SlideShare a Scribd company logo
1 of 49
Download to read offline
Distributed Machine Learning
with the Samsara DSL
Sebastian Schelter, Flink Forward 2015
About me
• about to finish my PhD on „Scaling Data Mining in Massively Parallel
Dataflow Systems“
• currently:
– Machine Learning Scientist / Post-Doctoral Researcher
at Amazon's Berlin-based ML group
– senior researcher at the Database Group of TU Berlin
• member of the Apache Software Foundation (Mahout/Giraph/Flink)
Samsara
• Samsara is an easy-to-use domain specific language (DSL) for distributed large-scale
machine learning on systems like Apache Spark and Apache Flink
• part of the Apache Mahout project
• uses Scala as programming/scripting environment
• system-agnostic, R-like DSL :
val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)
• algebraic expression optimizer for distributed linear algebra
– provides a translation layer to distributed engines
T
qq
TTT
ssCCBBG 
Data Types
• Scalar real values
• In-memory vectors
– dense
– 2 types of sparse
• In-memory matrices
– sparse and dense
– a number of specialized matrices
• Distributed Row Matrices (DRM)
– huge matrix, partitioned by rows
– lives in the main memory of the cluster
– provides small set of parallelized
operations
– lazily evaluated operation execution
val x = 2.367
val v = dvec(1, 0, 5)
val w =
svec((0 -> 1)::(2 -> 5)::Nil)
val A = dense((1, 0, 5),
(2, 1, 4),
(4, 3, 1))
val drmA = drmFromHDFS(...)
Features (1)
• matrix, vector, scalar operators:
in-memory, distributed
• slicing operators
• assignments (in-memory only)
• vector-specific
• summaries
drmA %*% drmB
A %*% x
A.t %*% drmB
A * B
A(5 until 20, 3 until 40)
A(5, ::); A(5, 5)
x(a to b)
A(5, ::) := x
A *= B
A -=: B; 1 /:= x
x dot y; x cross y
A.nrow; x.length;
A.colSums; B.rowMeans
x.sum; A.norm
Features (2)
• solving linear systems
• in-memory decompositions
• distributed decompositions
• caching of DRMs
val x = solve(A, b)
val (inMemQ, inMemR) = qr(inMemM)
val ch = chol(inMemM)
val (inMemV, d) = eigen(inMemM)
val (inMemU, inMemV, s) = svd(inMemM)
val (drmQ, inMemR) = thinQR(drmA)
val (drmU, drmV, s) =
dssvd(drmA, k = 50, q = 1)
val drmA_cached = drmA.checkpoint()
drmA_cached.uncache()
Example
Cereals
Name protein fat carbo sugars rating
Apple Cinnamon Cheerios 2 2 10.5 10 29.509541
Cap‘n‘Crunch 1 2 12 12 18.042851
Cocoa Puffs 1 1 12 13 22.736446
Froot Loops 2 1 11 13 32.207582
Honey Graham Ohs 1 2 12 11 21.871292
Wheaties Honey Gold 2 1 16 8 36.187559
Cheerios 6 2 17 1 50.764999
Clusters 3 2 13 7 40.400208
Great Grains Pecan 3 3 13 4 45.811716
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
Linear Regression
• Assumption: target variable y generated by linear combination of feature
matrix X with parameter vector β, plus noise ε
• Goal: find estimate of the parameter
vector β that explains the data well
• Cereals example
X = weights of ingredients
y = customer rating
 Xy
Data Ingestion
• Usually: load dataset as DRM from a distributed filesystem:
val drmData = drmFromHdfs(...)
• ‚Mimick‘ a large dataset for our example:
val drmData = drmParallelize(dense(
(2, 2, 10.5, 10, 29.509541), // Apple Cinnamon Cheerios
(1, 2, 12, 12, 18.042851), // Cap'n'Crunch
(1, 1, 12, 13, 22.736446), // Cocoa Puffs
(2, 1, 11, 13, 32.207582), // Froot Loops
(1, 2, 12, 11, 21.871292), // Honey Graham Ohs
(2, 1, 16, 8, 36.187559), // Wheaties Honey Gold
(6, 2, 17, 1, 50.764999), // Cheerios
(3, 2, 13, 7, 40.400208), // Clusters
(3, 3, 13, 4, 45.811716)), // Great Grains Pecan
numPartitions = 2)
Data Preparation
• Cereals example: target variable y is customer rating, weights of
ingredients are features X
• extract X as DRM by slicing,
fetch y as in-core vector
val drmX = drmData(::, 0 until 4)
val y = drmData.collect(::, 4)




























8117164541333
4002084071323
7649995011726
1875593681612
87129221111221
20758232131112
73644622131211
04285118121221
509541291051022
.
.
.
.
.
.
.
.
..
drmX y
Estimating β
• Ordinary Least Squares: minimizes the sum of residual squares between
true target variable and prediction of target variable
• Closed-form expression for estimation of ß as
• Computing XTX andXTy is as simple as typing the formulas:
val drmXtX = drmX.t %*% drmX
val drmXty = drmX %*% y
yXXX TT 1
)(ˆ 

Estimating β
• Solve the following linear system to get least-squares estimate of ß
• Fetch XTX andXTy onto the driver and use an in-core solver
– assumes XTX fits into memory
– uses analogon to R’s solve() function
val XtX = drmXtX.collect
val Xty = drmXty.collect(::, 0)
val betaHat = solve(XtX, Xty)
yXXX TT
ˆ
Estimating β
• Solve the following linear system to get least-squares estimate of ß
• Fetch XTX andXTy onto the driver and use an in-memory solver
– assumes XTX fits into memory
– uses analogon to R’s solve() function
val XtX = drmXtX.collect
val Xty = drmXty.collect(::, 0)
val betaHat = solve(XtX, Xty)
yXXX TT
ˆ
→ We have implemented distributed linear regression!
Goodness of fit
• Prediction of the target variable is simple matrix-vector multiplication
• Check L2 norm of the difference between true target variable and our
prediction
val yHat = (drmX %*% betaHat).collect(::, 0)
(y - yHat).norm(2)
ˆˆ Xy 
Adding a bias term
• Bias term left out so far
– constant factor added to the model, “shifts the line vertically”
• Common trick is to add a column of ones to the feature matrix
– bias term will be learned automatically




























141333
171323
111726
181612
1111221
1131112
1131211
1121221
11051022 .




























41333
71323
11726
81612
111221
131112
131211
121221
105.1022
Adding a bias term
• How do we add a new column to a DRM?
→ mapBlock() allows for custom modifications of the matrix
val drmXwithBiasColumn = drmX.mapBlock(ncol = drmX.ncol + 1) {
case(keys, block) =>
// create a new block with an additional column
val blockWithBiasCol = block.like(block.nrow, block.ncol+1)
// copy data from current block into the new block
blockWithBiasCol(::, 0 until block.ncol) := block
// last column consists of ones
blockWithBiasColumn(::, block.ncol) := 1
keys -> blockWithBiasColumn
}
Under the covers
Underlying systems
• prototype on Apache Spark
• prototype on h20:
• coming up: support for Apache Flink
Runtime & Optimization
• Execution is defered, user
composes logical operators
• Computational actions implicitly
trigger optimization (= selection
of physical plan) and execution
• Optimization factors: size of operands, orientation of operands, partitioning, sharing of
computational paths
• e. g.: matrix multiplication:
– 5 physical operators for drmA %*% drmB
– 2 operators for drmA %*% inMemA
– 1 operator for drm A %*% x
– 1 operator for x %*% drmA
val C = A.t %*% A
I.writeDrm(path);
val inMemV =(U %*% M).collect
Optimization Example
• Computation of ATA in example
• Naïve execution
1st pass: transpose A
(requires repartitioning of A)
2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)
• Logical optimization:
rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication
val C = A.t %*% A
Optimization Example
• Computation of ATA in example
• Naïve execution
1st pass: transpose A
(requires repartitioning of A)
2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)
• Logical optimization:
rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication
val C = A.t %*% A
Transpose
A
Optimization Example
• Computation of ATA in example
• Naïve execution
1st pass: transpose A
(requires repartitioning of A)
2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)
• Logical optimization:
rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication
val C = A.t %*% A
Transpose
MatrixMult
A A
C
Optimization Example
• Computation of ATA in example
• Naïve execution
1st pass: transpose A
(requires repartitioning of A)
2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)
• Logical optimization
Optimizer rewrites plan to use
specialized logical operator for
Transpose-Times-Self matrix
multiplication
val C = A.t %*% A
Transpose
MatrixMult
A A
C
Transpose-
Times-Self
A
C
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
A
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
x
AAT
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
x = x
AAT
a1• a1•
T
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
x = x + x
AAT
a1• a1•
T
a2• a2•
T
Transpose-Times-Self
• Mahout computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
x = x + +x x
AAT
a1• a1•
T
a2• a2•
T
a3• a3•
T
Transpose-Times-Self
• Samsara computes ATA via row-outer-product formulation
– executes in a single pass over row-partitioned A


m
i
T
ii
T
aaAA
0
x = x + + +x x x
AAT
a1• a1•
T
a2• a2•
T
a3• a3•
T
a4• a4•
T
Physical operators for the
distributed computation of ATA
Physical operators for
Transpose-Times-Self
• Two physical operators (concrete implementations)
available for Transpose-Times-Self operation
– standard operator AtA
– operator AtA_slim, specialized
implementation for tall & skinny
matrices
• Optimizer must choose
– currently: depends on user-defined
threshold for number of columns
– ideally: cost based decision, dependent on
estimates of intermediate result sizes
Transpose-
Times-Self
A
C
Physical operator AtA










1100
0101
0111
A
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
for 1st
partition
for 1st
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
 0111
1
1






 1100
0
0






for 1st
partition
for 1st
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
 0111
1
1






 1100
0
0






for 1st
partition
for 1st
partition
 0101
0
1






A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
 0111
1
1






 1100
0
0






for 1st
partition
for 1st
partition
 0101
0
1






for 2nd
partition
for 2nd
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
 0111
1
1






 1100
0
0






for 1st
partition
for 1st
partition
 0101
0
1






 0111
0
1






for 2nd
partition
 1100
1
1






for 2nd
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
 0111
1
1






 1100
0
0






for 1st
partition
for 1st
partition
 0101
0
1






 0111
0
1






for 2nd
partition
 0101
0
1






 1100
1
1






for 2nd
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111






0111
0111






0000
0000
for 1st
partition
for 1st
partition






0000
0101






0000
0111
for 2nd
partition






0000
0101






1100
1100
for 2nd
partition
A2
 1100
Physical operator AtA










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111






0111
0111






0000
0000
for 1st
partition
for 1st
partition






0000
0101






0000
0111
for 2nd
partition






0000
0101






1100
1100
for 2nd
partition






0111
0212
worker 3






1100
1312
worker 4
∑
∑
AT
A
Physical operator AtA_slim










1100
0101
0111
A
A2
 1100
Physical operator AtA_slim










1100
0101
0111
A1
A
worker 1
worker 2






0101
0111
A2
T
A2A2
 1100

















1
11
000
0000
Physical operator AtA_slim










1100
0101
0111
A1
T
A1A1
A
worker 1
worker 2






0101
0111

















0
02
011
0212
A2
T
A2A2
 1100

















1
11
000
0000
Physical operator AtA_slim










1100
0101
0111
A1
T
A1A1
A C = AT
A
worker 1
worker 2
A1
T
A1 + A2
T
A2
driver






0101
0111

















0
02
011
0212














1100
1312
0111
0212
Pointers
• Contribution to Apache Mahout in progress:
https://issues.apache.org/jira/browse/MAHOUT-1570
• Apache Mahout has extensive documentation on Samsara
– http://mahout.apache.org/users/environment/in-core-reference.html
– https://mahout.apache.org/users/environment/out-of-core-reference.html
Thank you. Questions?

More Related Content

What's hot

Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...
Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...
Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...Spark Summit
 
Distributed Stream Processing - Spark Summit East 2017
Distributed Stream Processing - Spark Summit East 2017Distributed Stream Processing - Spark Summit East 2017
Distributed Stream Processing - Spark Summit East 2017Petr Zapletal
 
GoodFit: Multi-Resource Packing of Tasks with Dependencies
GoodFit: Multi-Resource Packing of Tasks with DependenciesGoodFit: Multi-Resource Packing of Tasks with Dependencies
GoodFit: Multi-Resource Packing of Tasks with DependenciesDataWorks Summit/Hadoop Summit
 
Time-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity ClustersTime-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity ClustersJen Aman
 
Apache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API BasicsApache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API BasicsFlink Forward
 
Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School Flink Forward
 
Databricks clusters in autopilot mode
Databricks clusters in autopilot modeDatabricks clusters in autopilot mode
Databricks clusters in autopilot modePrakash Chockalingam
 
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache SparkArbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache SparkDatabricks
 
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S OptimizerDeep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S OptimizerSpark Summit
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkDatabricks
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Stephan Ewen
 
Predictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with StrymonPredictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with StrymonVasia Kalavri
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Jen Aman
 
Distributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta MeetupDistributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta MeetupSri Ambati
 
Real Time Big Data Management
Real Time Big Data ManagementReal Time Big Data Management
Real Time Big Data ManagementAlbert Bifet
 
Enhancing Spark SQL Optimizer with Reliable Statistics
Enhancing Spark SQL Optimizer with Reliable StatisticsEnhancing Spark SQL Optimizer with Reliable Statistics
Enhancing Spark SQL Optimizer with Reliable StatisticsJen Aman
 
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSP
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSPDiscretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSP
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSPTathagata Das
 

What's hot (20)

Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...
Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...
Time-evolving Graph Processing on Commodity Clusters: Spark Summit East talk ...
 
Distributed Stream Processing - Spark Summit East 2017
Distributed Stream Processing - Spark Summit East 2017Distributed Stream Processing - Spark Summit East 2017
Distributed Stream Processing - Spark Summit East 2017
 
GoodFit: Multi-Resource Packing of Tasks with Dependencies
GoodFit: Multi-Resource Packing of Tasks with DependenciesGoodFit: Multi-Resource Packing of Tasks with Dependencies
GoodFit: Multi-Resource Packing of Tasks with Dependencies
 
Time-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity ClustersTime-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity Clusters
 
Apache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API BasicsApache Flink Training: DataSet API Basics
Apache Flink Training: DataSet API Basics
 
Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School Vasia Kalavri – Training: Gelly School
Vasia Kalavri – Training: Gelly School
 
So you think you can stream.pptx
So you think you can stream.pptxSo you think you can stream.pptx
So you think you can stream.pptx
 
Databricks clusters in autopilot mode
Databricks clusters in autopilot modeDatabricks clusters in autopilot mode
Databricks clusters in autopilot mode
 
Spark streaming: Best Practices
Spark streaming: Best PracticesSpark streaming: Best Practices
Spark streaming: Best Practices
 
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache SparkArbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
 
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S OptimizerDeep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache Spark
 
Spark Streaming into context
Spark Streaming into contextSpark Streaming into context
Spark Streaming into context
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
 
Predictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with StrymonPredictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with Strymon
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
 
Distributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta MeetupDistributed GLM with H2O - Atlanta Meetup
Distributed GLM with H2O - Atlanta Meetup
 
Real Time Big Data Management
Real Time Big Data ManagementReal Time Big Data Management
Real Time Big Data Management
 
Enhancing Spark SQL Optimizer with Reliable Statistics
Enhancing Spark SQL Optimizer with Reliable StatisticsEnhancing Spark SQL Optimizer with Reliable Statistics
Enhancing Spark SQL Optimizer with Reliable Statistics
 
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSP
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSPDiscretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSP
Discretized Stream - Fault-Tolerant Streaming Computation at Scale - SOSP
 

Viewers also liked

Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache FlinkTill Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache FlinkFlink Forward
 
Flink Apachecon Presentation
Flink Apachecon PresentationFlink Apachecon Presentation
Flink Apachecon PresentationGyula Fóra
 
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache Flink
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache FlinkMartin Junghans – Gradoop: Scalable Graph Analytics with Apache Flink
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache FlinkFlink Forward
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapKostas Tzoumas
 
Apache Flink Training: System Overview
Apache Flink Training: System OverviewApache Flink Training: System Overview
Apache Flink Training: System OverviewFlink Forward
 
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...Flink Forward
 
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015Till Rohrmann
 
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache Flink
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache FlinkSuneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache Flink
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache FlinkFlink Forward
 
Tran Nam-Luc – Stale Synchronous Parallel Iterations on Flink
Tran Nam-Luc – Stale Synchronous Parallel Iterations on FlinkTran Nam-Luc – Stale Synchronous Parallel Iterations on Flink
Tran Nam-Luc – Stale Synchronous Parallel Iterations on FlinkFlink Forward
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteFlink Forward
 
Assaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at ScaleAssaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at ScaleFlink Forward
 
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?Flink Forward
 
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-ComposeSimon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-ComposeFlink Forward
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionFlink Forward
 
Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced Flink Forward
 
Kamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed ExperimentsKamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed ExperimentsFlink Forward
 
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and ZeppelinJim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and ZeppelinFlink Forward
 
Fabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on FlinkFabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on FlinkFlink Forward
 
Apache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce CompatibilityApache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce CompatibilityFabian Hueske
 
Matthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and StormsMatthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and StormsFlink Forward
 

Viewers also liked (20)

Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache FlinkTill Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
Till Rohrmann – Fault Tolerance and Job Recovery in Apache Flink
 
Flink Apachecon Presentation
Flink Apachecon PresentationFlink Apachecon Presentation
Flink Apachecon Presentation
 
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache Flink
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache FlinkMartin Junghans – Gradoop: Scalable Graph Analytics with Apache Flink
Martin Junghans – Gradoop: Scalable Graph Analytics with Apache Flink
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmap
 
Apache Flink Training: System Overview
Apache Flink Training: System OverviewApache Flink Training: System Overview
Apache Flink Training: System Overview
 
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...
William Vambenepe – Google Cloud Dataflow and Flink , Stream Processing by De...
 
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015
Streaming Data Flow with Apache Flink @ Paris Flink Meetup 2015
 
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache Flink
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache FlinkSuneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache Flink
Suneel Marthi – BigPetStore Flink: A Comprehensive Blueprint for Apache Flink
 
Tran Nam-Luc – Stale Synchronous Parallel Iterations on Flink
Tran Nam-Luc – Stale Synchronous Parallel Iterations on FlinkTran Nam-Luc – Stale Synchronous Parallel Iterations on Flink
Tran Nam-Luc – Stale Synchronous Parallel Iterations on Flink
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward Keynote
 
Assaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at ScaleAssaf Araki – Real Time Analytics at Scale
Assaf Araki – Real Time Analytics at Scale
 
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?
Vyacheslav Zholudev – Flink, a Convenient Abstraction Layer for Yarn?
 
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-ComposeSimon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
Simon Laws – Apache Flink Cluster Deployment on Docker and Docker-Compose
 
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data CompanionS. Bartoli & F. Pompermaier – A Semantic Big Data Companion
S. Bartoli & F. Pompermaier – A Semantic Big Data Companion
 
Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced Apache Flink Training: DataStream API Part 2 Advanced
Apache Flink Training: DataStream API Part 2 Advanced
 
Kamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed ExperimentsKamal Hakimzadeh – Reproducible Distributed Experiments
Kamal Hakimzadeh – Reproducible Distributed Experiments
 
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and ZeppelinJim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
Jim Dowling – Interactive Flink analytics with HopsWorks and Zeppelin
 
Fabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on FlinkFabian Hueske – Cascading on Flink
Fabian Hueske – Cascading on Flink
 
Apache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce CompatibilityApache Flink - Hadoop MapReduce Compatibility
Apache Flink - Hadoop MapReduce Compatibility
 
Matthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and StormsMatthias J. Sax – A Tale of Squirrels and Storms
Matthias J. Sax – A Tale of Squirrels and Storms
 

Similar to Sebastian Schelter – Distributed Machine Learing with the Samsara DSL

Bringing Algebraic Semantics to Mahout
Bringing Algebraic Semantics to MahoutBringing Algebraic Semantics to Mahout
Bringing Algebraic Semantics to Mahoutsscdotopen
 
Blazing Performance with Flame Graphs
Blazing Performance with Flame GraphsBlazing Performance with Flame Graphs
Blazing Performance with Flame GraphsBrendan Gregg
 
Writing Fast MATLAB Code
Writing Fast MATLAB CodeWriting Fast MATLAB Code
Writing Fast MATLAB CodeJia-Bin Huang
 
Co-occurrence Based Recommendations with Mahout, Scala and Spark
Co-occurrence Based Recommendations with Mahout, Scala and SparkCo-occurrence Based Recommendations with Mahout, Scala and Spark
Co-occurrence Based Recommendations with Mahout, Scala and Sparksscdotopen
 
Mahout scala and spark bindings
Mahout scala and spark bindingsMahout scala and spark bindings
Mahout scala and spark bindingsDmitriy Lyubimov
 
Artimon - Apache Flume (incubating) NYC Meetup 20111108
Artimon - Apache Flume (incubating) NYC Meetup 20111108Artimon - Apache Flume (incubating) NYC Meetup 20111108
Artimon - Apache Flume (incubating) NYC Meetup 20111108Mathias Herberts
 
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...Thom Lane
 
maxbox starter60 machine learning
maxbox starter60 machine learningmaxbox starter60 machine learning
maxbox starter60 machine learningMax Kleiner
 
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1Hsien-Hsin Sean Lee, Ph.D.
 
MLconf NYC Xiangrui Meng
MLconf NYC Xiangrui MengMLconf NYC Xiangrui Meng
MLconf NYC Xiangrui MengMLconf
 
Caffe framework tutorial2
Caffe framework tutorial2Caffe framework tutorial2
Caffe framework tutorial2Park Chunduck
 
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...PyData
 
Simple, fast, and scalable torch7 tutorial
Simple, fast, and scalable torch7 tutorialSimple, fast, and scalable torch7 tutorial
Simple, fast, and scalable torch7 tutorialJin-Hwa Kim
 
Options and trade offs for parallelism and concurrency in Modern C++
Options and trade offs for parallelism and concurrency in Modern C++Options and trade offs for parallelism and concurrency in Modern C++
Options and trade offs for parallelism and concurrency in Modern C++Satalia
 
Sandy Ryza – Software Engineer, Cloudera at MLconf ATL
Sandy Ryza – Software Engineer, Cloudera at MLconf ATLSandy Ryza – Software Engineer, Cloudera at MLconf ATL
Sandy Ryza – Software Engineer, Cloudera at MLconf ATLMLconf
 
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...MLconf
 
Intro to Spark - for Denver Big Data Meetup
Intro to Spark - for Denver Big Data MeetupIntro to Spark - for Denver Big Data Meetup
Intro to Spark - for Denver Big Data MeetupGwen (Chen) Shapira
 
Mat lab workshop
Mat lab workshopMat lab workshop
Mat lab workshopVinay Kumar
 
Classification using Apache SystemML by Prithviraj Sen
Classification using Apache SystemML by Prithviraj SenClassification using Apache SystemML by Prithviraj Sen
Classification using Apache SystemML by Prithviraj SenArvind Surve
 

Similar to Sebastian Schelter – Distributed Machine Learing with the Samsara DSL (20)

Bringing Algebraic Semantics to Mahout
Bringing Algebraic Semantics to MahoutBringing Algebraic Semantics to Mahout
Bringing Algebraic Semantics to Mahout
 
Blazing Performance with Flame Graphs
Blazing Performance with Flame GraphsBlazing Performance with Flame Graphs
Blazing Performance with Flame Graphs
 
Writing Fast MATLAB Code
Writing Fast MATLAB CodeWriting Fast MATLAB Code
Writing Fast MATLAB Code
 
MatlabIntro (1).ppt
MatlabIntro (1).pptMatlabIntro (1).ppt
MatlabIntro (1).ppt
 
Co-occurrence Based Recommendations with Mahout, Scala and Spark
Co-occurrence Based Recommendations with Mahout, Scala and SparkCo-occurrence Based Recommendations with Mahout, Scala and Spark
Co-occurrence Based Recommendations with Mahout, Scala and Spark
 
Mahout scala and spark bindings
Mahout scala and spark bindingsMahout scala and spark bindings
Mahout scala and spark bindings
 
Artimon - Apache Flume (incubating) NYC Meetup 20111108
Artimon - Apache Flume (incubating) NYC Meetup 20111108Artimon - Apache Flume (incubating) NYC Meetup 20111108
Artimon - Apache Flume (incubating) NYC Meetup 20111108
 
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...
CIFAR-10 for DAWNBench: Wide ResNets, Mixup Augmentation and "Super Convergen...
 
maxbox starter60 machine learning
maxbox starter60 machine learningmaxbox starter60 machine learning
maxbox starter60 machine learning
 
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
Lec9 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- Memory part 1
 
MLconf NYC Xiangrui Meng
MLconf NYC Xiangrui MengMLconf NYC Xiangrui Meng
MLconf NYC Xiangrui Meng
 
Caffe framework tutorial2
Caffe framework tutorial2Caffe framework tutorial2
Caffe framework tutorial2
 
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
 
Simple, fast, and scalable torch7 tutorial
Simple, fast, and scalable torch7 tutorialSimple, fast, and scalable torch7 tutorial
Simple, fast, and scalable torch7 tutorial
 
Options and trade offs for parallelism and concurrency in Modern C++
Options and trade offs for parallelism and concurrency in Modern C++Options and trade offs for parallelism and concurrency in Modern C++
Options and trade offs for parallelism and concurrency in Modern C++
 
Sandy Ryza – Software Engineer, Cloudera at MLconf ATL
Sandy Ryza – Software Engineer, Cloudera at MLconf ATLSandy Ryza – Software Engineer, Cloudera at MLconf ATL
Sandy Ryza – Software Engineer, Cloudera at MLconf ATL
 
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...
 
Intro to Spark - for Denver Big Data Meetup
Intro to Spark - for Denver Big Data MeetupIntro to Spark - for Denver Big Data Meetup
Intro to Spark - for Denver Big Data Meetup
 
Mat lab workshop
Mat lab workshopMat lab workshop
Mat lab workshop
 
Classification using Apache SystemML by Prithviraj Sen
Classification using Apache SystemML by Prithviraj SenClassification using Apache SystemML by Prithviraj Sen
Classification using Apache SystemML by Prithviraj Sen
 

More from Flink Forward

Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Flink Forward
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkFlink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...Flink Forward
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Flink Forward
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorFlink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeFlink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkFlink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxFlink Forward
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraFlink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkFlink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentFlink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsFlink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotFlink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesFlink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergFlink Forward
 

More from Flink Forward (20)

Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
 

Recently uploaded

Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Scott Andery
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 

Recently uploaded (20)

Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 

Sebastian Schelter – Distributed Machine Learing with the Samsara DSL

  • 1. Distributed Machine Learning with the Samsara DSL Sebastian Schelter, Flink Forward 2015
  • 2. About me • about to finish my PhD on „Scaling Data Mining in Massively Parallel Dataflow Systems“ • currently: – Machine Learning Scientist / Post-Doctoral Researcher at Amazon's Berlin-based ML group – senior researcher at the Database Group of TU Berlin • member of the Apache Software Foundation (Mahout/Giraph/Flink)
  • 3. Samsara • Samsara is an easy-to-use domain specific language (DSL) for distributed large-scale machine learning on systems like Apache Spark and Apache Flink • part of the Apache Mahout project • uses Scala as programming/scripting environment • system-agnostic, R-like DSL : val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q) • algebraic expression optimizer for distributed linear algebra – provides a translation layer to distributed engines T qq TTT ssCCBBG 
  • 4. Data Types • Scalar real values • In-memory vectors – dense – 2 types of sparse • In-memory matrices – sparse and dense – a number of specialized matrices • Distributed Row Matrices (DRM) – huge matrix, partitioned by rows – lives in the main memory of the cluster – provides small set of parallelized operations – lazily evaluated operation execution val x = 2.367 val v = dvec(1, 0, 5) val w = svec((0 -> 1)::(2 -> 5)::Nil) val A = dense((1, 0, 5), (2, 1, 4), (4, 3, 1)) val drmA = drmFromHDFS(...)
  • 5. Features (1) • matrix, vector, scalar operators: in-memory, distributed • slicing operators • assignments (in-memory only) • vector-specific • summaries drmA %*% drmB A %*% x A.t %*% drmB A * B A(5 until 20, 3 until 40) A(5, ::); A(5, 5) x(a to b) A(5, ::) := x A *= B A -=: B; 1 /:= x x dot y; x cross y A.nrow; x.length; A.colSums; B.rowMeans x.sum; A.norm
  • 6. Features (2) • solving linear systems • in-memory decompositions • distributed decompositions • caching of DRMs val x = solve(A, b) val (inMemQ, inMemR) = qr(inMemM) val ch = chol(inMemM) val (inMemV, d) = eigen(inMemM) val (inMemU, inMemV, s) = svd(inMemM) val (drmQ, inMemR) = thinQR(drmA) val (drmU, drmV, s) = dssvd(drmA, k = 50, q = 1) val drmA_cached = drmA.checkpoint() drmA_cached.uncache()
  • 8. Cereals Name protein fat carbo sugars rating Apple Cinnamon Cheerios 2 2 10.5 10 29.509541 Cap‘n‘Crunch 1 2 12 12 18.042851 Cocoa Puffs 1 1 12 13 22.736446 Froot Loops 2 1 11 13 32.207582 Honey Graham Ohs 1 2 12 11 21.871292 Wheaties Honey Gold 2 1 16 8 36.187559 Cheerios 6 2 17 1 50.764999 Clusters 3 2 13 7 40.400208 Great Grains Pecan 3 3 13 4 45.811716 http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
  • 9. Linear Regression • Assumption: target variable y generated by linear combination of feature matrix X with parameter vector β, plus noise ε • Goal: find estimate of the parameter vector β that explains the data well • Cereals example X = weights of ingredients y = customer rating  Xy
  • 10. Data Ingestion • Usually: load dataset as DRM from a distributed filesystem: val drmData = drmFromHdfs(...) • ‚Mimick‘ a large dataset for our example: val drmData = drmParallelize(dense( (2, 2, 10.5, 10, 29.509541), // Apple Cinnamon Cheerios (1, 2, 12, 12, 18.042851), // Cap'n'Crunch (1, 1, 12, 13, 22.736446), // Cocoa Puffs (2, 1, 11, 13, 32.207582), // Froot Loops (1, 2, 12, 11, 21.871292), // Honey Graham Ohs (2, 1, 16, 8, 36.187559), // Wheaties Honey Gold (6, 2, 17, 1, 50.764999), // Cheerios (3, 2, 13, 7, 40.400208), // Clusters (3, 3, 13, 4, 45.811716)), // Great Grains Pecan numPartitions = 2)
  • 11. Data Preparation • Cereals example: target variable y is customer rating, weights of ingredients are features X • extract X as DRM by slicing, fetch y as in-core vector val drmX = drmData(::, 0 until 4) val y = drmData.collect(::, 4)                             8117164541333 4002084071323 7649995011726 1875593681612 87129221111221 20758232131112 73644622131211 04285118121221 509541291051022 . . . . . . . . .. drmX y
  • 12. Estimating β • Ordinary Least Squares: minimizes the sum of residual squares between true target variable and prediction of target variable • Closed-form expression for estimation of ß as • Computing XTX andXTy is as simple as typing the formulas: val drmXtX = drmX.t %*% drmX val drmXty = drmX %*% y yXXX TT 1 )(ˆ  
  • 13. Estimating β • Solve the following linear system to get least-squares estimate of ß • Fetch XTX andXTy onto the driver and use an in-core solver – assumes XTX fits into memory – uses analogon to R’s solve() function val XtX = drmXtX.collect val Xty = drmXty.collect(::, 0) val betaHat = solve(XtX, Xty) yXXX TT ˆ
  • 14. Estimating β • Solve the following linear system to get least-squares estimate of ß • Fetch XTX andXTy onto the driver and use an in-memory solver – assumes XTX fits into memory – uses analogon to R’s solve() function val XtX = drmXtX.collect val Xty = drmXty.collect(::, 0) val betaHat = solve(XtX, Xty) yXXX TT ˆ → We have implemented distributed linear regression!
  • 15. Goodness of fit • Prediction of the target variable is simple matrix-vector multiplication • Check L2 norm of the difference between true target variable and our prediction val yHat = (drmX %*% betaHat).collect(::, 0) (y - yHat).norm(2) ˆˆ Xy 
  • 16. Adding a bias term • Bias term left out so far – constant factor added to the model, “shifts the line vertically” • Common trick is to add a column of ones to the feature matrix – bias term will be learned automatically                             141333 171323 111726 181612 1111221 1131112 1131211 1121221 11051022 .                             41333 71323 11726 81612 111221 131112 131211 121221 105.1022
  • 17. Adding a bias term • How do we add a new column to a DRM? → mapBlock() allows for custom modifications of the matrix val drmXwithBiasColumn = drmX.mapBlock(ncol = drmX.ncol + 1) { case(keys, block) => // create a new block with an additional column val blockWithBiasCol = block.like(block.nrow, block.ncol+1) // copy data from current block into the new block blockWithBiasCol(::, 0 until block.ncol) := block // last column consists of ones blockWithBiasColumn(::, block.ncol) := 1 keys -> blockWithBiasColumn }
  • 19. Underlying systems • prototype on Apache Spark • prototype on h20: • coming up: support for Apache Flink
  • 20. Runtime & Optimization • Execution is defered, user composes logical operators • Computational actions implicitly trigger optimization (= selection of physical plan) and execution • Optimization factors: size of operands, orientation of operands, partitioning, sharing of computational paths • e. g.: matrix multiplication: – 5 physical operators for drmA %*% drmB – 2 operators for drmA %*% inMemA – 1 operator for drm A %*% x – 1 operator for x %*% drmA val C = A.t %*% A I.writeDrm(path); val inMemV =(U %*% M).collect
  • 21. Optimization Example • Computation of ATA in example • Naïve execution 1st pass: transpose A (requires repartitioning of A) 2nd pass: multiply result with A (expensive, potentially requires repartitioning again) • Logical optimization: rewrite plan to use specialized logical operator for Transpose-Times-Self matrix multiplication val C = A.t %*% A
  • 22. Optimization Example • Computation of ATA in example • Naïve execution 1st pass: transpose A (requires repartitioning of A) 2nd pass: multiply result with A (expensive, potentially requires repartitioning again) • Logical optimization: rewrite plan to use specialized logical operator for Transpose-Times-Self matrix multiplication val C = A.t %*% A Transpose A
  • 23. Optimization Example • Computation of ATA in example • Naïve execution 1st pass: transpose A (requires repartitioning of A) 2nd pass: multiply result with A (expensive, potentially requires repartitioning again) • Logical optimization: rewrite plan to use specialized logical operator for Transpose-Times-Self matrix multiplication val C = A.t %*% A Transpose MatrixMult A A C
  • 24. Optimization Example • Computation of ATA in example • Naïve execution 1st pass: transpose A (requires repartitioning of A) 2nd pass: multiply result with A (expensive, potentially requires repartitioning again) • Logical optimization Optimizer rewrites plan to use specialized logical operator for Transpose-Times-Self matrix multiplication val C = A.t %*% A Transpose MatrixMult A A C Transpose- Times-Self A C
  • 25. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0
  • 26. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 A
  • 27. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 x AAT
  • 28. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 x = x AAT a1• a1• T
  • 29. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 x = x + x AAT a1• a1• T a2• a2• T
  • 30. Transpose-Times-Self • Mahout computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 x = x + +x x AAT a1• a1• T a2• a2• T a3• a3• T
  • 31. Transpose-Times-Self • Samsara computes ATA via row-outer-product formulation – executes in a single pass over row-partitioned A   m i T ii T aaAA 0 x = x + + +x x x AAT a1• a1• T a2• a2• T a3• a3• T a4• a4• T
  • 32. Physical operators for the distributed computation of ATA
  • 33. Physical operators for Transpose-Times-Self • Two physical operators (concrete implementations) available for Transpose-Times-Self operation – standard operator AtA – operator AtA_slim, specialized implementation for tall & skinny matrices • Optimizer must choose – currently: depends on user-defined threshold for number of columns – ideally: cost based decision, dependent on estimates of intermediate result sizes Transpose- Times-Self A C
  • 35. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111
  • 36. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111 for 1st partition for 1st partition
  • 37. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111  0111 1 1        1100 0 0       for 1st partition for 1st partition
  • 38. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111  0111 1 1        1100 0 0       for 1st partition for 1st partition  0101 0 1      
  • 39. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111  0111 1 1        1100 0 0       for 1st partition for 1st partition  0101 0 1       for 2nd partition for 2nd partition
  • 40. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111  0111 1 1        1100 0 0       for 1st partition for 1st partition  0101 0 1        0111 0 1       for 2nd partition  1100 1 1       for 2nd partition
  • 41. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111  0111 1 1        1100 0 0       for 1st partition for 1st partition  0101 0 1        0111 0 1       for 2nd partition  0101 0 1        1100 1 1       for 2nd partition
  • 42. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111       0111 0111       0000 0000 for 1st partition for 1st partition       0000 0101       0000 0111 for 2nd partition       0000 0101       1100 1100 for 2nd partition
  • 43. A2  1100 Physical operator AtA           1100 0101 0111 A1 A worker 1 worker 2       0101 0111       0111 0111       0000 0000 for 1st partition for 1st partition       0000 0101       0000 0111 for 2nd partition       0000 0101       1100 1100 for 2nd partition       0111 0212 worker 3       1100 1312 worker 4 ∑ ∑ AT A
  • 45. A2  1100 Physical operator AtA_slim           1100 0101 0111 A1 A worker 1 worker 2       0101 0111
  • 46. A2 T A2A2  1100                  1 11 000 0000 Physical operator AtA_slim           1100 0101 0111 A1 T A1A1 A worker 1 worker 2       0101 0111                  0 02 011 0212
  • 47. A2 T A2A2  1100                  1 11 000 0000 Physical operator AtA_slim           1100 0101 0111 A1 T A1A1 A C = AT A worker 1 worker 2 A1 T A1 + A2 T A2 driver       0101 0111                  0 02 011 0212               1100 1312 0111 0212
  • 48. Pointers • Contribution to Apache Mahout in progress: https://issues.apache.org/jira/browse/MAHOUT-1570 • Apache Mahout has extensive documentation on Samsara – http://mahout.apache.org/users/environment/in-core-reference.html – https://mahout.apache.org/users/environment/out-of-core-reference.html