Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

transformation 3d

15,865 views

Published on

Computer Graphics topic:: Transformation in 3d

Published in: Education
  • ⇒⇒⇒WRITE-MY-PAPER.net ⇐⇐⇐ I love this site. It always finds me the best tutors in accordance with my needs. I have been using it since last year. The prices are not expensive compared to other sites. I am glad I discored this site:)
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Did u try to use external powers for studying? Like ⇒ www.HelpWriting.net ⇐ ? They helped me a lot once.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Very nice tips on this. In case you need help on any kind of academic writing visit website ⇒ www.HelpWriting.net ⇐ and place your order
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dating direct: ❤❤❤ http://bit.ly/2Qu6Caa ❤❤❤
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Follow the link, new dating source: ❤❤❤ http://bit.ly/2Qu6Caa ❤❤❤
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

transformation 3d

  1. 1. 3D Geometric Transformation 고려대학교 컴퓨터 그래픽스 연구실
  2. 2. Contents <ul><li>Translation </li></ul><ul><li>Scaling </li></ul><ul><li>Rotation </li></ul><ul><li>Rotations with Quaternions </li></ul><ul><li>Other Transformations </li></ul><ul><li>Coordinate Transformations </li></ul>
  3. 3. Transformation in 3D <ul><li>Transformation Matrix </li></ul>3  3 : Scaling, Reflection, Shearing, Rotation 3  1 : Translation 1  3 : Homogeneous representation 1  1 : Uniform global Scaling
  4. 4. 3D Translation <ul><li>Translation of a Point </li></ul>x z y
  5. 5. 3D Scaling <ul><li>Uniform Scaling </li></ul>x z y
  6. 6. Relative Scaling <ul><li>Scaling with a Selected Fixed Position </li></ul>x x x x z z z z y y y y Original position Translate Scaling Inverse Translate
  7. 7. 3D Rotation <ul><li>Coordinate-Axes Rotations </li></ul><ul><ul><li>X-axis rotation </li></ul></ul><ul><ul><li>Y-axis rotation </li></ul></ul><ul><ul><li>Z-axis rotation </li></ul></ul><ul><li>General 3D Rotations </li></ul><ul><ul><li>Rotation about an axis that is parallel to one of the coordinate axes </li></ul></ul><ul><ul><li>Rotation about an arbitrary axis </li></ul></ul>
  8. 8. Coordinate-Axes Rotations <ul><li>Z-Axis Rotation </li></ul><ul><li>X-Axis Rotation </li></ul><ul><li>Y-Axis Rotation </li></ul>z y x z y x z y x
  9. 9. Order of Rotations <ul><li>Order of Rotation Affects Final Position </li></ul><ul><ul><li>X-axis  Z-axis </li></ul></ul><ul><ul><li>Z-axis  X-axis </li></ul></ul>
  10. 10. General 3D Rotations <ul><li>Rotation about an Axis that is Parallel to One of the Coordinate Axes </li></ul><ul><ul><li>Translate the object so that the rotation axis coincides with the parallel coordinate axis </li></ul></ul><ul><ul><li>Perform the specified rotation about that axis </li></ul></ul><ul><ul><li>Translate the object so that the rotation axis is moved back to its original position </li></ul></ul>
  11. 11. General 3D Rotations <ul><li>Rotation about an Arbitrary Axis </li></ul><ul><li>Basic Idea </li></ul><ul><li>Translate (x1, y1, z1) to the origin </li></ul><ul><li>Rotate (x’2, y’2, z’2) on to the z axis </li></ul><ul><li>Rotate the object around the z-axis </li></ul><ul><li>Rotate the axis to the original orientation </li></ul><ul><li>Translate the rotation axis to the original position </li></ul>(x 2 ,y 2 ,z 2 ) (x 1 ,y 1 ,z 1 ) x z y R -1 T -1 R T
  12. 12. General 3D Rotations <ul><li>Step 1. Translation </li></ul>(x 2 ,y 2 ,z 2 ) (x 1 ,y 1 ,z 1 ) x z y
  13. 13. General 3D Rotations <ul><li>Step 2. Establish [ T R ]  x x axis </li></ul>(a,b,c) (0,b,c) Projected Point   Rotated Point x y z
  14. 14. Arbitrary Axis Rotation <ul><li>Step 3. Rotate about y axis by  </li></ul>(a,b,c) (a,0,d)  l d x y Projected Point z Rotated Point
  15. 15. Arbitrary Axis Rotation <ul><li>Step 4. Rotate about z axis by the desired angle  </li></ul> l y x z
  16. 16. Arbitrary Axis Rotation <ul><li>Step 5. Apply the reverse transformation to place the axis back in its initial position </li></ul>x y l l z
  17. 17. Example Find the new coordinates of a unit cube 90º-rotated about an axis defined by its endpoints A(2,1,0) and B(3,3,1). A Unit Cube
  18. 18. Example <ul><li>Step1. Translate point A to the origin </li></ul>A’(0,0,0) x z y B’(1,2,1)
  19. 19. Example <ul><li>Step 2. Rotate axis A’B’ about the x axis by and angle  , until it lies on the xz plane. </li></ul>x z y l B’(1,2,1)  Projected point (0,2,1) B”(1,0,  5)
  20. 20. Example <ul><li>Step 3. Rotate axis A’B’’ about the y axis by and angle  , until it coincides with the z axis. </li></ul>x z y l  B”(1,0,  5) (0,0,  6)
  21. 21. Example <ul><li>Step 4. Rotate the cube 90° about the z axis </li></ul><ul><ul><li>Finally, the concatenated rotation matrix about the arbitrary axis AB becomes, </li></ul></ul>
  22. 22. Example
  23. 23. Example <ul><li>Multiplying R ( θ ) by the point matrix of the original cube </li></ul>
  24. 24. Rotations with Quaternions <ul><li>Quaternion </li></ul><ul><ul><li>Scalar part s + vector part v = ( a , b , c ) </li></ul></ul><ul><ul><li>Real part + complex part (imaginary numbers i , j , k ) </li></ul></ul><ul><li>Rotation about any axis </li></ul><ul><ul><li>Set up a unit quaternion ( u : unit vector) </li></ul></ul><ul><ul><li>Represent any point position P in quaternion notation ( p = ( x , y , z )) </li></ul></ul>
  25. 25. Rotations with Quaternions <ul><ul><li>Carry out with the quaternion operation ( q -1 =( s , – v ) ) </li></ul></ul><ul><ul><li>Produce the new quaternion </li></ul></ul><ul><ul><li>Obtain the rotation matrix by quaternion multiplication </li></ul></ul><ul><ul><li>Include the translations: </li></ul></ul>
  26. 26. Example <ul><li>Rotation about z axis </li></ul><ul><ul><li>Set the unit quaternion: </li></ul></ul><ul><ul><li>Substitute a = b =0 , c =sin( θ /2) into the matrix: </li></ul></ul>
  27. 27. Other Transformations <ul><li>Reflection Relative to the xy Plane </li></ul><ul><li>Z-axis Shear </li></ul>x z y x z y
  28. 28. Coordinate Transformations <ul><li>Multiple Coordinate System </li></ul><ul><ul><li>Local (modeling) coordinate system </li></ul></ul><ul><ul><li>World coordinate scene </li></ul></ul>Local Coordinate System
  29. 29. Coordinate Transformations <ul><li>Multiple Coordinate System </li></ul><ul><ul><li>Local (modeling) coordinate system </li></ul></ul><ul><ul><li>World coordinate scene </li></ul></ul>Word Coordinate System
  30. 30. Coordinate Transformations <ul><li>Example – Simulation of Tractor movement </li></ul><ul><ul><li>As tractor moves, tractor coordinate system and front-wheel coordinate system move in world coordinate system </li></ul></ul><ul><ul><li>Front wheels rotate in wheel coordinate system </li></ul></ul>
  31. 31. Coordinate Transformations <ul><li>Transformation of an Object Description from One Coordinate System to Another </li></ul><ul><li>Transformation Matrix </li></ul><ul><ul><li>Bring the two coordinates systems into alignment </li></ul></ul><ul><ul><li>1. Translation </li></ul></ul>u ' y u ' z u ' x x y z (0,0,0) y’ z’ x’ u ' y u ' z u ' x ( x 0 , y 0 , z 0 ) x y z (0,0,0)
  32. 32. Coordinate Transformations <ul><ul><li>2. Rotation & Scaling </li></ul></ul>y’ z’ x’ u ' y u ' z u ' x u ' y u ' z u ' x u ' y u ' z u ' x x y z (0,0,0) x y z (0,0,0) x y z (0,0,0)

×