progeny rows for
selection.
Pedigree
selection based
on local needs
F6
F7
F5
F8 – F12
Multi-location testing, licensing, seed
increase and cultivar release
Only desirable
F3 lines planted
in field
breeding program can be efficiently scaled down to focus on fewer lines
Combined approaches
In some cases, a combination of phenotypic
screening and MAS approach may be useful
1. To maximize genetic gain (when some QTLs
have been unidentified from QTL mapping)
2. Level of recombination between marker and
QTL (in other words marker is not 100%
accurate)
3. To reduce population sizes for traits where
marker genotyping is cheaper or easier
than phenotypic screening
‘Marker-directed’ phenotyping
BC1F1 phenotypes: R and S
P1 (S) x P2 (R)
F1 (R) x P1 (S)
Recurrent
Parent
Donor
Parent
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 …
SAVE TIME &
REDUCE COSTS
*Especially for quality traits*
MARKER-ASSISTED SELECTION
(MAS)
PHENOTYPIC SELECTION
(Also called ‘tandem selection’)
• Use when markers are not
100% accurate or when
phenotypic screening is
more expensive compared
to marker genotyping
References:
Han et al (1997). Molecular marker-assisted selection for malting quality traits in barley. Mol Breeding 6:
427-437.
MAS: MARKER-ASSISTED SELECTION
- Plants are selected for one or more (up to 8-10) alleles
MABC: MARKER-ASSISTED BACKCROSSING
One or more (up to 6-8) donor alleles are transferred
to an elite line
MARS: MARKER-ASSISTED RECURRENT SELECTION
Selection for several (up to 20-30) mapped QTLs relies
on index (genetic) values computed for each individual
based on its haplotype at target QTLs
GWS: GENOME-WIDE SELECTION
Selection of genome-wide several loci that confer
tolerance/resistance/ superiority to traits of interest
using GEBVs based on genome-wide marker profiling
A variety of approaches
Conclusion
MAS is a methodology that has already
proved its value.
It is likely to become more valuable as a
larger number of genes are identified and
their functions and interactions elucidated.
Reduced costs and optimized strategies for
integrating MAS with phenotypic selection
are needed before the technology can reach
its full potential.
References
•Marker-Assisted Selection - Objectives and Overview
Patrick Byrne
Department of Soil and Crop Sciences at Colorado State University, USA
Kelley Richardson
Department of Crop and Soil Sciences at Oregon State University, USA
•MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
Bert Collard & David Mackill
Plant Breeding, Genetics and Biotechnology (PBGB) Division, IRRI
bcycollard@hotmail.com & d.mackill@cgiar.org
•Towards utilization of genome sequence information for pigeonpea
improvement
By ICAR institutes, SAUs and ICRISAT
•MAS Breeding
University of Nebraska
Institute of Agriculture and Natural Resources
This presentation has been compiled from those references
Marker assisted selection

More Related Content

What's hot

Backcross Breeding Method
 Backcross Breeding Method  Backcross Breeding Method
Backcross Breeding Method Naveen Kumar
 
Heritability , genetic advance
Heritability , genetic advanceHeritability , genetic advance
Heritability , genetic advancePawan Nagar
 
Breeding self pollinated crops
Breeding self pollinated cropsBreeding self pollinated crops
Breeding self pollinated cropsPawan Nagar
 
PEDIGREE METHOD OF PLANT BREEDING
PEDIGREE METHOD OF PLANT BREEDINGPEDIGREE METHOD OF PLANT BREEDING
PEDIGREE METHOD OF PLANT BREEDINGShekhAlisha
 
Clonal selection
Clonal selectionClonal selection
Clonal selectionSijo A
 
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTMARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTVinod Pawar
 
Male sterility applications in Hybrid seed production.
Male sterility applications in Hybrid seed production.Male sterility applications in Hybrid seed production.
Male sterility applications in Hybrid seed production.Roshan Parihar
 
Component of genetic variation
Component of genetic variationComponent of genetic variation
Component of genetic variationRoshan Parihar
 
Presentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportancePresentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportanceDr. Kaushik Kumar Panigrahi
 
17. Heterosis breeding
17. Heterosis breeding17. Heterosis breeding
17. Heterosis breedingNaveen Kumar
 
Molecular markers types and applications
Molecular markers types and applicationsMolecular markers types and applications
Molecular markers types and applicationsFAO
 
Molecular Marker and It's Applications
Molecular Marker and It's ApplicationsMolecular Marker and It's Applications
Molecular Marker and It's ApplicationsSuresh Antre
 
Germplasm and its conservation
Germplasm and its conservationGermplasm and its conservation
Germplasm and its conservationPRIYA KUMARI
 
Plant Breeding Methods
Plant Breeding MethodsPlant Breeding Methods
Plant Breeding MethodsTHILAKAR MANI
 

What's hot (20)

Backcross Breeding Method
 Backcross Breeding Method  Backcross Breeding Method
Backcross Breeding Method
 
Heritability , genetic advance
Heritability , genetic advanceHeritability , genetic advance
Heritability , genetic advance
 
Heterosis
Heterosis  Heterosis
Heterosis
 
Breeding self pollinated crops
Breeding self pollinated cropsBreeding self pollinated crops
Breeding self pollinated crops
 
PEDIGREE METHOD OF PLANT BREEDING
PEDIGREE METHOD OF PLANT BREEDINGPEDIGREE METHOD OF PLANT BREEDING
PEDIGREE METHOD OF PLANT BREEDING
 
Clonal selection
Clonal selectionClonal selection
Clonal selection
 
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTMARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
 
backcross method by LALJI N. GEDIYA
backcross method by LALJI N. GEDIYAbackcross method by LALJI N. GEDIYA
backcross method by LALJI N. GEDIYA
 
Male sterility applications in Hybrid seed production.
Male sterility applications in Hybrid seed production.Male sterility applications in Hybrid seed production.
Male sterility applications in Hybrid seed production.
 
Component of genetic variation
Component of genetic variationComponent of genetic variation
Component of genetic variation
 
Double haploids
Double haploids Double haploids
Double haploids
 
Presentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportancePresentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its Importance
 
17. Heterosis breeding
17. Heterosis breeding17. Heterosis breeding
17. Heterosis breeding
 
Micro propagation
Micro propagationMicro propagation
Micro propagation
 
Molecular markers types and applications
Molecular markers types and applicationsMolecular markers types and applications
Molecular markers types and applications
 
Molecular markers
Molecular markers Molecular markers
Molecular markers
 
Transgenic male sterility
Transgenic male sterilityTransgenic male sterility
Transgenic male sterility
 
Molecular Marker and It's Applications
Molecular Marker and It's ApplicationsMolecular Marker and It's Applications
Molecular Marker and It's Applications
 
Germplasm and its conservation
Germplasm and its conservationGermplasm and its conservation
Germplasm and its conservation
 
Plant Breeding Methods
Plant Breeding MethodsPlant Breeding Methods
Plant Breeding Methods
 

Viewers also liked

Marker assisted selection lecture
Marker assisted selection lectureMarker assisted selection lecture
Marker assisted selection lectureBruno Mmassy
 
Molecular Marker-assisted Breeding in Rice
Molecular Marker-assisted Breeding in RiceMolecular Marker-assisted Breeding in Rice
Molecular Marker-assisted Breeding in RiceFOODCROPS
 
Molecular plant breeding some basic information
Molecular plant breeding some basic informationMolecular plant breeding some basic information
Molecular plant breeding some basic informationbawonpon chonnipat
 
Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...UNIVERSITI MALAYSIA SABAH
 
Molecular markers used in biotechnology
Molecular markers used in biotechnology Molecular markers used in biotechnology
Molecular markers used in biotechnology sana sana
 

Viewers also liked (8)

Marker assisted selection lecture
Marker assisted selection lectureMarker assisted selection lecture
Marker assisted selection lecture
 
A f l p
A f l pA f l p
A f l p
 
Genetic marker (1)
Genetic marker (1)Genetic marker (1)
Genetic marker (1)
 
Molecular Marker-assisted Breeding in Rice
Molecular Marker-assisted Breeding in RiceMolecular Marker-assisted Breeding in Rice
Molecular Marker-assisted Breeding in Rice
 
Molecular plant breeding some basic information
Molecular plant breeding some basic informationMolecular plant breeding some basic information
Molecular plant breeding some basic information
 
Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...Molecular Breeding in Plants is an introduction to the fundamental techniques...
Molecular Breeding in Plants is an introduction to the fundamental techniques...
 
Molecular markers used in biotechnology
Molecular markers used in biotechnology Molecular markers used in biotechnology
Molecular markers used in biotechnology
 
Buffer solution
Buffer solutionBuffer solution
Buffer solution
 

Similar to Marker assisted selection

MAS ( Marker Assisted Selection)
MAS ( Marker Assisted Selection)MAS ( Marker Assisted Selection)
MAS ( Marker Assisted Selection)kartikey sootrakar
 
CREDIT SEMINAR BY B.L.MEENA.pptx
CREDIT SEMINAR BY B.L.MEENA.pptxCREDIT SEMINAR BY B.L.MEENA.pptx
CREDIT SEMINAR BY B.L.MEENA.pptxBharatlalmeena6
 
Marker Assisted Selection
Marker Assisted SelectionMarker Assisted Selection
Marker Assisted SelectionKhushbu
 
Marker assisted selection in plants
Marker assisted selection in plantsMarker assisted selection in plants
Marker assisted selection in plantsiqraakbar8
 
Marker assisted selection (rice).pptx
Marker assisted selection (rice).pptxMarker assisted selection (rice).pptx
Marker assisted selection (rice).pptxElizabeth Philip
 
Marker assisted backcross breeding
Marker assisted backcross breedingMarker assisted backcross breeding
Marker assisted backcross breedingAnilkumar C
 
Marker assisted selection
Marker assisted selectionMarker assisted selection
Marker assisted selectionDrSunil Bhakar
 
Molecular M ch6.pptx
Molecular M ch6.pptxMolecular M ch6.pptx
Molecular M ch6.pptxTuli24
 
molecular markers ,application in plant breeding
molecular markers ,application in plant breedingmolecular markers ,application in plant breeding
molecular markers ,application in plant breedingSunil Lakshman
 
Marker-assisted selection (MAS) plant biotech 1.pptx
Marker-assisted selection (MAS) plant biotech 1.pptxMarker-assisted selection (MAS) plant biotech 1.pptx
Marker-assisted selection (MAS) plant biotech 1.pptxpurtisoni4
 
Marker assisted selection in legume crops
Marker assisted selection in legume cropsMarker assisted selection in legume crops
Marker assisted selection in legume cropsBasavaraj Panjagal
 
Marker-Assisted Backcrossing in breeding
Marker-Assisted Backcrossing in breedingMarker-Assisted Backcrossing in breeding
Marker-Assisted Backcrossing in breedingbineeta123
 
Marker assistant selection
Marker assistant selectionMarker assistant selection
Marker assistant selectionPawan Nagar
 
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENTMARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENTFOODCROPS
 
Marker assisted selection( mas) and its application in plant breeding
Marker assisted selection( mas) and its application in plant breedingMarker assisted selection( mas) and its application in plant breeding
Marker assisted selection( mas) and its application in plant breedingHemantkumar Sonawane
 
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTMARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTjipexe1248
 

Similar to Marker assisted selection (20)

MAS ( Marker Assisted Selection)
MAS ( Marker Assisted Selection)MAS ( Marker Assisted Selection)
MAS ( Marker Assisted Selection)
 
CREDIT SEMINAR BY B.L.MEENA.pptx
CREDIT SEMINAR BY B.L.MEENA.pptxCREDIT SEMINAR BY B.L.MEENA.pptx
CREDIT SEMINAR BY B.L.MEENA.pptx
 
Marker Assisted Selection
Marker Assisted SelectionMarker Assisted Selection
Marker Assisted Selection
 
Marker assisted selection in plants
Marker assisted selection in plantsMarker assisted selection in plants
Marker assisted selection in plants
 
Marker assisted selection (rice).pptx
Marker assisted selection (rice).pptxMarker assisted selection (rice).pptx
Marker assisted selection (rice).pptx
 
Marker assisted backcross breeding
Marker assisted backcross breedingMarker assisted backcross breeding
Marker assisted backcross breeding
 
Animal Biotechnology
Animal BiotechnologyAnimal Biotechnology
Animal Biotechnology
 
Marker assisted selection
Marker assisted selectionMarker assisted selection
Marker assisted selection
 
MAS
MASMAS
MAS
 
Molecular M ch6.pptx
Molecular M ch6.pptxMolecular M ch6.pptx
Molecular M ch6.pptx
 
molecular markers ,application in plant breeding
molecular markers ,application in plant breedingmolecular markers ,application in plant breeding
molecular markers ,application in plant breeding
 
Marker-assisted selection (MAS) plant biotech 1.pptx
Marker-assisted selection (MAS) plant biotech 1.pptxMarker-assisted selection (MAS) plant biotech 1.pptx
Marker-assisted selection (MAS) plant biotech 1.pptx
 
Marker assisted selection in legume crops
Marker assisted selection in legume cropsMarker assisted selection in legume crops
Marker assisted selection in legume crops
 
Marker-Assisted Backcrossing in breeding
Marker-Assisted Backcrossing in breedingMarker-Assisted Backcrossing in breeding
Marker-Assisted Backcrossing in breeding
 
Marker assistant selection
Marker assistant selectionMarker assistant selection
Marker assistant selection
 
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENTMARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT
 
Genotyping in Breeding programs
Genotyping in Breeding programsGenotyping in Breeding programs
Genotyping in Breeding programs
 
Marker assisted selection( mas) and its application in plant breeding
Marker assisted selection( mas) and its application in plant breedingMarker assisted selection( mas) and its application in plant breeding
Marker assisted selection( mas) and its application in plant breeding
 
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENTMARKER ASSISTED SELECTION IN CROP IMPROVEMENT
MARKER ASSISTED SELECTION IN CROP IMPROVEMENT
 
Ganesh gp 509
Ganesh gp 509Ganesh gp 509
Ganesh gp 509
 

More from FAO

Nigeria
NigeriaNigeria
NigeriaFAO
 
Niger
NigerNiger
NigerFAO
 
Namibia
NamibiaNamibia
NamibiaFAO
 
Mozambique
MozambiqueMozambique
MozambiqueFAO
 
Zimbabwe takesure
Zimbabwe takesureZimbabwe takesure
Zimbabwe takesureFAO
 
Zimbabwe
ZimbabweZimbabwe
ZimbabweFAO
 
Zambia
ZambiaZambia
ZambiaFAO
 
Togo
TogoTogo
TogoFAO
 
Tanzania
TanzaniaTanzania
TanzaniaFAO
 
Spal presentation
Spal presentationSpal presentation
Spal presentationFAO
 
Rwanda
RwandaRwanda
RwandaFAO
 
Nigeria uponi
Nigeria uponiNigeria uponi
Nigeria uponiFAO
 
The multi-faced role of soil in the NENA regions (part 2)
The multi-faced role of soil in the NENA regions (part 2)The multi-faced role of soil in the NENA regions (part 2)
The multi-faced role of soil in the NENA regions (part 2)FAO
 
The multi-faced role of soil in the NENA regions (part 1)
The multi-faced role of soil in the NENA regions (part 1)The multi-faced role of soil in the NENA regions (part 1)
The multi-faced role of soil in the NENA regions (part 1)FAO
 
Agenda of the launch of the soil policy brief at the Land&Water Days
Agenda of the launch of the soil policy brief at the Land&Water DaysAgenda of the launch of the soil policy brief at the Land&Water Days
Agenda of the launch of the soil policy brief at the Land&Water DaysFAO
 
Agenda of the 5th NENA Soil Partnership meeting
Agenda of the 5th NENA Soil Partnership meetingAgenda of the 5th NENA Soil Partnership meeting
Agenda of the 5th NENA Soil Partnership meetingFAO
 
The Voluntary Guidelines for Sustainable Soil Management
The Voluntary Guidelines for Sustainable Soil ManagementThe Voluntary Guidelines for Sustainable Soil Management
The Voluntary Guidelines for Sustainable Soil ManagementFAO
 
GLOSOLAN - Mission, status and way forward
GLOSOLAN - Mission, status and way forwardGLOSOLAN - Mission, status and way forward
GLOSOLAN - Mission, status and way forwardFAO
 
Towards a Global Soil Information System (GLOSIS)
Towards a Global Soil Information System (GLOSIS)Towards a Global Soil Information System (GLOSIS)
Towards a Global Soil Information System (GLOSIS)FAO
 
GSP developments of regional interest in 2019
GSP developments of regional interest in 2019GSP developments of regional interest in 2019
GSP developments of regional interest in 2019FAO
 

More from FAO (20)

Nigeria
NigeriaNigeria
Nigeria
 
Niger
NigerNiger
Niger
 
Namibia
NamibiaNamibia
Namibia
 
Mozambique
MozambiqueMozambique
Mozambique
 
Zimbabwe takesure
Zimbabwe takesureZimbabwe takesure
Zimbabwe takesure
 
Zimbabwe
ZimbabweZimbabwe
Zimbabwe
 
Zambia
ZambiaZambia
Zambia
 
Togo
TogoTogo
Togo
 
Tanzania
TanzaniaTanzania
Tanzania
 
Spal presentation
Spal presentationSpal presentation
Spal presentation
 
Rwanda
RwandaRwanda
Rwanda
 
Nigeria uponi
Nigeria uponiNigeria uponi
Nigeria uponi
 
The multi-faced role of soil in the NENA regions (part 2)
The multi-faced role of soil in the NENA regions (part 2)The multi-faced role of soil in the NENA regions (part 2)
The multi-faced role of soil in the NENA regions (part 2)
 
The multi-faced role of soil in the NENA regions (part 1)
The multi-faced role of soil in the NENA regions (part 1)The multi-faced role of soil in the NENA regions (part 1)
The multi-faced role of soil in the NENA regions (part 1)
 
Agenda of the launch of the soil policy brief at the Land&Water Days
Agenda of the launch of the soil policy brief at the Land&Water DaysAgenda of the launch of the soil policy brief at the Land&Water Days
Agenda of the launch of the soil policy brief at the Land&Water Days
 
Agenda of the 5th NENA Soil Partnership meeting
Agenda of the 5th NENA Soil Partnership meetingAgenda of the 5th NENA Soil Partnership meeting
Agenda of the 5th NENA Soil Partnership meeting
 
The Voluntary Guidelines for Sustainable Soil Management
The Voluntary Guidelines for Sustainable Soil ManagementThe Voluntary Guidelines for Sustainable Soil Management
The Voluntary Guidelines for Sustainable Soil Management
 
GLOSOLAN - Mission, status and way forward
GLOSOLAN - Mission, status and way forwardGLOSOLAN - Mission, status and way forward
GLOSOLAN - Mission, status and way forward
 
Towards a Global Soil Information System (GLOSIS)
Towards a Global Soil Information System (GLOSIS)Towards a Global Soil Information System (GLOSIS)
Towards a Global Soil Information System (GLOSIS)
 
GSP developments of regional interest in 2019
GSP developments of regional interest in 2019GSP developments of regional interest in 2019
GSP developments of regional interest in 2019
 

Recently uploaded

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 

Recently uploaded (20)

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 

Marker assisted selection

  • 1. Marker Assisted Selection Prof. Dina El-Khishin Agricultural Genetic Engineering Research Institute (AGERI) Utilization of Molecular Markers for PGRFA Characterization and Pre-Breeding for Climate Changes Aug. 31st- Sept. 4th, 2014
  • 2. Marker-Assisted Selection A method of selecting desirable individuals in a breeding scheme based on DNA molecular marker patterns instead of, or in addition to, their trait values. A tool that can help plant breeders select more efficiently for desirable crop traits. MAS is not always advantageous, so careful analysis of the costs and benefits relative to conventional breeding methods is necessary.
  • 3. F2 P2 F1 P1 x large populations consisting of thousands of plants PHENOTYPIC SELECTION Field trialsGlasshouse trials DonorRecipient CONVENTIONAL PLANT BREEDING Salinity screening in phytotron Bacterial blight screening Phosphorus deficiency plot
  • 4. F2 P2 F1 P1 x large populations consisting of thousands of plants ResistantSusceptible MARKER-ASSISTED SELECTION (MAS) MARKER-ASSISTED BREEDING Method whereby phenotypic selection is based on DNA markers
  • 5. Prerequisites for an efficient marker-assisted selection program  High throughput DNA extraction
  • 6.  Markers Markers (morphological, protein, cytological) can also be used in MAS programs. RFLP, SSR, RAPD, AFLP, SCAR, and SNP For efficient MAS: Ease of use Small amount of DNA required Low cost Repeatability of results High rate of polymorphism Occurrence throughout the genome Codominance
  • 7.  Genetic maps. Linkage maps provide a framework for detecting marker-trait associations and for choosing markers to employ in MAS. Once a marker is found to be associated with a trait in a given population, a dense molecular marker map in a standard reference population will help identify markers that are closer to, or that flank, the target gene.
  • 8.  Knowledge of associations between molecular markers and traits of interest. The most crucial ingredient for MAS is knowledge of markers that are associated with traits important to a breeding program.
  • 9.  Data management system Large numbers of samples are handled in a MAS program, with each sample potentially evaluated for multiple markers. This situation requires an efficient system for labeling, storing, retrieving, and analyzing large data sets, and producing reports useful to the breeder.
  • 10. Potential advantages of MAS  It can be performed on seedling material thus reducing the time required before a plant’s genotype is known. In contrast, many important plant traits are observable only when the plant has reached flowering or harvest maturity. Knowing a plant’s genotype before flowering can be particularly useful in order to plan the appropriate crosses between selected individuals.
  • 11.  MAS is not affected by environmental conditions. Some crop production constraints (such as disease, insect pests, temperature and moisture stress) occur sporadically or non-uniformly. Therefore, evaluating resistance to those constraints may not be possible in a given year or location. MAS offers the chance to determine a plant’s resistance level independent of environment.
  • 12.  When recessive alleles determine traits of interest they cannot be detected through phenotypic evaluation of heterozygous plants, because their presence is masked by the dominant allele. In a traditional backcross program, plants with recessive alleles are identified by progeny evaluation after self-pollination or testcrossing to a recessive tester. This time-consuming step can be eliminated in a MAS program, because recessive alleles are identified by linked markers.
  • 13.  when multiple resistance genes are pyramided together in the same variety or breeding line, the presence of each individual gene is difficult to verify phenotypically. The presence of one resistance gene may conceal the effect of additional genes. This problem can be overcome if markers are available for each of the resistance genes.
  • 14.  Environmental variation in the field reduces a trait’s heritability , the proportion of phenotypic variation that is due to genetics. In a low heritability situation, progress from phenotypic selection will be slow, because so much of the variation for the trait is due to environmental variation, experimental error, or genotype x environment interaction, and will not be passed on to the next generation. If a reliable marker for a trait is available, MAS can result in greater progress than phenotypic selection in such a situation.
  • 15.  MAS may be cheaper and faster than conventional phenotypic assays, depending on the trait. e.g., evaluating nematode resistance is usually an expensive operation because it requires artificial inoculation of plants with nematode eggs, followed by a labor-intensive technique to count the number of nematodes present. Selecting on the basis of a reliable marker would probably be cost-effective in this case. On the other hand, plant height is cheap and easy to measure, so there may not be an economic advantage in using markers for that trait.
  • 16.  A consideration that may affect cost effectiveness of MAS is that multiple markers can be evaluated using the same DNA sample. Extraction of DNA from plant tissue is one of the bottlenecks of MAS. Once DNA is extracted and purified, it may be used for multiple markers, for the same or different traits, thus reducing the time and cost per marker.
  • 17. Potential drawbacks of MAS Linkage maps of two chromosomes showing positions of two resistance genes and nearby markers.
  • 18.  MAS may be more expensive than conventional techniques, especially for startup expenses and labor costs. Recombination between the marker and the gene of interest may occur, leading to false positives. e.g., if the marker and the gene of interest are separated by 5 cM and selection is based on the marker pattern, there is an approximately 5% chance of selecting the wrong plant. This is based on the general guideline that across short distances, 1 cM of genetic distance is approximately equal to 1% recombination. The breeder will need to decide the error rate that is acceptable in the MAS program, keeping in mind that errors are also usually involved in phenotypic evaluation.
  • 19. Markers must be tightly-linked to target loci! • Ideally markers should be <5 cM from a gene or QTL • Using a pair of flanking markers can greatly improve reliability but increases time and cost Marker A QTL 5 cM RELIABILITY FOR SELECTION Using marker A only: 1 – rA = ~95% Marker A QTL Marker B 5 cM 5 cM Using markers A and B: 1 - 2 rArB = ~99.5%
  • 20. To avoid this last problem it may be necessary to use flanking markers on either side of the locus of interest to increase the probability that the desired gene is selected.  Sometimes markers that were used to detect a locus must be converted to 'breeder-friendly' markers that are more reliable and easier to use.
  • 21. Examples : RFLP markers converted to STS markers RFLP requires several steps and a large quantity of highly purified DNA. STS can be detected via PCR using primers developed from RFLP probe sequences. Thus the same locus can be detected with the two types of marker, but the STS marker is far more efficient.  RAPD markers converted to SCAR markers Results of RAPD reactions may vary from lab to lab, and may be considered less reliable for MAS. SCAR markers are developed by sequencing RAPD bands and designing more specific 18-25 base PCR primers to amplify the same DNA segment more reliably.
  • 22. Markers must be polymorphic 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 RM84 RM296 P1 P2 P1 P2 Not polymorphic Polymorphic!
  • 23.  Imprecise estimates of QTL locations and effects may result in slower progress than expected. Many QTLs have large confidence intervals of 20 cM or more or their relative importance in explaining trait inheritance has been over- estimated.  Markers developed for MAS in one population may not be transferrable to other populations, either due to lack of marker polymorphism or the absence of a marker-trait association.
  • 24. (1) TISSUE SAMPLING (2) DNA EXTRACTION (3) PCR (4) GEL ELECTROPHORESIS (5) MARKER ANALYSIS Conducting a MAS program
  • 25. MAS BREEDING SCHEMES 1. Marker-assisted backcrossing 2. Pyramiding 3. Early generation selection 4. ‘Combined’ approaches
  • 26. Marker-assisted backcrossing (MAB) • MAB has several advantages over conventional backcrossing: – Effective selection of target loci – Minimize linkage drag – Accelerated recovery of recurrent parent 1 2 3 4 Target locus 1 2 3 4 RECOMBINANT SELECTION 1 2 3 4 BACKGROUND SELECTION TARGET LOCUS SELECTION FOREGROUND SELECTION BACKGROUND SELECTION
  • 27. Pyramiding • Widely used for combining multiple disease resistance genes for specific races of a pathogen • Pyramiding is extremely difficult to achieve using conventional methods – Consider: phenotyping a single plant for multiple forms of seedling resistance – almost impossible • Important to develop ‘durable’ disease resistance against different races
  • 28. • Process of combining several genes, usually from 2 different parents, together into a single genotype F2 F1 Gene A + B P1 Gene A x P1 Gene B MAS Select F2 plants that have Gene A and Gene B Genotypes P1: AAbb P2: aaBB F1: AaBb F2 AB Ab aB ab AB AABB AABb AaBB AaBb Ab AABb AAbb AaBb Aabb aB AaBB AaBb aaBB aaBb ab AaBb Aabb aaBb aabb x Breeding plan Hittalmani et al. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in riceTheor. Appl. Genet. 100: 1121-1128 Liu et al. (2000). Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breeding 119: 21-24.
  • 29. Early generation MAS • MAS conducted at F2 or F3 stage • Plants with desirable genes/QTLs are selected and alleles can be ‘fixed’ in the homozygous state – plants with undesirable gene combinations can be discarded • Advantage for later stages of breeding program because resources can be used to focus on fewer lines References: Ribaut & Betran (1999). Single large-scale marker assisted selection (SLS-MAS). Mol Breeding 5: 21-24.
  • 30. F2 P2 F1 P1 x large populations (e.g. 2000 plants) ResistantSusceptible MAS for 1 QTL – 75% elimination of (3/4) unwanted genotypes MAS for 2 QTLs – 94% elimination of (15/16) unwanted genotypes
  • 31. P1 x P2 F1 PEDIGREE METHOD F2 F3 F4 F5 F6 F7 F8 – F12 Phenotypic screening Plants space- planted in rows for individual plant selection Families grown in progeny rows for selection. Preliminary yield trials. Select single plants. Further yield trials Multi-location testing, licensing, seed increase and cultivar release P1 x P2 F1 F2 F3 MAS SINGLE-LARGE SCALE MARKER- ASSISTED SELECTION (SLS- MAS) F4 Families grown in progeny rows for selection. Pedigree selection based on local needs F6 F7 F5 F8 – F12 Multi-location testing, licensing, seed increase and cultivar release Only desirable F3 lines planted in field breeding program can be efficiently scaled down to focus on fewer lines
  • 32. Combined approaches In some cases, a combination of phenotypic screening and MAS approach may be useful 1. To maximize genetic gain (when some QTLs have been unidentified from QTL mapping) 2. Level of recombination between marker and QTL (in other words marker is not 100% accurate) 3. To reduce population sizes for traits where marker genotyping is cheaper or easier than phenotypic screening
  • 33. ‘Marker-directed’ phenotyping BC1F1 phenotypes: R and S P1 (S) x P2 (R) F1 (R) x P1 (S) Recurrent Parent Donor Parent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 … SAVE TIME & REDUCE COSTS *Especially for quality traits* MARKER-ASSISTED SELECTION (MAS) PHENOTYPIC SELECTION (Also called ‘tandem selection’) • Use when markers are not 100% accurate or when phenotypic screening is more expensive compared to marker genotyping References: Han et al (1997). Molecular marker-assisted selection for malting quality traits in barley. Mol Breeding 6: 427-437.
  • 34. MAS: MARKER-ASSISTED SELECTION - Plants are selected for one or more (up to 8-10) alleles MABC: MARKER-ASSISTED BACKCROSSING One or more (up to 6-8) donor alleles are transferred to an elite line MARS: MARKER-ASSISTED RECURRENT SELECTION Selection for several (up to 20-30) mapped QTLs relies on index (genetic) values computed for each individual based on its haplotype at target QTLs GWS: GENOME-WIDE SELECTION Selection of genome-wide several loci that confer tolerance/resistance/ superiority to traits of interest using GEBVs based on genome-wide marker profiling A variety of approaches
  • 35. Conclusion MAS is a methodology that has already proved its value. It is likely to become more valuable as a larger number of genes are identified and their functions and interactions elucidated. Reduced costs and optimized strategies for integrating MAS with phenotypic selection are needed before the technology can reach its full potential.
  • 36. References •Marker-Assisted Selection - Objectives and Overview Patrick Byrne Department of Soil and Crop Sciences at Colorado State University, USA Kelley Richardson Department of Crop and Soil Sciences at Oregon State University, USA •MARKER-ASSISTED BREEDING FOR RICE IMPROVEMENT Bert Collard & David Mackill Plant Breeding, Genetics and Biotechnology (PBGB) Division, IRRI bcycollard@hotmail.com & d.mackill@cgiar.org •Towards utilization of genome sequence information for pigeonpea improvement By ICAR institutes, SAUs and ICRISAT •MAS Breeding University of Nebraska Institute of Agriculture and Natural Resources This presentation has been compiled from those references