SlideShare a Scribd company logo
1 of 33
Download to read offline
25-Feb-13
CE370: Prof. A. Charif 1
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Analysis and Design of T-Beams
• T-shaped beams are frequently used in structures
• There are two types of T-beams :
 Beams directly cast and delivered as isolated
T-beams (especially in bridges)
T-shaped beams resulting from interaction of slabs
with beams (building slabs)
• The obvious advantage of T-beams is to reduce useless
tensile concrete quantity
T-Beams
2
25-Feb-13
CE370: Prof. A. Charif 2
Isolated T-beams
T-Beams
Slab interaction
T-beams
3
A beam is considered as such even if it has a larger base (heel) to
accommodate tension steel.
The shape and size of concrete on the tension side, assumed to be
cracked, has no effect on the theoretical resisting moments.
T-Beams
Precast T-Beams for bridges
4
25-Feb-13
CE370: Prof. A. Charif 3
T-Beams
RC floors normally consist of slabs and beams that are cast
monolithically. The two act together to resist loads and because of
this interaction, the effective section of the beam is a T or L section.
T-section for
interior beams
L-section for
exterior beams
5
T-Beams
The effective flange width resulting from slab interaction
depends on the slab type (one-way or two-way slab).
The present course focuses on one-way slabs.
6
25-Feb-13
CE370: Prof. A. Charif 4
Exterior beam – Minimum of:
 Beam tributary width
 Web width plus six times slab
thickness
 Web width plus one-twelfth
of beam span
Interior Beam – Minimum of:
 Beam tributary width
 Web width plus 16 times slab
thickness
 One-quarter of beam span
Effective flange width in one way slabs
7
Beam tributary width
 Beam tributary width is the transverse width of the slab
transmitting load to the beam (supported by the beam)
 It is determined using mid-lines between beam lines
 For exterior beams, offsets are included
Figure shows tributary widths for beams A and B
A
B
C
Lt
Lt
8
25-Feb-13
CE370: Prof. A. Charif 5
Flange Dimensions
(Isolated T-Beams)
For an isolated T-beam:
 The flange thickness may
not be less than one-half
the web width
 The effective flange
width may not be larger
than four times the web
width
wf
w
f bb
b
h 4
2

9
Location of neutral axis and
Rectangular stress block depth a
• Neutral axis (N.A.) for T-beams can
fall either in the flange or in the web
• At ultimate state, it is the depth of
the rectangular stress block that
counts.
If the stress block falls in the flange, as is very frequent for
positive moments, the rectangular beam formulas apply.
In this case tensile concrete is assumed to be cracked, and its
shape has no effect (other than weight).
The section is analyzed as a rectangular one using the flange
width b = bf
10
25-Feb-13
CE370: Prof. A. Charif 6
Location of rectangular
stress block (Contd.)
 If the stress block falls in the
web, the compression area
does not consist of a single
rectangle, and the rectangular
beam design procedure does
not apply.
 The section is in this case
divided in two parts as will be
seen later (decomposition
method)
11
Case of a negative moment
• If the T-section is subjected to a negative moment,
then the flange will be in tension
• The section can thus be analyzed as an inverted
rectangular one using the web width b = bw
12
25-Feb-13
CE370: Prof. A. Charif 7
Minimum Steel for T-Beams
• Minimum steel quantity is imposed by codes for the
same reasons as in rectangular beams
db
ff
f
A w
yy
c
s









4.1
,
4
Max
'
min,
Exception: For a statically determinate T-beam subjected
to a negative moment (cantilever), the minimum steel
area is:
According to SBC/ACI:
db
f
f
A w
y
c
s
2
'
min, 
13
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Analysis of T-Beams
25-Feb-13
CE370: Prof. A. Charif 8
15
Analysis of T-Beams
Yielding of Tension Steel
• With a larger compression area from the flange, a T-
beam is usually under reinforced and tension steel
should yield before failure.
• We therefore first present the method of analysis in
case of steel yielding.
• Case of steel not yielding is presented later.
methodiondecompositusein web,Block:If
continueflange,inBlockOK:If
85.0
85.0:mequilibriuForce '
'
f
f
fc
ys
ysfc
ha
ha
bf
fA
afAabf



16
Location of rectangular stress block
in Analysis Case
• Assume stress block in
flange
• Express force equilibrium
• Deduce value of a and
check.
2
a
d 
wb
sA
fb
fh
fcabf '
85.0
a
ys fA
25-Feb-13
CE370: Prof. A. Charif 9
Analysis steps for T-Beams
nn
f
f
f
fc
ys
s
MM
c
cd
β
a
c
a
ha
b
ha
bf
fA
a
A


and,Calculate6.
caseyieldingnogotoyieldingnotsteelIf.5
003.0strainsteelanddepthaxisneutralCalculate.4
ofvaluenewfindtomethodiondecompositUse
webreachesblockStressIf
4goto,widthflangeusingsectionrrectangulaaas
analysiscontinueflange,inblockStressIf
thicknessflangedepth withblockCompare.3
85.0
depthitsdetermineandflangeinblockstressAssume2.
areasteelminimumCheck1.
s
1
'
min





17
Decomposition Method (1)
• When the stress block exceeds the flange, the section is divided:
T-section = W-section + F-section
• W-section = Compression part of the web (unknown depth a)
• F-section = Overhanging parts of the flange (known depth hf)
18
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
Total steel area and nominal moment are decomposed:
nwnfnswsfs MMMAAA 
25-Feb-13
CE370: Prof. A. Charif 10
Decomposition Method (2)
19
sfssw
y
fwc
sfysffwcf AAA
f
hbbf
AfAhbbfC 

 and
)(85.0
)(85.0
'
'
Force equilibrium in the flange part gives the two steel areas :
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
Force equilibrium in the web gives the compression block depth :
w
'
c
ysw
yswwwcw
bf.
fA
afATabfC
850
85.0 '



























22
22
a
dfA
h
dfAMMM
a
dfAM
h
dfAM
ysw
f
ysfnwnfn
yswnw
f
ysfnf
Decomposition Method (3)
20
Using appropriate lever arms, the nominal moments are thus :
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
25-Feb-13
CE370: Prof. A. Charif 11
Problem 1
m1.5iswidthtributaryBeamthick.mm100isthatslabfloorawith
integrallycastisspanm9withbeamTheMPa.420andMPa30
figure.in theshownbeamTinteriorofmomentdesignDetermine
 y
'
c ff
21
600d
250
286
widthEffective
100
mmd
mmd
t 655
545min


Solution 1
mm1500
mm22504/90004Span /
mm18501001625016
1500widthTributary
Min
:widthFlangeEffective









bhb
mml
fw
t
 
OKAmm5.369428
4
6and
mm0.50060025000333.0,00326.0Max
600250
420
4.1
,
4204
30
Max
4.1
,
4
Max
Checking
mins
22
2
minmin
'
min
min



























ss
ss
w
yy
c
s
s
AA
AA
db
ff
f
A
A

22
25-Feb-13
CE370: Prof. A. Charif 12
:flangeinblockstressAssume
0.90controlTension005.0005.00313.0
72.47
72.47545
003.0003.0:checkStrain
mm72.47
85.0
56.40
flangeinisblockstressOKmm100a
mm56.40
15003085.0
4205.2694
85.0
min
min
min
1
'






 





 







t
f
fc
ys
εε
c
cd
ε
β
a
c
h
bf
fA
a
Solution 1 – Cont.
23
600d
250
286
mm1500widthEffective 
100
mmd
mmd
t 655
545min


layerbottomatcontrol-nfor tensiocheckmustThen we
:005.0butIf:Note minmin   y
mkNM
mkNmmNM
M
a
dfAM
n
n
n
ysn
.6.80955.8999.0:momentDesign
.55.899.1055.899
2
56.40
6004205.3694
2
:momentNominal
6

















Solution 1 – Cont.
The T-beam can therefore resist any ultimate moment
equal to or less than 809.6 kN.m
24
600d
250
286
mm1500widthEffective 
100
mmd
mmd
t 655
545min


25-Feb-13
CE370: Prof. A. Charif 13
Problem 2
Analysis of a T-section with six 20-mm
bars in two layers as shown.
Net layer spacing Sl = 30 mm
Stirrup diameter = 10 mm
MPafMPaf yc 42020'

Steel depths :
mmddmmdd
mm
dd
AA
AdAd
d
mmdSdd
mmd
d
hdd
t
ss
ss
bl
s
b
t
490540
515
2
49050540)2030(540)(
54060600)10
2
20
40(600)
2
cover(
2min1
21
21
2211
12
1









600
75
525
300
Total steel area is : 2
2
96.1884
4
20
6 mmAs  
It is greater than the minimum steel area:
2
min
'
min
515515300
420
4.1
515300
420
4.1
,515300
4204
20
Max
4.1
,
4
Max
mm
x
A
db
f
db
f
f
A
s
w
y
w
y
c
s
















Solution 2
First assume compression block in the flange (a ≤ hf ) and
if true analyze as a rectangular section (bf , h).
If not, use decomposition method.
25-Feb-13
CE370: Prof. A. Charif 14
Force equilibrium C = T gives the compression block depth is :
mm
bf
fA
a
fc
ys
616.77
6002085.0
42096.1884
85.0 '




This value is greater than the flange thickness a > hf
Compression block is thus in the web
Use decomposition method:
T-section = W-section + F-section 





nfnwn
sfsws
MMM
AAA
 
2
2
'
246.974
714.910
420
75)300600(2085.0
and
85.0
mmAAA
mmA
AAA
f
hbbf
A
sfssw
sf
sfssw
y
fwfc
sf







Solution 2 – Cont.
mm
a
c
hamma
bf
fA
afAabf
f
wc
ysw
yswwc
39.94
85.0
232.80
)(232.80
3002085.0
420246.974
85.0
85.0
1
'
'







New value of compression
block depth is obtained
from the force equilibrium
in the web part :
control-Tension005.0005.0
0021.001257.0
39.94
39.94490
003.0003.0
min
min
min
OK
OK
c
cd
t
y








Steel strain check at minimum depth:
Solution 2 – Cont.
No need to calculate strain at bottom layer.
25-Feb-13
CE370: Prof. A. Charif 15
Nominal moment:
mkNM
mkNMMM
mkNmmNM
a
dfAM
mkNmmNM
h
dfAM
n
nfnwn
nw
yswnw
nf
f
ysfnf
.26.339958.37690.0
.958.376
.315.194.194314612
2
232.80
515420246.974
2
.364.182.182643693
2
75
515420714.910
2































Solution 2 – Cont.
Problem 3
MPa420MPa30  y
'
c ff
30
750d
350
328
750widthEffective 
100
mmd
mmd
t 860
640min


Compute the design moment for the shown T-beam with all
dimensions in mm.
 
OKA
mm0.875
75035000333.0,00326.0Max
750350
420
4.1
,
4204
30
Max
4.1
,
4
Max
mm0.643432
4
8
mins
2
min
min
'
min
22





























s
s
s
w
yy
c
s
s
A
A
A
db
ff
f
A
A

25-Feb-13
CE370: Prof. A. Charif 16
2
2
'
43.400557.24280.6434
57.2428
420
)100350750(3085.0)(85.0
:With
mmAAA
mm
f
hbbf
A
sfssw
y
fwc
sf






mm
a
c
mmhmm
bf.
fA
a f
w
'
c
ysw
75.221
85.0
49.188
:isdepthaxisNeutral
)100(49.188
3503085.0
42043.4005
850
:isdepthblocknCompressio
1






Solution 3
31
nfnwnsfsws
f
fc
ys
MMMAAA
mmhmm
bf
fA
a






:iondecompositusingAnalyzein webliesblockStress
1003.141
7503085.0
4206434
85.0
:flangeinblockstressAssume
'
mkNM
mkNMMM
mmN
a
dfAM
mmN
h
dfAM
c
cd
n
nwnfn
yswnw
f
ysfnf
y
t
.48.16352.181790.0:momentDesign
.2.1817:momentnominalTotal
.102.1103
2
49.188
75042043.4005
2
.100.714
2
100
75042057.2428
2
:aremomentsNominal
layerbottomatcontrol-nfor tensiocheckmustThen we
:005.0butIf:Note
0.90controlTensionOK005.0005.0
00566.0
75.221
75.221640
003.0003.0:checkStrain
6
6
minmin
min
min
min







































Solution 3 – Cont.
32
25-Feb-13
CE370: Prof. A. Charif 17
33
Analysis of T-beams with tension steel not yielding
  
























2
:check003.0
:continueif1
4
1
285.0
600
formula.rectangleUse:)(flangein thefirstitassumestillweweb,
in thelikelymoreisblockncompressiotheyielding,steelnoithAlthough w
6000030
003.0:ThenIf
1
1
'
a
dfAMεEf
c
cd
haca
P
dP
c
bf
A
P
ha
c
cd
A
c
cd
.EAT
c
cd
EAfAT
ssnsssyss
f
fc
s
f
sss
ssssssys




Situations where steel does not yield at failure in T-beams are very
rare. The case of one tension steel layer is treated here. With many
layers, non yielding must be solved using strain compatibility
method (as was done with rectangular beams).
34
Analysis of T-beams with tension steel not yielding
Decomposition (more likely)
 
 
  sssyss
w
fwf
wc
s
sfwfcwcwf
wcwcwfwfcf
wfsf
εEf
c
cd
ca
QP
PdQP
c
b
hbb
Q
bf
A
PPdcQPc
c
cd
AhbbfcbfCCT
cbfabfChbbfC
CCC
c
cd
ATha




























:check003.0and:Deduce
1
)(
4
1
2
)(
:issolutionPositive
)(
85.0
600
with0)(
60085.085.0
85.085.085.0
600:methodiondecomposituseif
1
2
11
'
2
'
1
'
1
'''
25-Feb-13
CE370: Prof. A. Charif 18
35
Analysis of T-beams with tension steel not yielding
Decomposition - Continued
 
sfssw
s
fwfc
sf
sswnw
f
ssfnf
nwnfn
sssyss
AAA
f
hbbf
A
a
dfAM
h
dfAM
MMM
εEf
c
cd
ca




















and
)(85.0
22
:check003.0
'
1 
36
600d
100
750
350
328
Problem 4
MPa420MPa20  y
'
c ff
Compute the design moment for the shown T-beam with all
dimensions in mm. The large base (heel) allows many bars in a
single layer and does not change the T-section behavior.
 
OKA
mm0.700
60035000333.0,00266.0Max
600350
420
4.1
,
4204
20
Max
4.1
,
4
Max
mm0.643432
4
8
mins
2
min
min
'
min
22





























s
s
s
w
yy
c
s
s
A
A
A
db
ff
f
A
A

25-Feb-13
CE370: Prof. A. Charif 19
2
2
'
95.481405.16190.6434
05.1619
420
)100350750(2085.0)(85.0
:With
mmAAA
mm
f
hbbf
A
sfssw
y
fwc
sf






mm
a
c
mmhmm
bf.
fA
a f
w
'
c
ysw
86.399
85.0
88.339
:isdepthaxisNeutral
)100(88.339
3502085.0
42095.4814
850
:isdepthblocknCompressio
1






Solution 4
37
nfnwnsfsws
f
fc
ys
MMMAAA
mmhmm
bf
fA
a






:iondecompositusingAnalyzein webliesblockStress
10094.211
7502085.0
4206434
85.0
:flangeinblockstressandyieldingsteelAssume
'
mmc
QP
b
hbb
Q
bf
A
P
QP
PdQP
c
c
cd
w
fwf
wc
s
y
s
20.3631
)45.13430.763(
60030.7634
1
2
)45.13430.763(
45.134
85.0350
100)350750(
30.763
85.03502085.0
6434600
)(
85.0
600
with1
)(
4
1
2
)(
:iondecomposittheuseandwebin theisithatdirectly tassumeratherWe
checkandflangein theblockncompressiofirst theassumeagaincanWe
web)in theisblockstresstlikely thastill(but:yieldingNot
00150.0
86.399
86.399600
003.0003.0:strainSteel
2
11
'2
s












































Solution 4 – Cont.
38
25-Feb-13
CE370: Prof. A. Charif 20
2
2
'
1
76.469524.17380.6434
24.1738
2.391
001)350750(2085.0)(85.0
2.391001956.0200000
:confirmedyieldingNo
001956.0
2.363
2.363600
003.0003.0
assumedaswebin theblocknCompressio
72.30820.36385.020.363
mmAAA
mm
f
hbbf
A
MPaεEf
c
cd
mmcammc
sfssw
s
fwfc
sf
sss
ys
s


















Solution 4 – Cont.
39
mkNM
mkNMMM
mmNM
a
dfAM
mmNM
h
dfAM
n
nwnfn
nw
sswnw
nf
f
ssfnf
.19.7756.119265.0yielding)No(65.0
.6.1192
.106.818
2
72.308
6002.39176.4695
2
.100.374
2
100
6002.39124.1738
2
6
6































Solution 4 – Cont.
40
25-Feb-13
CE370: Prof. A. Charif 21
CE 370
REINFORCED CONCRETE-I
Prof. A. Charif
Design of T Beams
Design of T-Beams
The same minimum thickness for deflection control is used for
rectangular or T-beams. Design steps are :
• Determine all dimensions of T-section
• Estimate steel depth according to expected number of layers
• Determine location of compression block
• If stress block is in flange, design as a rectangular section using
the flange width
• If stress block is in web, use decomposition method for design
• Check minimum steel
• Perform strain checks using actual provided steel
• Location of compression block determined by comparing
design moment capacity of full flange with ultimate moment.
42CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 22
2
fh
d 
wb
sA
fb
fh ffc hbf '
85.0
Moment capacity of full flange
nff
f
ffcnff
M
h
dhbfM








flangefullofmomentDesign
2
85.0:flangefullofmomentNominal '
43CE 370 : Prof. Abdelhamid Charif
Location of rectangular stress block
• The location of the stress block (flange or web) is determined
with the following steps:
1. Compute design moment capacity of full flange
2. Compare this moment with given ultimate moment
methodiondecompositeUs
)(webinblockStress:If
hwith widtbeamrrectangulaaasDesign
)(flangeinblockStress:If
2
85.0 '
funff
f
funff
f
ffcnff
haMM
b
haMM
h
dhbfM











44CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 23
Decomposition Method in Design (1)
• When the stress block exceeds the flange, the section is divided:
T-section = W-section + F-section
• W-section = Compression part of the web (unknown depth a)
• F-section = Overhanging parts of the flange (known depth hf)
45CE 370 : Prof. Abdelhamid Charif
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
Decomposition Method in Design (2)
nffnf
f
ysfnf
y
fwc
sfysffwc
sfswsfs
MM
h
dfAM
f
hbbf
AfAhbbf
AAAA










:Note
2
:partflangeofmomentNominal
)(85.0
)(85.0
:givespartflangeofmEquilibriu
'
'
46CE 370 : Prof. Abdelhamid Charif
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
25-Feb-13
CE370: Prof. A. Charif 24
Decomposition Method in Design (3)
 
nfuwu
w
nfu
f
ysfnf
MMM
b
MM
h
dfAM












momentultimatereducedatosubjectedwhen
th widthsection wirrectangulaaasdesignedthereforeispartwebThe
part.webby thetakenismomentultimateremainingThe
2
toequalmomentultimateanresistspartFlange
47CE 370 : Prof. Abdelhamid Charif
wb
sA
fbb 
fh
a
d
2
a
d 
wb
swA
a
wb
sfA
2/)( wbb 
fh
2
fh
d 
Decomposition Method in Design (4)
Steel area component Asw is the solution of quadratic equation :
22'
'
with
7.1
4
11
85.0
db
MM
db
M
R
f
R
f
dbf
A
w
nfu
w
wu
wn
c
wn
y
wc
sw












Total steel area Asf + Asw must then be compared to the minimum
value Asmin .
The new value of the stress block depth (to be used for strain check)
is obtained from force equilibrium in the web using the actual
provided steel area.
wc
ypsw
sfpspsw
bf
fA
aAAA '
,
,,
85.0

48CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 25
Design Problem-1
MPafMPaf
mmdb
kN.m
y
'
c
w
42030:Take
expected).layer(onelyrespective450and300asgivenareand
m6isspanBeam300.0ofmomentultimatean
tosubjectedwhenbelowshownsystemfloorfor thebeamTDesign the

mm300wb
mm100fh
mm450d
m3
sA sAsA
m3 m3 m3
49CE 370 : Prof. Abdelhamid Charif
Solution 1
mmb
mm
mmhb
mmm
ffw 1500
15004/6000Span/4
19001001630016
30000.3
2
0.3
2
3.0
widthTributary
ofLesser:widthFlangeEffective











mmb
haMM
mkNM
mkNmmNM
h
dhbfM
f
funff
nff
nff
f
ffcnff
1500th widthsection wirrectangulaaasDesign
)(flangeinblockStress
.0.1377153090.0momentDesign
.0.1530.101530
2
100
45010015003085.0
2
85.0
:flangefullofmomentNominal
6
'



















50CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 26
Required steel area As is given by :
OKislayerOne)5.1963(254useWe
4.1803
307.1
974.0.14
11
420
45015003085.0
0974.1
450150090.0
10300
with
7.1
4
11
85.0
2
,
2
2
6
2'
'
mmA
mmA
R
db
M
R
f
R
f
dbf
A
ps
s
n
f
u
n
c
n
y
fc
s




























Solution 1 – Cont.
51CE 370 : Prof. Abdelhamid Charif
Designed section
OKA450
450300
420
4.1
,
4204
30
Max
4.1
,
4
Max
Checking
mins
2
min
min,
'
min,
min




















ss
s
w
yy
c
s
s
AmmA
A
db
ff
f
A
A
450
300
254
1500widthEffective 
100
   
0.90controlTensionOK005.00502.0
003.0
365.25
365.25450
003.0
365.25
85.0
56.21
depthaxisNeutral
)100(56.21
15003085.0
4205.1963
85.0
depthblockStress
1
'
,






 





 






t
t
f
fc
yps
ε
c
cd
ε
mm
β
a
c
mmhmm
bf
fA
a
52CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 27
Design Problem-2
mm375wb
mm75fh
mm700h
m.81
sA sAsA
m.81 m.81 m.81
mmhd
MPafMPaf
mmhb
kN.m
y
'
c
w
61090:asdepthsteeltheestimatewelayers,2Expecting
42022
lyrespective700and375asgivenareand
m5.4isspanBeam1250.0ofmomentultimatean
tosubjectedwhenbelowshownsystemfloorfor thebeamTDesign the


53CE 370 : Prof. Abdelhamid Charif
Solution 2
mmb
mm
mmhb
mmm
ffw 1350
13504/5400Span/4
1575751637516
18008.1
2
8.1
2
1.8
widthTributary
ofLesser:widthFlangeEffective











methodiondecompositusingDesign
)(in webblockStress).1250(
.0.6.975108490.0momentDesign
.0.1084.101084
2
75
6107513502285.0
2
85.0
:flangefullofmomentNominal
6
'

















funff
nff
nff
f
ffcnff
hamkNMM
mkNM
mkNmmNM
h
dhbfM


54CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 28
mkNmmNM
h
dfAM
mmA
f
hbbf
AfAhbbf
A
nf
f
ysfnf
sf
y
fwfc
sfysffwfc
sf
.86.782.1086.782
2
75
6104208.3255
2
:partflangeofcapacityNominal
8.3255
420
)753751350(2285.0
)(85.0
)(85.0
:steelrequiredgivespartflangein themEquilibriu
6
2
'
'



















Solution 2 – Cont.
mkNM
MMM
b
wu
nfuwu
w
.426.54586.7829.01250
momentultimatereducedaunder
th widthsection wirrectangulaaasdesignedpartWeb

 
55CE 370 : Prof. Abdelhamid Charif
Steel area component Asw given by :
2
2
6
2'
'
7.2731
227.1
343.44
11
420
6103752285.0
343.4
61037590.0
10426.545
with
7.1
4
11
85.0
mmA
R
db
M
R
f
R
f
dbf
A
sw
wn
w
wu
wn
c
wn
y
wc
sw



























Solution 2 – Cont.
2
5.59877.27318.3255:areasteelTotal mmAAA swsfs 
56CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 29
OKA5.762
610375
420
4.1
,
4204
22
Max
4.1
,
4
Max
Checking
mins
2
min
min,
'
min,
min




















ss
s
w
yy
c
s
s
AmmA
A
db
ff
f
A
A
Solution 2 – Cont.
)5.6157(2810requiresThis
5.5987:areasteelrequiredTotal
2
,
2
mmA
mm
ps 
375
2810
3501widthEffective 
75
610
57CE 370 : Prof. Abdelhamid Charif
required.isdesign-reifseecheck tomomentPerform
mm)(610valueAssumed0.607
2
5783028
63664700)141040(
OKbarsfor tenlayersTwo5
05.5
3028
0422810630375
cover26
:spacinglayerandspacingbarformm30Assuming
:layeronein28barsofnumberMaximum
21
11min2
1
max















mm
dd
d
mmdSdddd
mmhdd
n
n
Sd
ddSb
n
lb
t
bb
bsb
Solution 2 – Cont.
58CE 370 : Prof. Abdelhamid Charif
25-Feb-13
CE370: Prof. A. Charif 30
Solution 2 – Cont.
layerbottomatcontrol-nfor tensiocheckmustThen we
:005.0butIf:Note
0.90controlTensionOK005.000548.0
46.204
46.204578
003.0003.0
46.204
85.0
79.173
depthaxisNeutral
)75(79.173
3752285.0
4207.2901
85.0
:isdepthblockStress
7.29018.32555.6157:partwebsteelActual
entreinforcemprovidedactualtheusingperformedbemustChecks
minmin
min
min
min
1
'
,
2
,,















y
f
wc
ypsw
sfpspsw
ε
c
cd
ε
mm
β
a
c
mmhmma
bf
fA
a
mmAAA
59CE 370 : Prof. Abdelhamid Charif
Moment check
60
375
3501fb
75
607
2810
79.173
a
The moment check is necessary as
the final steel depth (607) is less than
the initially assumed value (610).
requireddesign-reNoOK).1250(
.35.127161.141290.0:momentDesign
.61.1412:momentnominalTotal
.1086.633
2
79.173
6074207.2901
2
.1075.778
2
75
6074208.3255
2
:aremomentsNominal
6
,
6





























mkNMM
mkNM
mkNMMM
mmN
a
dfAM
mmN
h
dfAM
un
n
nwnfn
ypswnw
f
ysfnf


25-Feb-13
CE370: Prof. A. Charif 31
Design Problem 3
Design the shown T-section for an
ultimate bending moment of 440 kN.m
MPafMPaf yc 42025'

600
75
525
300
Expecting two tension steel layers, and with
25-mm layer spacing, the effective steel depth
at the centroid is estimated as :
d = h – 90 = 600 – 90 = 510 mm
The full flange moment capacity is:
mkNMmkNM
mkNmmNM
h
dhbfM
unff
nff
f
ffcnff
.0.440.65.40683.4519.0
.83.451.1083.451
2
75
510756002585.0
2
85.0
6
'
















Compression block is thus in the web.
Decompose as follows: T-section = W-section + F-section
   
mkNmmNM
h
dfAM
mm
f
hbbf
A
AAAMMM
nf
f
ysfnf
y
fwfc
sf
sfswsnfnwn
.914.225.10914.225
2
75
51042039.1138
2
39.1138
420
753006002585.085.0
6
2
'




















funff hamkNMmkNM  .0.440.65.406
Solution 3 – Cont.
25-Feb-13
CE370: Prof. A. Charif 32
The web is designed as rectangular section for an ultimate moment:
mkNMMM nfuwu .68.236914.2259.0440  
The steel area component Asw is the solution of a quadratic
equation given by:
2
2
2
6
2'
'
9.248239.11385.1344:isareasteelTotal
5.1344
257.1
3702.34
11
420
5103002585.0
3702.3
51030090.0
1068.236
7.1
4
11
85.0
mmAAA
mm
db
M
R
f
R
f
dbf
A
sfsws
w
wu
wn
c
wn
y
wc
sw























Solution 3 – Cont.
CE 370 : Prof. Abdelhamid Charif 64
mm
dd
d
mmddd
mmdd t
5.517
2
:iscemtroidatdepthsteelEffective
49520255402025
540101040600
21
1min2
1





2
mins
2
min
'
min,
min
9.2482OKA0.510
510300
420
4.1
,
4204
25
Max
4.1
,
4
Max
Checking
mmAAmmA
db
ff
f
A
A
sss
w
yy
c
s
s




















Use eight 20-mm bars in two layers = 2513.27 mm2.
The steel depths are :
Solution 3 – Cont.
The final steel depth is just greater than the assumed value : OK
Moment check is not necessary.
25-Feb-13
CE370: Prof. A. Charif 33
Compression block and neutral axis depths are computed using
the actual steel area :
Strain check:
ControlTensionOK005.00109.0
0021.00109.0
565.106
565.106495
003.0003.0
min
min
min







 OK
c
cd
y
mm
a
cmm
bf
fA
a
mmA
AAA
mmA
wc
ypsw
psw
sfpspsw
ps
565.106
85.0
58.90
58.90
3002585.0
42088.1374
85.0
88.137439.113827.2513
:ispartin webareasteelActual
27.2513
4
20
8:isareasteelActual
1
'
,
2
,
,,
2
2
,









Solution 3 – Cont.
Thank you
66CE 370 : Prof. Abdelhamid Charif

More Related Content

What's hot

Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USDSadia Mahjabeen
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stressMalika khalil
 
Foundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptxFoundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptxyeah43
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Muthanna Abbu
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesAmr Hamed
 
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELERSTRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELERBahzad5
 
Structural Analysis 8th Edition Solutions Manual
Structural Analysis 8th Edition Solutions ManualStructural Analysis 8th Edition Solutions Manual
Structural Analysis 8th Edition Solutions ManualBahzad5
 
Examples on soil classification
Examples on soil classification Examples on soil classification
Examples on soil classification Malika khalil
 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcementMuskanDeura
 
Lecture chapter 1u
Lecture chapter 1uLecture chapter 1u
Lecture chapter 1urgo-amo
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression membersSabna Thilakan
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever methodPrionath Roy
 
Lec.3 working stress 1
Lec.3   working stress 1Lec.3   working stress 1
Lec.3 working stress 1Muthanna Abbu
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-IIrfan Malik
 

What's hot (20)

Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
 
Foundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptxFoundation and Retaining Wall Design Presentation 2.pptx
Foundation and Retaining Wall Design Presentation 2.pptx
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For Frames
 
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELERSTRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
 
Structural Analysis 8th Edition Solutions Manual
Structural Analysis 8th Edition Solutions ManualStructural Analysis 8th Edition Solutions Manual
Structural Analysis 8th Edition Solutions Manual
 
MAX FAJARDO ESTIMATE.pdf
MAX FAJARDO ESTIMATE.pdfMAX FAJARDO ESTIMATE.pdf
MAX FAJARDO ESTIMATE.pdf
 
Examples on soil classification
Examples on soil classification Examples on soil classification
Examples on soil classification
 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcement
 
Lecture chapter 1u
Lecture chapter 1uLecture chapter 1u
Lecture chapter 1u
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
 
NSCP 2010 , Volume 1
NSCP 2010 , Volume 1NSCP 2010 , Volume 1
NSCP 2010 , Volume 1
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression members
 
Column design.ppt
Column design.pptColumn design.ppt
Column design.ppt
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever method
 
Lec.3 working stress 1
Lec.3   working stress 1Lec.3   working stress 1
Lec.3 working stress 1
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
 
Design of beams
Design of beamsDesign of beams
Design of beams
 

Viewers also liked

Test before Final ( T Beam )
Test before Final ( T Beam )Test before Final ( T Beam )
Test before Final ( T Beam )S M Rahat Rahman
 
T beam design by WSD method
T beam design by WSD methodT beam design by WSD method
T beam design by WSD methodkhandakermehedi
 
T-Beam Design by WSD Method
T-Beam Design by WSD MethodT-Beam Design by WSD Method
T-Beam Design by WSD MethodMd Tanvir Alam
 
DICEÑO DE VIGA DOBLEMENTE REFORZADA
DICEÑO DE VIGA DOBLEMENTE REFORZADADICEÑO DE VIGA DOBLEMENTE REFORZADA
DICEÑO DE VIGA DOBLEMENTE REFORZADAJose Huaman Chavez
 
Metrado de cargas vigas - columnas
Metrado de cargas   vigas - columnasMetrado de cargas   vigas - columnas
Metrado de cargas vigas - columnasCesar Simon
 
T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102Sadia Mitu
 
Análisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoAnálisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoMiguel Sambrano
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Jahidur Rahman
 

Viewers also liked (11)

T beam wsd method singly and doubly reinforcement
T beam wsd method singly and doubly reinforcementT beam wsd method singly and doubly reinforcement
T beam wsd method singly and doubly reinforcement
 
Test before Final ( T Beam )
Test before Final ( T Beam )Test before Final ( T Beam )
Test before Final ( T Beam )
 
T beam design by WSD method
T beam design by WSD methodT beam design by WSD method
T beam design by WSD method
 
T Beam USD
T Beam USDT Beam USD
T Beam USD
 
T-Beam Design by WSD Method
T-Beam Design by WSD MethodT-Beam Design by WSD Method
T-Beam Design by WSD Method
 
DICEÑO DE VIGA DOBLEMENTE REFORZADA
DICEÑO DE VIGA DOBLEMENTE REFORZADADICEÑO DE VIGA DOBLEMENTE REFORZADA
DICEÑO DE VIGA DOBLEMENTE REFORZADA
 
Metrado de cargas vigas - columnas
Metrado de cargas   vigas - columnasMetrado de cargas   vigas - columnas
Metrado de cargas vigas - columnas
 
T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102T-Beam Design by USD method-10.01.03.102
T-Beam Design by USD method-10.01.03.102
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Análisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoAnálisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armado
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 

Similar to Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Hossam Shafiq II
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Hossam Shafiq II
 
Lec.8 strength design method t beams
Lec.8   strength design method t beamsLec.8   strength design method t beams
Lec.8 strength design method t beamsMuthanna Abbu
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxastor11
 
Lec 20 21-22 -flexural analysis and design of beams-2007-r
Lec 20 21-22 -flexural analysis and design of beams-2007-rLec 20 21-22 -flexural analysis and design of beams-2007-r
Lec 20 21-22 -flexural analysis and design of beams-2007-rCivil Zone
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsCivil Zone
 
Composite Design.pdf
Composite Design.pdfComposite Design.pdf
Composite Design.pdfAmin Zuraiqi
 
Lecture chapter 3 copyu
Lecture chapter 3   copyuLecture chapter 3   copyu
Lecture chapter 3 copyurgo-amo
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearqueripan
 
Uniones atornilladas
Uniones atornilladasUniones atornilladas
Uniones atornilladasRolan Ponce
 
Design of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamDesign of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamSHAZEBALIKHAN1
 
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiUrsachi Răzvan
 
Design-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfDesign-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfAsifHameed33
 
Concrete flexural design
Concrete flexural designConcrete flexural design
Concrete flexural designWaqas Javaid
 

Similar to Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
 
Lec.8 strength design method t beams
Lec.8   strength design method t beamsLec.8   strength design method t beams
Lec.8 strength design method t beams
 
T-Beams...PRC_I
T-Beams...PRC_IT-Beams...PRC_I
T-Beams...PRC_I
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptx
 
Lec 20 21-22
Lec 20 21-22Lec 20 21-22
Lec 20 21-22
 
Lec 20 21-22 -flexural analysis and design of beams-2007-r
Lec 20 21-22 -flexural analysis and design of beams-2007-rLec 20 21-22 -flexural analysis and design of beams-2007-r
Lec 20 21-22 -flexural analysis and design of beams-2007-r
 
Rcc Beams
Rcc BeamsRcc Beams
Rcc Beams
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
Lec 10
Lec 10Lec 10
Lec 10
 
Composite Design.pdf
Composite Design.pdfComposite Design.pdf
Composite Design.pdf
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
 
Beamand slab design
Beamand slab design Beamand slab design
Beamand slab design
 
Lecture chapter 3 copyu
Lecture chapter 3   copyuLecture chapter 3   copyu
Lecture chapter 3 copyu
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
 
Uniones atornilladas
Uniones atornilladasUniones atornilladas
Uniones atornilladas
 
Design of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamDesign of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced Beam
 
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 5 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
 
Design-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdfDesign-Of-concrete-Structure MCQ.pdf
Design-Of-concrete-Structure MCQ.pdf
 
Concrete flexural design
Concrete flexural designConcrete flexural design
Concrete flexural design
 

More from Hossam Shafiq II

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaHossam Shafiq II
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Hossam Shafiq II
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Hossam Shafiq II
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Hossam Shafiq II
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Hossam Shafiq II
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Hossam Shafiq II
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Hossam Shafiq II
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Hossam Shafiq II
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Hossam Shafiq II
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Hossam Shafiq II
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Hossam Shafiq II
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Hossam Shafiq II
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Hossam Shafiq II
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Hossam Shafiq II
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Hossam Shafiq II
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Hossam Shafiq II
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Hossam Shafiq II
 

More from Hossam Shafiq II (20)

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
 

Recently uploaded

Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 

Recently uploaded (20)

Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 

Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 25-Feb-13 CE370: Prof. A. Charif 1 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Analysis and Design of T-Beams • T-shaped beams are frequently used in structures • There are two types of T-beams :  Beams directly cast and delivered as isolated T-beams (especially in bridges) T-shaped beams resulting from interaction of slabs with beams (building slabs) • The obvious advantage of T-beams is to reduce useless tensile concrete quantity T-Beams 2
  • 2. 25-Feb-13 CE370: Prof. A. Charif 2 Isolated T-beams T-Beams Slab interaction T-beams 3 A beam is considered as such even if it has a larger base (heel) to accommodate tension steel. The shape and size of concrete on the tension side, assumed to be cracked, has no effect on the theoretical resisting moments. T-Beams Precast T-Beams for bridges 4
  • 3. 25-Feb-13 CE370: Prof. A. Charif 3 T-Beams RC floors normally consist of slabs and beams that are cast monolithically. The two act together to resist loads and because of this interaction, the effective section of the beam is a T or L section. T-section for interior beams L-section for exterior beams 5 T-Beams The effective flange width resulting from slab interaction depends on the slab type (one-way or two-way slab). The present course focuses on one-way slabs. 6
  • 4. 25-Feb-13 CE370: Prof. A. Charif 4 Exterior beam – Minimum of:  Beam tributary width  Web width plus six times slab thickness  Web width plus one-twelfth of beam span Interior Beam – Minimum of:  Beam tributary width  Web width plus 16 times slab thickness  One-quarter of beam span Effective flange width in one way slabs 7 Beam tributary width  Beam tributary width is the transverse width of the slab transmitting load to the beam (supported by the beam)  It is determined using mid-lines between beam lines  For exterior beams, offsets are included Figure shows tributary widths for beams A and B A B C Lt Lt 8
  • 5. 25-Feb-13 CE370: Prof. A. Charif 5 Flange Dimensions (Isolated T-Beams) For an isolated T-beam:  The flange thickness may not be less than one-half the web width  The effective flange width may not be larger than four times the web width wf w f bb b h 4 2  9 Location of neutral axis and Rectangular stress block depth a • Neutral axis (N.A.) for T-beams can fall either in the flange or in the web • At ultimate state, it is the depth of the rectangular stress block that counts. If the stress block falls in the flange, as is very frequent for positive moments, the rectangular beam formulas apply. In this case tensile concrete is assumed to be cracked, and its shape has no effect (other than weight). The section is analyzed as a rectangular one using the flange width b = bf 10
  • 6. 25-Feb-13 CE370: Prof. A. Charif 6 Location of rectangular stress block (Contd.)  If the stress block falls in the web, the compression area does not consist of a single rectangle, and the rectangular beam design procedure does not apply.  The section is in this case divided in two parts as will be seen later (decomposition method) 11 Case of a negative moment • If the T-section is subjected to a negative moment, then the flange will be in tension • The section can thus be analyzed as an inverted rectangular one using the web width b = bw 12
  • 7. 25-Feb-13 CE370: Prof. A. Charif 7 Minimum Steel for T-Beams • Minimum steel quantity is imposed by codes for the same reasons as in rectangular beams db ff f A w yy c s          4.1 , 4 Max ' min, Exception: For a statically determinate T-beam subjected to a negative moment (cantilever), the minimum steel area is: According to SBC/ACI: db f f A w y c s 2 ' min,  13 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Analysis of T-Beams
  • 8. 25-Feb-13 CE370: Prof. A. Charif 8 15 Analysis of T-Beams Yielding of Tension Steel • With a larger compression area from the flange, a T- beam is usually under reinforced and tension steel should yield before failure. • We therefore first present the method of analysis in case of steel yielding. • Case of steel not yielding is presented later. methodiondecompositusein web,Block:If continueflange,inBlockOK:If 85.0 85.0:mequilibriuForce ' ' f f fc ys ysfc ha ha bf fA afAabf    16 Location of rectangular stress block in Analysis Case • Assume stress block in flange • Express force equilibrium • Deduce value of a and check. 2 a d  wb sA fb fh fcabf ' 85.0 a ys fA
  • 9. 25-Feb-13 CE370: Prof. A. Charif 9 Analysis steps for T-Beams nn f f f fc ys s MM c cd β a c a ha b ha bf fA a A   and,Calculate6. caseyieldingnogotoyieldingnotsteelIf.5 003.0strainsteelanddepthaxisneutralCalculate.4 ofvaluenewfindtomethodiondecompositUse webreachesblockStressIf 4goto,widthflangeusingsectionrrectangulaaas analysiscontinueflange,inblockStressIf thicknessflangedepth withblockCompare.3 85.0 depthitsdetermineandflangeinblockstressAssume2. areasteelminimumCheck1. s 1 ' min      17 Decomposition Method (1) • When the stress block exceeds the flange, the section is divided: T-section = W-section + F-section • W-section = Compression part of the web (unknown depth a) • F-section = Overhanging parts of the flange (known depth hf) 18 wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d  Total steel area and nominal moment are decomposed: nwnfnswsfs MMMAAA 
  • 10. 25-Feb-13 CE370: Prof. A. Charif 10 Decomposition Method (2) 19 sfssw y fwc sfysffwcf AAA f hbbf AfAhbbfC    and )(85.0 )(85.0 ' ' Force equilibrium in the flange part gives the two steel areas : wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d  Force equilibrium in the web gives the compression block depth : w ' c ysw yswwwcw bf. fA afATabfC 850 85.0 '                            22 22 a dfA h dfAMMM a dfAM h dfAM ysw f ysfnwnfn yswnw f ysfnf Decomposition Method (3) 20 Using appropriate lever arms, the nominal moments are thus : wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d 
  • 11. 25-Feb-13 CE370: Prof. A. Charif 11 Problem 1 m1.5iswidthtributaryBeamthick.mm100isthatslabfloorawith integrallycastisspanm9withbeamTheMPa.420andMPa30 figure.in theshownbeamTinteriorofmomentdesignDetermine  y ' c ff 21 600d 250 286 widthEffective 100 mmd mmd t 655 545min   Solution 1 mm1500 mm22504/90004Span / mm18501001625016 1500widthTributary Min :widthFlangeEffective          bhb mml fw t   OKAmm5.369428 4 6and mm0.50060025000333.0,00326.0Max 600250 420 4.1 , 4204 30 Max 4.1 , 4 Max Checking mins 22 2 minmin ' min min                            ss ss w yy c s s AA AA db ff f A A  22
  • 12. 25-Feb-13 CE370: Prof. A. Charif 12 :flangeinblockstressAssume 0.90controlTension005.0005.00313.0 72.47 72.47545 003.0003.0:checkStrain mm72.47 85.0 56.40 flangeinisblockstressOKmm100a mm56.40 15003085.0 4205.2694 85.0 min min min 1 '                       t f fc ys εε c cd ε β a c h bf fA a Solution 1 – Cont. 23 600d 250 286 mm1500widthEffective  100 mmd mmd t 655 545min   layerbottomatcontrol-nfor tensiocheckmustThen we :005.0butIf:Note minmin   y mkNM mkNmmNM M a dfAM n n n ysn .6.80955.8999.0:momentDesign .55.899.1055.899 2 56.40 6004205.3694 2 :momentNominal 6                  Solution 1 – Cont. The T-beam can therefore resist any ultimate moment equal to or less than 809.6 kN.m 24 600d 250 286 mm1500widthEffective  100 mmd mmd t 655 545min  
  • 13. 25-Feb-13 CE370: Prof. A. Charif 13 Problem 2 Analysis of a T-section with six 20-mm bars in two layers as shown. Net layer spacing Sl = 30 mm Stirrup diameter = 10 mm MPafMPaf yc 42020'  Steel depths : mmddmmdd mm dd AA AdAd d mmdSdd mmd d hdd t ss ss bl s b t 490540 515 2 49050540)2030(540)( 54060600)10 2 20 40(600) 2 cover( 2min1 21 21 2211 12 1          600 75 525 300 Total steel area is : 2 2 96.1884 4 20 6 mmAs   It is greater than the minimum steel area: 2 min ' min 515515300 420 4.1 515300 420 4.1 ,515300 4204 20 Max 4.1 , 4 Max mm x A db f db f f A s w y w y c s                 Solution 2 First assume compression block in the flange (a ≤ hf ) and if true analyze as a rectangular section (bf , h). If not, use decomposition method.
  • 14. 25-Feb-13 CE370: Prof. A. Charif 14 Force equilibrium C = T gives the compression block depth is : mm bf fA a fc ys 616.77 6002085.0 42096.1884 85.0 '     This value is greater than the flange thickness a > hf Compression block is thus in the web Use decomposition method: T-section = W-section + F-section       nfnwn sfsws MMM AAA   2 2 ' 246.974 714.910 420 75)300600(2085.0 and 85.0 mmAAA mmA AAA f hbbf A sfssw sf sfssw y fwfc sf        Solution 2 – Cont. mm a c hamma bf fA afAabf f wc ysw yswwc 39.94 85.0 232.80 )(232.80 3002085.0 420246.974 85.0 85.0 1 ' '        New value of compression block depth is obtained from the force equilibrium in the web part : control-Tension005.0005.0 0021.001257.0 39.94 39.94490 003.0003.0 min min min OK OK c cd t y         Steel strain check at minimum depth: Solution 2 – Cont. No need to calculate strain at bottom layer.
  • 15. 25-Feb-13 CE370: Prof. A. Charif 15 Nominal moment: mkNM mkNMMM mkNmmNM a dfAM mkNmmNM h dfAM n nfnwn nw yswnw nf f ysfnf .26.339958.37690.0 .958.376 .315.194.194314612 2 232.80 515420246.974 2 .364.182.182643693 2 75 515420714.910 2                                Solution 2 – Cont. Problem 3 MPa420MPa30  y ' c ff 30 750d 350 328 750widthEffective  100 mmd mmd t 860 640min   Compute the design moment for the shown T-beam with all dimensions in mm.   OKA mm0.875 75035000333.0,00326.0Max 750350 420 4.1 , 4204 30 Max 4.1 , 4 Max mm0.643432 4 8 mins 2 min min ' min 22                              s s s w yy c s s A A A db ff f A A 
  • 16. 25-Feb-13 CE370: Prof. A. Charif 16 2 2 ' 43.400557.24280.6434 57.2428 420 )100350750(3085.0)(85.0 :With mmAAA mm f hbbf A sfssw y fwc sf       mm a c mmhmm bf. fA a f w ' c ysw 75.221 85.0 49.188 :isdepthaxisNeutral )100(49.188 3503085.0 42043.4005 850 :isdepthblocknCompressio 1       Solution 3 31 nfnwnsfsws f fc ys MMMAAA mmhmm bf fA a       :iondecompositusingAnalyzein webliesblockStress 1003.141 7503085.0 4206434 85.0 :flangeinblockstressAssume ' mkNM mkNMMM mmN a dfAM mmN h dfAM c cd n nwnfn yswnw f ysfnf y t .48.16352.181790.0:momentDesign .2.1817:momentnominalTotal .102.1103 2 49.188 75042043.4005 2 .100.714 2 100 75042057.2428 2 :aremomentsNominal layerbottomatcontrol-nfor tensiocheckmustThen we :005.0butIf:Note 0.90controlTensionOK005.0005.0 00566.0 75.221 75.221640 003.0003.0:checkStrain 6 6 minmin min min min                                        Solution 3 – Cont. 32
  • 17. 25-Feb-13 CE370: Prof. A. Charif 17 33 Analysis of T-beams with tension steel not yielding                            2 :check003.0 :continueif1 4 1 285.0 600 formula.rectangleUse:)(flangein thefirstitassumestillweweb, in thelikelymoreisblockncompressiotheyielding,steelnoithAlthough w 6000030 003.0:ThenIf 1 1 ' a dfAMεEf c cd haca P dP c bf A P ha c cd A c cd .EAT c cd EAfAT ssnsssyss f fc s f sss ssssssys     Situations where steel does not yield at failure in T-beams are very rare. The case of one tension steel layer is treated here. With many layers, non yielding must be solved using strain compatibility method (as was done with rectangular beams). 34 Analysis of T-beams with tension steel not yielding Decomposition (more likely)       sssyss w fwf wc s sfwfcwcwf wcwcwfwfcf wfsf εEf c cd ca QP PdQP c b hbb Q bf A PPdcQPc c cd AhbbfcbfCCT cbfabfChbbfC CCC c cd ATha                             :check003.0and:Deduce 1 )( 4 1 2 )( :issolutionPositive )( 85.0 600 with0)( 60085.085.0 85.085.085.0 600:methodiondecomposituseif 1 2 11 ' 2 ' 1 ' 1 '''
  • 18. 25-Feb-13 CE370: Prof. A. Charif 18 35 Analysis of T-beams with tension steel not yielding Decomposition - Continued   sfssw s fwfc sf sswnw f ssfnf nwnfn sssyss AAA f hbbf A a dfAM h dfAM MMM εEf c cd ca                     and )(85.0 22 :check003.0 ' 1  36 600d 100 750 350 328 Problem 4 MPa420MPa20  y ' c ff Compute the design moment for the shown T-beam with all dimensions in mm. The large base (heel) allows many bars in a single layer and does not change the T-section behavior.   OKA mm0.700 60035000333.0,00266.0Max 600350 420 4.1 , 4204 20 Max 4.1 , 4 Max mm0.643432 4 8 mins 2 min min ' min 22                              s s s w yy c s s A A A db ff f A A 
  • 19. 25-Feb-13 CE370: Prof. A. Charif 19 2 2 ' 95.481405.16190.6434 05.1619 420 )100350750(2085.0)(85.0 :With mmAAA mm f hbbf A sfssw y fwc sf       mm a c mmhmm bf. fA a f w ' c ysw 86.399 85.0 88.339 :isdepthaxisNeutral )100(88.339 3502085.0 42095.4814 850 :isdepthblocknCompressio 1       Solution 4 37 nfnwnsfsws f fc ys MMMAAA mmhmm bf fA a       :iondecompositusingAnalyzein webliesblockStress 10094.211 7502085.0 4206434 85.0 :flangeinblockstressandyieldingsteelAssume ' mmc QP b hbb Q bf A P QP PdQP c c cd w fwf wc s y s 20.3631 )45.13430.763( 60030.7634 1 2 )45.13430.763( 45.134 85.0350 100)350750( 30.763 85.03502085.0 6434600 )( 85.0 600 with1 )( 4 1 2 )( :iondecomposittheuseandwebin theisithatdirectly tassumeratherWe checkandflangein theblockncompressiofirst theassumeagaincanWe web)in theisblockstresstlikely thastill(but:yieldingNot 00150.0 86.399 86.399600 003.0003.0:strainSteel 2 11 '2 s                                             Solution 4 – Cont. 38
  • 20. 25-Feb-13 CE370: Prof. A. Charif 20 2 2 ' 1 76.469524.17380.6434 24.1738 2.391 001)350750(2085.0)(85.0 2.391001956.0200000 :confirmedyieldingNo 001956.0 2.363 2.363600 003.0003.0 assumedaswebin theblocknCompressio 72.30820.36385.020.363 mmAAA mm f hbbf A MPaεEf c cd mmcammc sfssw s fwfc sf sss ys s                   Solution 4 – Cont. 39 mkNM mkNMMM mmNM a dfAM mmNM h dfAM n nwnfn nw sswnw nf f ssfnf .19.7756.119265.0yielding)No(65.0 .6.1192 .106.818 2 72.308 6002.39176.4695 2 .100.374 2 100 6002.39124.1738 2 6 6                                Solution 4 – Cont. 40
  • 21. 25-Feb-13 CE370: Prof. A. Charif 21 CE 370 REINFORCED CONCRETE-I Prof. A. Charif Design of T Beams Design of T-Beams The same minimum thickness for deflection control is used for rectangular or T-beams. Design steps are : • Determine all dimensions of T-section • Estimate steel depth according to expected number of layers • Determine location of compression block • If stress block is in flange, design as a rectangular section using the flange width • If stress block is in web, use decomposition method for design • Check minimum steel • Perform strain checks using actual provided steel • Location of compression block determined by comparing design moment capacity of full flange with ultimate moment. 42CE 370 : Prof. Abdelhamid Charif
  • 22. 25-Feb-13 CE370: Prof. A. Charif 22 2 fh d  wb sA fb fh ffc hbf ' 85.0 Moment capacity of full flange nff f ffcnff M h dhbfM         flangefullofmomentDesign 2 85.0:flangefullofmomentNominal ' 43CE 370 : Prof. Abdelhamid Charif Location of rectangular stress block • The location of the stress block (flange or web) is determined with the following steps: 1. Compute design moment capacity of full flange 2. Compare this moment with given ultimate moment methodiondecompositeUs )(webinblockStress:If hwith widtbeamrrectangulaaasDesign )(flangeinblockStress:If 2 85.0 ' funff f funff f ffcnff haMM b haMM h dhbfM            44CE 370 : Prof. Abdelhamid Charif
  • 23. 25-Feb-13 CE370: Prof. A. Charif 23 Decomposition Method in Design (1) • When the stress block exceeds the flange, the section is divided: T-section = W-section + F-section • W-section = Compression part of the web (unknown depth a) • F-section = Overhanging parts of the flange (known depth hf) 45CE 370 : Prof. Abdelhamid Charif wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d  Decomposition Method in Design (2) nffnf f ysfnf y fwc sfysffwc sfswsfs MM h dfAM f hbbf AfAhbbf AAAA           :Note 2 :partflangeofmomentNominal )(85.0 )(85.0 :givespartflangeofmEquilibriu ' ' 46CE 370 : Prof. Abdelhamid Charif wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d 
  • 24. 25-Feb-13 CE370: Prof. A. Charif 24 Decomposition Method in Design (3)   nfuwu w nfu f ysfnf MMM b MM h dfAM             momentultimatereducedatosubjectedwhen th widthsection wirrectangulaaasdesignedthereforeispartwebThe part.webby thetakenismomentultimateremainingThe 2 toequalmomentultimateanresistspartFlange 47CE 370 : Prof. Abdelhamid Charif wb sA fbb  fh a d 2 a d  wb swA a wb sfA 2/)( wbb  fh 2 fh d  Decomposition Method in Design (4) Steel area component Asw is the solution of quadratic equation : 22' ' with 7.1 4 11 85.0 db MM db M R f R f dbf A w nfu w wu wn c wn y wc sw             Total steel area Asf + Asw must then be compared to the minimum value Asmin . The new value of the stress block depth (to be used for strain check) is obtained from force equilibrium in the web using the actual provided steel area. wc ypsw sfpspsw bf fA aAAA ' , ,, 85.0  48CE 370 : Prof. Abdelhamid Charif
  • 25. 25-Feb-13 CE370: Prof. A. Charif 25 Design Problem-1 MPafMPaf mmdb kN.m y ' c w 42030:Take expected).layer(onelyrespective450and300asgivenareand m6isspanBeam300.0ofmomentultimatean tosubjectedwhenbelowshownsystemfloorfor thebeamTDesign the  mm300wb mm100fh mm450d m3 sA sAsA m3 m3 m3 49CE 370 : Prof. Abdelhamid Charif Solution 1 mmb mm mmhb mmm ffw 1500 15004/6000Span/4 19001001630016 30000.3 2 0.3 2 3.0 widthTributary ofLesser:widthFlangeEffective            mmb haMM mkNM mkNmmNM h dhbfM f funff nff nff f ffcnff 1500th widthsection wirrectangulaaasDesign )(flangeinblockStress .0.1377153090.0momentDesign .0.1530.101530 2 100 45010015003085.0 2 85.0 :flangefullofmomentNominal 6 '                    50CE 370 : Prof. Abdelhamid Charif
  • 26. 25-Feb-13 CE370: Prof. A. Charif 26 Required steel area As is given by : OKislayerOne)5.1963(254useWe 4.1803 307.1 974.0.14 11 420 45015003085.0 0974.1 450150090.0 10300 with 7.1 4 11 85.0 2 , 2 2 6 2' ' mmA mmA R db M R f R f dbf A ps s n f u n c n y fc s                             Solution 1 – Cont. 51CE 370 : Prof. Abdelhamid Charif Designed section OKA450 450300 420 4.1 , 4204 30 Max 4.1 , 4 Max Checking mins 2 min min, ' min, min                     ss s w yy c s s AmmA A db ff f A A 450 300 254 1500widthEffective  100     0.90controlTensionOK005.00502.0 003.0 365.25 365.25450 003.0 365.25 85.0 56.21 depthaxisNeutral )100(56.21 15003085.0 4205.1963 85.0 depthblockStress 1 ' ,                      t t f fc yps ε c cd ε mm β a c mmhmm bf fA a 52CE 370 : Prof. Abdelhamid Charif
  • 27. 25-Feb-13 CE370: Prof. A. Charif 27 Design Problem-2 mm375wb mm75fh mm700h m.81 sA sAsA m.81 m.81 m.81 mmhd MPafMPaf mmhb kN.m y ' c w 61090:asdepthsteeltheestimatewelayers,2Expecting 42022 lyrespective700and375asgivenareand m5.4isspanBeam1250.0ofmomentultimatean tosubjectedwhenbelowshownsystemfloorfor thebeamTDesign the   53CE 370 : Prof. Abdelhamid Charif Solution 2 mmb mm mmhb mmm ffw 1350 13504/5400Span/4 1575751637516 18008.1 2 8.1 2 1.8 widthTributary ofLesser:widthFlangeEffective            methodiondecompositusingDesign )(in webblockStress).1250( .0.6.975108490.0momentDesign .0.1084.101084 2 75 6107513502285.0 2 85.0 :flangefullofmomentNominal 6 '                  funff nff nff f ffcnff hamkNMM mkNM mkNmmNM h dhbfM   54CE 370 : Prof. Abdelhamid Charif
  • 28. 25-Feb-13 CE370: Prof. A. Charif 28 mkNmmNM h dfAM mmA f hbbf AfAhbbf A nf f ysfnf sf y fwfc sfysffwfc sf .86.782.1086.782 2 75 6104208.3255 2 :partflangeofcapacityNominal 8.3255 420 )753751350(2285.0 )(85.0 )(85.0 :steelrequiredgivespartflangein themEquilibriu 6 2 ' '                    Solution 2 – Cont. mkNM MMM b wu nfuwu w .426.54586.7829.01250 momentultimatereducedaunder th widthsection wirrectangulaaasdesignedpartWeb    55CE 370 : Prof. Abdelhamid Charif Steel area component Asw given by : 2 2 6 2' ' 7.2731 227.1 343.44 11 420 6103752285.0 343.4 61037590.0 10426.545 with 7.1 4 11 85.0 mmA R db M R f R f dbf A sw wn w wu wn c wn y wc sw                            Solution 2 – Cont. 2 5.59877.27318.3255:areasteelTotal mmAAA swsfs  56CE 370 : Prof. Abdelhamid Charif
  • 29. 25-Feb-13 CE370: Prof. A. Charif 29 OKA5.762 610375 420 4.1 , 4204 22 Max 4.1 , 4 Max Checking mins 2 min min, ' min, min                     ss s w yy c s s AmmA A db ff f A A Solution 2 – Cont. )5.6157(2810requiresThis 5.5987:areasteelrequiredTotal 2 , 2 mmA mm ps  375 2810 3501widthEffective  75 610 57CE 370 : Prof. Abdelhamid Charif required.isdesign-reifseecheck tomomentPerform mm)(610valueAssumed0.607 2 5783028 63664700)141040( OKbarsfor tenlayersTwo5 05.5 3028 0422810630375 cover26 :spacinglayerandspacingbarformm30Assuming :layeronein28barsofnumberMaximum 21 11min2 1 max                mm dd d mmdSdddd mmhdd n n Sd ddSb n lb t bb bsb Solution 2 – Cont. 58CE 370 : Prof. Abdelhamid Charif
  • 30. 25-Feb-13 CE370: Prof. A. Charif 30 Solution 2 – Cont. layerbottomatcontrol-nfor tensiocheckmustThen we :005.0butIf:Note 0.90controlTensionOK005.000548.0 46.204 46.204578 003.0003.0 46.204 85.0 79.173 depthaxisNeutral )75(79.173 3752285.0 4207.2901 85.0 :isdepthblockStress 7.29018.32555.6157:partwebsteelActual entreinforcemprovidedactualtheusingperformedbemustChecks minmin min min min 1 ' , 2 ,,                y f wc ypsw sfpspsw ε c cd ε mm β a c mmhmma bf fA a mmAAA 59CE 370 : Prof. Abdelhamid Charif Moment check 60 375 3501fb 75 607 2810 79.173 a The moment check is necessary as the final steel depth (607) is less than the initially assumed value (610). requireddesign-reNoOK).1250( .35.127161.141290.0:momentDesign .61.1412:momentnominalTotal .1086.633 2 79.173 6074207.2901 2 .1075.778 2 75 6074208.3255 2 :aremomentsNominal 6 , 6                              mkNMM mkNM mkNMMM mmN a dfAM mmN h dfAM un n nwnfn ypswnw f ysfnf  
  • 31. 25-Feb-13 CE370: Prof. A. Charif 31 Design Problem 3 Design the shown T-section for an ultimate bending moment of 440 kN.m MPafMPaf yc 42025'  600 75 525 300 Expecting two tension steel layers, and with 25-mm layer spacing, the effective steel depth at the centroid is estimated as : d = h – 90 = 600 – 90 = 510 mm The full flange moment capacity is: mkNMmkNM mkNmmNM h dhbfM unff nff f ffcnff .0.440.65.40683.4519.0 .83.451.1083.451 2 75 510756002585.0 2 85.0 6 '                 Compression block is thus in the web. Decompose as follows: T-section = W-section + F-section     mkNmmNM h dfAM mm f hbbf A AAAMMM nf f ysfnf y fwfc sf sfswsnfnwn .914.225.10914.225 2 75 51042039.1138 2 39.1138 420 753006002585.085.0 6 2 '                     funff hamkNMmkNM  .0.440.65.406 Solution 3 – Cont.
  • 32. 25-Feb-13 CE370: Prof. A. Charif 32 The web is designed as rectangular section for an ultimate moment: mkNMMM nfuwu .68.236914.2259.0440   The steel area component Asw is the solution of a quadratic equation given by: 2 2 2 6 2' ' 9.248239.11385.1344:isareasteelTotal 5.1344 257.1 3702.34 11 420 5103002585.0 3702.3 51030090.0 1068.236 7.1 4 11 85.0 mmAAA mm db M R f R f dbf A sfsws w wu wn c wn y wc sw                        Solution 3 – Cont. CE 370 : Prof. Abdelhamid Charif 64 mm dd d mmddd mmdd t 5.517 2 :iscemtroidatdepthsteelEffective 49520255402025 540101040600 21 1min2 1      2 mins 2 min ' min, min 9.2482OKA0.510 510300 420 4.1 , 4204 25 Max 4.1 , 4 Max Checking mmAAmmA db ff f A A sss w yy c s s                     Use eight 20-mm bars in two layers = 2513.27 mm2. The steel depths are : Solution 3 – Cont. The final steel depth is just greater than the assumed value : OK Moment check is not necessary.
  • 33. 25-Feb-13 CE370: Prof. A. Charif 33 Compression block and neutral axis depths are computed using the actual steel area : Strain check: ControlTensionOK005.00109.0 0021.00109.0 565.106 565.106495 003.0003.0 min min min         OK c cd y mm a cmm bf fA a mmA AAA mmA wc ypsw psw sfpspsw ps 565.106 85.0 58.90 58.90 3002585.0 42088.1374 85.0 88.137439.113827.2513 :ispartin webareasteelActual 27.2513 4 20 8:isareasteelActual 1 ' , 2 , ,, 2 2 ,          Solution 3 – Cont. Thank you 66CE 370 : Prof. Abdelhamid Charif