SlideShare a Scribd company logo
1 of 17
Download to read offline
1
Introduction:
IoT Networking- Part I
Dr. Sudip Misra
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Email: smisra@sit.iitkgp.ernet.in
Website: http://cse.iitkgp.ac.in/~smisra/
Research Lab: cse.iitkgp.ac.in/~smisra/swan/
Industry 4.0 and Industrial Internet of Things
Introduction
 Characteristics of IoT devices
 Low processing power
 Small in size
 Energy constraints
 Networks of IoT devices
 Low throughput
 High packet loss
 Tiny (useful) payload size
 Frequent topology change
 Classical Internet is not meant for constrained IoT devices.
2Industry 4.0 and Industrial Internet of Things
Introduction
3Industry 4.0 and Industrial Internet of Things
Introduction
4Introduction to Internet of Things
 Analogy
 Roots - Communication Protocol and device
technologies
 Trunk- Architectural Reference Model (ARM)
 Leaves – IoT Applications
 Goal
 To select a minimal set of roots and propose a
potential trunk that enables the creation of a
maximal set of the leaves.
Source: FhG, I. M. L., et al. "Internet of things-architecture iot-a deliverable d1. 3–updated reference model for iot v1. 5."
Enabling Classical Internet for IoT Devices
 Proprietary non-IP based solution
 Vendor specific gateways
 Vendor specific APIs
 Internet Engineering Task Force (IETF) IP based solution
 Three work groups
 IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
 Routing Over Low power and Lossy networks (ROLL)
 Constrained RESTful Environments (CoRE)
5Industry 4.0 and Industrial Internet of Things
Source: I. Ishaq, et al. , "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013):
235-287.
Proprietary non-IP based solution
6Industry 4.0 and Industrial Internet of Things
 Drawbacks
 Limited flexibility to end users:
vendor specific APIs
 Interoperability: vendor specific
sensors and gateways
 Limited last-mile connectivity
Source: I. Ishaq, et al. , "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013):
235-287.
IETF IP based solution
7Industry 4.0 and Industrial Internet of Things
 Three work groups
 IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
 By header compression and encapsulation it allows IPv6 packets to transmit
and receive over IEEE 802.15.4 based networks.
 Routing Over Low power and Lossy networks (ROLL)
 New routing protocol optimized for saving storage and energy.
 Constrained RESTful Environments (CoRE)
 Extend the Integration of the IoT devices from network to service level.
Constrained RESTful Environments (CoRE)
8Industry 4.0 and Industrial Internet of Things
CoRE
9Industry 4.0 and Industrial Internet of Things
 Provides a platform for applications meant for constrained
IoT devices.
 This framework views sensor and actuator resources as
web resources.
 The framework is limited to applications which
 Monitor basic sensors
 Supervise actuators
 CoAP includes a mechanism for service discovery.
CoRE: Service Discovery
10Industry 4.0 and Industrial Internet of Things
 IoT devices (act as mini web servers) register their resources to
Resource Directory (RD) using Registration Interface (RI).
 RD, a logical network node, stores the information about a
specific set of IoT devices.
 RI supports Representational State Transfer (REST) based
protocol such as HTTP (and CoAP- optimized for IoT).
 IoT client uses Lookup interface for discovery of IoT devices.
11Industry 4.0 and Industrial Internet of Things
IoT Network QoS
IoT Network QoS
 Quality-of-service (QoS) of IoT network is the ability to
guarantee intended service to IoT applications through
controlling the heterogeneous traffic generated by IoT devices.
 QoS policies for IoT Network includes
 Resource utilization
 Data timeliness
 Data availability
 Data delivery
12Industry 4.0 and Industrial Internet of Things
Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
Resource utilization
 Requires control on the storage and bandwidth for data
reception and transmission.
 QoS policies for resource utilization:
 Resource limit policy
 Controls the amount of message buffering
 Useful for memory constrained IoT devices
 Time filter policy
 Controls the data sampling rate (interarrival time) to avoid buffer overflow
 Controls network bandwidth, memory, and processing power
13Industry 4.0 and Industrial Internet of Things
Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
Data timeliness
 Measure of the freshness of particular information at the receiver end
 Important in case of healthcare, industrial and military applications
 Data timeliness policies for IoT network include
 Deadline policy
 Provides maximum interarrival time of data
 Drops the stale data; notify the missed deadline to the application end
 Latency budget policy
 Latency budget is the maximum time difference between the data transmission
and reception from source end to the receiver end.
 Provides priority to applications having higher urgency
14Industry 4.0 and Industrial Internet of Things
Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
Data availability
 Measure of the amount of valid data provided by the sender/producer to
receiver/consumer
 QoS policies for data availability in IoT network include
 Durability policy
 Controls the degree of data persistence transmitted by the sender
 Data persistence ensures the availability of the data to the receiver even
after sender is unavailable
 Lifespan policy
 Controls the duration for which transmitted data is valid
 History policy
 Controls the number of previous data instances available for the receiver.
15Industry 4.0 and Industrial Internet of Things
Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
Data delivery
 Measure of successful reception of reliable data from sender
to receiver
 QoS policies for data delivery include
 Reliability policy
 Controls the reliability level associated with the data distribution
 Transport priority
 Allows transmission of data according to its priority level
16Industry 4.0 and Industrial Internet of Things
Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
17Introduction to Internet of Things

More Related Content

What's hot

Protocols for IoT
Protocols for IoTProtocols for IoT
Protocols for IoTAmit Dev
 
RPL - Routing Protocol for Low Power and Lossy Networks
RPL - Routing Protocol for Low Power and Lossy NetworksRPL - Routing Protocol for Low Power and Lossy Networks
RPL - Routing Protocol for Low Power and Lossy NetworksPradeep Kumar TS
 
Components of IOT Implementation
Components of IOT ImplementationComponents of IOT Implementation
Components of IOT ImplementationAashiq Ahamed N
 
Application Layer Protocols for the IoT
Application Layer Protocols for the IoTApplication Layer Protocols for the IoT
Application Layer Protocols for the IoTDamien Magoni
 
IOT and Characteristics of IOT
IOT and  Characteristics of IOTIOT and  Characteristics of IOT
IOT and Characteristics of IOTAmberSinghal1
 
Ppt 3 - IOT logic design
Ppt   3 - IOT logic designPpt   3 - IOT logic design
Ppt 3 - IOT logic designudhayakumarc1
 
Internet of things - challenges scopes and solutions
Internet of things - challenges scopes and solutionsInternet of things - challenges scopes and solutions
Internet of things - challenges scopes and solutionsShivam Kumar
 
Internet of Things (IoT) - Introduction ppt
Internet of Things (IoT) - Introduction ppt Internet of Things (IoT) - Introduction ppt
Internet of Things (IoT) - Introduction ppt sutrishnakar1995
 

What's hot (20)

Protocols for IoT
Protocols for IoTProtocols for IoT
Protocols for IoT
 
RPL - Routing Protocol for Low Power and Lossy Networks
RPL - Routing Protocol for Low Power and Lossy NetworksRPL - Routing Protocol for Low Power and Lossy Networks
RPL - Routing Protocol for Low Power and Lossy Networks
 
Unit 4
Unit 4Unit 4
Unit 4
 
Components of IOT Implementation
Components of IOT ImplementationComponents of IOT Implementation
Components of IOT Implementation
 
IoT Connectivity
IoT Connectivity IoT Connectivity
IoT Connectivity
 
Application Layer Protocols for the IoT
Application Layer Protocols for the IoTApplication Layer Protocols for the IoT
Application Layer Protocols for the IoT
 
IoT Networking Part 2
IoT Networking Part 2IoT Networking Part 2
IoT Networking Part 2
 
6lowpan
6lowpan6lowpan
6lowpan
 
IOT and Characteristics of IOT
IOT and  Characteristics of IOTIOT and  Characteristics of IOT
IOT and Characteristics of IOT
 
Iot architecture
Iot architectureIot architecture
Iot architecture
 
Internet of things
Internet of thingsInternet of things
Internet of things
 
IoT
IoTIoT
IoT
 
Raspberry Pi
Raspberry Pi Raspberry Pi
Raspberry Pi
 
Mobile ipv6
Mobile ipv6Mobile ipv6
Mobile ipv6
 
Ppt 3 - IOT logic design
Ppt   3 - IOT logic designPpt   3 - IOT logic design
Ppt 3 - IOT logic design
 
IoT sensor devices
IoT sensor devicesIoT sensor devices
IoT sensor devices
 
IoT and m2m
IoT and m2mIoT and m2m
IoT and m2m
 
Internet of things - challenges scopes and solutions
Internet of things - challenges scopes and solutionsInternet of things - challenges scopes and solutions
Internet of things - challenges scopes and solutions
 
WSN IN IOT
WSN IN IOTWSN IN IOT
WSN IN IOT
 
Internet of Things (IoT) - Introduction ppt
Internet of Things (IoT) - Introduction ppt Internet of Things (IoT) - Introduction ppt
Internet of Things (IoT) - Introduction ppt
 

Similar to IoT Networking

Io t standard_bis_arpanpal
Io t standard_bis_arpanpalIo t standard_bis_arpanpal
Io t standard_bis_arpanpalArpan Pal
 
Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things IJECEIAES
 
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17Phoenix Data Conference - Big Data Analytics for IoT 11/4/17
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17Mark Goldstein
 
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdf
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdfWeek 8 - Module 19 - PPT- Internet of Things for Libraries.pdf
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdfMohamedAli899919
 
Deep Learning Approaches for Information Centric Network and Internet of Things
Deep Learning Approaches for Information Centric Network and Internet of ThingsDeep Learning Approaches for Information Centric Network and Internet of Things
Deep Learning Approaches for Information Centric Network and Internet of Thingsijtsrd
 
Io t a_de_techgigwebinar_04nov2016
Io t a_de_techgigwebinar_04nov2016Io t a_de_techgigwebinar_04nov2016
Io t a_de_techgigwebinar_04nov2016Dr. Aloknath De
 
15CS81- IoT- VTU- module 3
15CS81- IoT- VTU- module 315CS81- IoT- VTU- module 3
15CS81- IoT- VTU- module 3Syed Mustafa
 
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.pijans
 
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSTRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSpijans
 
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSTRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSpijans
 
Elements of IoT connectivity technologies
Elements of IoT connectivity technologiesElements of IoT connectivity technologies
Elements of IoT connectivity technologiesusman sarwar
 
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoT
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoTINTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoT
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoTMuhammad Ahad
 
Internet of things-IoT.pptx
Internet of things-IoT.pptxInternet of things-IoT.pptx
Internet of things-IoT.pptxMukulislam1
 
Catching the Internet of Things (IoT) Wave
Catching the Internet of Things (IoT) WaveCatching the Internet of Things (IoT) Wave
Catching the Internet of Things (IoT) WaveChuck Petras
 

Similar to IoT Networking (20)

Io t standard_bis_arpanpal
Io t standard_bis_arpanpalIo t standard_bis_arpanpal
Io t standard_bis_arpanpal
 
COMPARATIVE STUDY BETWEEN VARIOUS PROTOCOLS USED IN INTERNET OF THING
COMPARATIVE STUDY BETWEEN VARIOUS  PROTOCOLS USED IN INTERNET OF THINGCOMPARATIVE STUDY BETWEEN VARIOUS  PROTOCOLS USED IN INTERNET OF THING
COMPARATIVE STUDY BETWEEN VARIOUS PROTOCOLS USED IN INTERNET OF THING
 
Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things
 
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17Phoenix Data Conference - Big Data Analytics for IoT 11/4/17
Phoenix Data Conference - Big Data Analytics for IoT 11/4/17
 
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdf
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdfWeek 8 - Module 19 - PPT- Internet of Things for Libraries.pdf
Week 8 - Module 19 - PPT- Internet of Things for Libraries.pdf
 
7CS4_IOT_Unit-1.pdf
7CS4_IOT_Unit-1.pdf7CS4_IOT_Unit-1.pdf
7CS4_IOT_Unit-1.pdf
 
Deep Learning Approaches for Information Centric Network and Internet of Things
Deep Learning Approaches for Information Centric Network and Internet of ThingsDeep Learning Approaches for Information Centric Network and Internet of Things
Deep Learning Approaches for Information Centric Network and Internet of Things
 
Io t a_de_techgigwebinar_04nov2016
Io t a_de_techgigwebinar_04nov2016Io t a_de_techgigwebinar_04nov2016
Io t a_de_techgigwebinar_04nov2016
 
IOT-Monograph .docx
IOT-Monograph .docxIOT-Monograph .docx
IOT-Monograph .docx
 
15CS81- IoT- VTU- module 3
15CS81- IoT- VTU- module 315CS81- IoT- VTU- module 3
15CS81- IoT- VTU- module 3
 
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.
Trustbased Routing Metric for RPL Routing Protocol in the Internet of Things.
 
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSTRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
 
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGSTRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
TRUST BASED ROUTING METRIC FOR RPL ROUTING PROTOCOL IN THE INTERNET OF THINGS
 
Elements of IoT connectivity technologies
Elements of IoT connectivity technologiesElements of IoT connectivity technologies
Elements of IoT connectivity technologies
 
Data Science for IoT
Data Science for IoTData Science for IoT
Data Science for IoT
 
IOT - Unit 3.pptx
IOT - Unit 3.pptxIOT - Unit 3.pptx
IOT - Unit 3.pptx
 
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoT
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoTINTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoT
INTEROPERABILITY, FLEXIBILITY AND INDUSTRIAL DESIGN REQUIREMENTS IN THE IoT
 
Internet of things-IoT.pptx
Internet of things-IoT.pptxInternet of things-IoT.pptx
Internet of things-IoT.pptx
 
IoT _protocols.ppt
IoT _protocols.pptIoT _protocols.ppt
IoT _protocols.ppt
 
Catching the Internet of Things (IoT) Wave
Catching the Internet of Things (IoT) WaveCatching the Internet of Things (IoT) Wave
Catching the Internet of Things (IoT) Wave
 

More from Hitesh Mohapatra

Virtualization: A Key to Efficient Cloud Computing
Virtualization: A Key to Efficient Cloud ComputingVirtualization: A Key to Efficient Cloud Computing
Virtualization: A Key to Efficient Cloud ComputingHitesh Mohapatra
 
Automating the Cloud: A Deep Dive into Virtual Machine Provisioning
Automating the Cloud: A Deep Dive into Virtual Machine ProvisioningAutomating the Cloud: A Deep Dive into Virtual Machine Provisioning
Automating the Cloud: A Deep Dive into Virtual Machine ProvisioningHitesh Mohapatra
 
Harnessing the Power of Google Cloud Platform: Strategies and Applications
Harnessing the Power of Google Cloud Platform: Strategies and ApplicationsHarnessing the Power of Google Cloud Platform: Strategies and Applications
Harnessing the Power of Google Cloud Platform: Strategies and ApplicationsHitesh Mohapatra
 
Scheduling in Cloud Computing
Scheduling in Cloud ComputingScheduling in Cloud Computing
Scheduling in Cloud ComputingHitesh Mohapatra
 
Load balancing in cloud computing.pptx
Load balancing in cloud computing.pptxLoad balancing in cloud computing.pptx
Load balancing in cloud computing.pptxHitesh Mohapatra
 
ITU-T requirement for cloud and cloud deployment model
ITU-T requirement for cloud and cloud deployment modelITU-T requirement for cloud and cloud deployment model
ITU-T requirement for cloud and cloud deployment modelHitesh Mohapatra
 
Reviewing basic concepts of relational database
Reviewing basic concepts of relational databaseReviewing basic concepts of relational database
Reviewing basic concepts of relational databaseHitesh Mohapatra
 
Advanced database protocols
Advanced database protocolsAdvanced database protocols
Advanced database protocolsHitesh Mohapatra
 
Involvement of WSN in Smart Cities
Involvement of WSN in Smart CitiesInvolvement of WSN in Smart Cities
Involvement of WSN in Smart CitiesHitesh Mohapatra
 
Data Structure and its Fundamentals
Data Structure and its FundamentalsData Structure and its Fundamentals
Data Structure and its FundamentalsHitesh Mohapatra
 
WORKING WITH FILE AND PIPELINE PARAMETER BINDING
WORKING WITH FILE AND PIPELINE PARAMETER BINDINGWORKING WITH FILE AND PIPELINE PARAMETER BINDING
WORKING WITH FILE AND PIPELINE PARAMETER BINDINGHitesh Mohapatra
 
Basic commands for powershell : Configuring Windows PowerShell and working wi...
Basic commands for powershell : Configuring Windows PowerShell and working wi...Basic commands for powershell : Configuring Windows PowerShell and working wi...
Basic commands for powershell : Configuring Windows PowerShell and working wi...Hitesh Mohapatra
 

More from Hitesh Mohapatra (20)

Virtualization: A Key to Efficient Cloud Computing
Virtualization: A Key to Efficient Cloud ComputingVirtualization: A Key to Efficient Cloud Computing
Virtualization: A Key to Efficient Cloud Computing
 
Automating the Cloud: A Deep Dive into Virtual Machine Provisioning
Automating the Cloud: A Deep Dive into Virtual Machine ProvisioningAutomating the Cloud: A Deep Dive into Virtual Machine Provisioning
Automating the Cloud: A Deep Dive into Virtual Machine Provisioning
 
Harnessing the Power of Google Cloud Platform: Strategies and Applications
Harnessing the Power of Google Cloud Platform: Strategies and ApplicationsHarnessing the Power of Google Cloud Platform: Strategies and Applications
Harnessing the Power of Google Cloud Platform: Strategies and Applications
 
Scheduling in Cloud Computing
Scheduling in Cloud ComputingScheduling in Cloud Computing
Scheduling in Cloud Computing
 
Cloud-Case study
Cloud-Case study Cloud-Case study
Cloud-Case study
 
RAID
RAIDRAID
RAID
 
Load balancing in cloud computing.pptx
Load balancing in cloud computing.pptxLoad balancing in cloud computing.pptx
Load balancing in cloud computing.pptx
 
Cluster Computing
Cluster ComputingCluster Computing
Cluster Computing
 
ITU-T requirement for cloud and cloud deployment model
ITU-T requirement for cloud and cloud deployment modelITU-T requirement for cloud and cloud deployment model
ITU-T requirement for cloud and cloud deployment model
 
Leetcode Problem Solution
Leetcode Problem SolutionLeetcode Problem Solution
Leetcode Problem Solution
 
Leetcode Problem Solution
Leetcode Problem SolutionLeetcode Problem Solution
Leetcode Problem Solution
 
Trie Data Structure
Trie Data Structure Trie Data Structure
Trie Data Structure
 
Reviewing basic concepts of relational database
Reviewing basic concepts of relational databaseReviewing basic concepts of relational database
Reviewing basic concepts of relational database
 
Reviewing SQL Concepts
Reviewing SQL ConceptsReviewing SQL Concepts
Reviewing SQL Concepts
 
Advanced database protocols
Advanced database protocolsAdvanced database protocols
Advanced database protocols
 
Measures of query cost
Measures of query costMeasures of query cost
Measures of query cost
 
Involvement of WSN in Smart Cities
Involvement of WSN in Smart CitiesInvolvement of WSN in Smart Cities
Involvement of WSN in Smart Cities
 
Data Structure and its Fundamentals
Data Structure and its FundamentalsData Structure and its Fundamentals
Data Structure and its Fundamentals
 
WORKING WITH FILE AND PIPELINE PARAMETER BINDING
WORKING WITH FILE AND PIPELINE PARAMETER BINDINGWORKING WITH FILE AND PIPELINE PARAMETER BINDING
WORKING WITH FILE AND PIPELINE PARAMETER BINDING
 
Basic commands for powershell : Configuring Windows PowerShell and working wi...
Basic commands for powershell : Configuring Windows PowerShell and working wi...Basic commands for powershell : Configuring Windows PowerShell and working wi...
Basic commands for powershell : Configuring Windows PowerShell and working wi...
 

Recently uploaded

CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsapna80328
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书rnrncn29
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Industrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsIndustrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsAlirezaBagherian3
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 

Recently uploaded (20)

CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveying
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Industrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal CompressorsIndustrial Applications of Centrifugal Compressors
Industrial Applications of Centrifugal Compressors
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 

IoT Networking

  • 1. 1 Introduction: IoT Networking- Part I Dr. Sudip Misra Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/ Industry 4.0 and Industrial Internet of Things
  • 2. Introduction  Characteristics of IoT devices  Low processing power  Small in size  Energy constraints  Networks of IoT devices  Low throughput  High packet loss  Tiny (useful) payload size  Frequent topology change  Classical Internet is not meant for constrained IoT devices. 2Industry 4.0 and Industrial Internet of Things
  • 3. Introduction 3Industry 4.0 and Industrial Internet of Things
  • 4. Introduction 4Introduction to Internet of Things  Analogy  Roots - Communication Protocol and device technologies  Trunk- Architectural Reference Model (ARM)  Leaves – IoT Applications  Goal  To select a minimal set of roots and propose a potential trunk that enables the creation of a maximal set of the leaves. Source: FhG, I. M. L., et al. "Internet of things-architecture iot-a deliverable d1. 3–updated reference model for iot v1. 5."
  • 5. Enabling Classical Internet for IoT Devices  Proprietary non-IP based solution  Vendor specific gateways  Vendor specific APIs  Internet Engineering Task Force (IETF) IP based solution  Three work groups  IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)  Routing Over Low power and Lossy networks (ROLL)  Constrained RESTful Environments (CoRE) 5Industry 4.0 and Industrial Internet of Things Source: I. Ishaq, et al. , "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013): 235-287.
  • 6. Proprietary non-IP based solution 6Industry 4.0 and Industrial Internet of Things  Drawbacks  Limited flexibility to end users: vendor specific APIs  Interoperability: vendor specific sensors and gateways  Limited last-mile connectivity Source: I. Ishaq, et al. , "IETF standardization in the field of the internet of things (IoT): a survey", J. of Sens. and Act. Netw. 2, vol. 2 (2013): 235-287.
  • 7. IETF IP based solution 7Industry 4.0 and Industrial Internet of Things  Three work groups  IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)  By header compression and encapsulation it allows IPv6 packets to transmit and receive over IEEE 802.15.4 based networks.  Routing Over Low power and Lossy networks (ROLL)  New routing protocol optimized for saving storage and energy.  Constrained RESTful Environments (CoRE)  Extend the Integration of the IoT devices from network to service level.
  • 8. Constrained RESTful Environments (CoRE) 8Industry 4.0 and Industrial Internet of Things
  • 9. CoRE 9Industry 4.0 and Industrial Internet of Things  Provides a platform for applications meant for constrained IoT devices.  This framework views sensor and actuator resources as web resources.  The framework is limited to applications which  Monitor basic sensors  Supervise actuators  CoAP includes a mechanism for service discovery.
  • 10. CoRE: Service Discovery 10Industry 4.0 and Industrial Internet of Things  IoT devices (act as mini web servers) register their resources to Resource Directory (RD) using Registration Interface (RI).  RD, a logical network node, stores the information about a specific set of IoT devices.  RI supports Representational State Transfer (REST) based protocol such as HTTP (and CoAP- optimized for IoT).  IoT client uses Lookup interface for discovery of IoT devices.
  • 11. 11Industry 4.0 and Industrial Internet of Things IoT Network QoS
  • 12. IoT Network QoS  Quality-of-service (QoS) of IoT network is the ability to guarantee intended service to IoT applications through controlling the heterogeneous traffic generated by IoT devices.  QoS policies for IoT Network includes  Resource utilization  Data timeliness  Data availability  Data delivery 12Industry 4.0 and Industrial Internet of Things Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
  • 13. Resource utilization  Requires control on the storage and bandwidth for data reception and transmission.  QoS policies for resource utilization:  Resource limit policy  Controls the amount of message buffering  Useful for memory constrained IoT devices  Time filter policy  Controls the data sampling rate (interarrival time) to avoid buffer overflow  Controls network bandwidth, memory, and processing power 13Industry 4.0 and Industrial Internet of Things Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
  • 14. Data timeliness  Measure of the freshness of particular information at the receiver end  Important in case of healthcare, industrial and military applications  Data timeliness policies for IoT network include  Deadline policy  Provides maximum interarrival time of data  Drops the stale data; notify the missed deadline to the application end  Latency budget policy  Latency budget is the maximum time difference between the data transmission and reception from source end to the receiver end.  Provides priority to applications having higher urgency 14Industry 4.0 and Industrial Internet of Things Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
  • 15. Data availability  Measure of the amount of valid data provided by the sender/producer to receiver/consumer  QoS policies for data availability in IoT network include  Durability policy  Controls the degree of data persistence transmitted by the sender  Data persistence ensures the availability of the data to the receiver even after sender is unavailable  Lifespan policy  Controls the duration for which transmitted data is valid  History policy  Controls the number of previous data instances available for the receiver. 15Industry 4.0 and Industrial Internet of Things Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.
  • 16. Data delivery  Measure of successful reception of reliable data from sender to receiver  QoS policies for data delivery include  Reliability policy  Controls the reliability level associated with the data distribution  Transport priority  Allows transmission of data according to its priority level 16Industry 4.0 and Industrial Internet of Things Source: Rayes, A., & Salam, S. (2016), "Internet of Things from hype to reality: the road to digitization", Springer.