SlideShare a Scribd company logo
1 of 31
Download to read offline
“Prediksi Neraca Air Berbagai Tipologi Lahan Gambut Di Areal
KHDTK Tumbang Nusa”
Balai Litbang Teknologi Pengelolaan DAS
Badan Litbang dan Inovasi
Kementerian Lingkungan Hidup dan Kehutanan
22 Desember 2020
2
Latar
Belakang
: ▪ Kawasan gambut mempunyai karakteristik yang unik dan penting
karena berperan dalam mengatur tata air
▪ Sebagai pengatur tata air, lahan rawa gambut berfungsi sebagai
penyimpan air, pensuplai air, dan pengendali banjir
▪ Pengelolaan tata air secara lanskap dalam suatu Kesatuan Hidrologis
Gambut (KHG) sangat penting dilakukan untuk menjaga kelestarian
lahan gambut.
▪ Salah satu data dasar penting yang dibutuhkan dalam perencanaan
pengelolaan tata air lahan gambut adalah informasi neraca air.
Neraca Air
• Secara umum merupakan keadaan air di suatu wilayah dalam satu periode
basah dan periode kering.
• Neraca air (water balance) merupakan neraca masukan dan keluaran air
disuatu tempat pada periode tertentu, sehingga dapat untuk mengetahui
jumlah air tersebut kelebihan (surplus) ataupun kekurangan (defisit).
Kegunaan mengetahui kondisi air pada surplus dan defisit dapat
mengantisipasi bencana yang kemungkinan terjadi, serta dapat pula untuk
mendayagunakan air sebaik-baiknya (Setiawan Dedi, 2012)
• Neraca Air (Water-balance ) adalah suatu analisis yang menggambarkan
pemanfaatan sumber daya air suatu daerah tinjauan yang didasarkan pada
perbandingan antara kebutuhan dan ketersediaan air (Siti Nurbaya Bakar,
2020).
3
4
• Analisis kondisi neraca air suatu kawasan penting
untuk diketahui agar pengelolaan sumberdaya air
dapat disesuaikan dengan kepentingan dan
ketersediannyanya
Manfaat Neraca Air
5
Salah Satu Metode Perhitungan Neraca Air
▪ Salah satu metode untuk analisis neraca air yaitu model
Thornthwaite Mather.
▪ Modelnya sederhana dan data masukan yang diperlukan
cukup mudah diperoleh
▪ Data masukan yang diperlukan adalah data hujan
sebagai masukan, data vegetasi penutup lahan, data
suhu udara, dan data sifat fisik tanah
6
Diagram Alir Analisis Neraca Air dengan Metode Thornthwaite Mather
7
Penentuan Unit Analisis Neraca Air
▪ Langkah awal untuk
menghitung neraca air
kawasan adalah dengan
menentukan unit analisisnya
terlebih dahulu yang sering
disebut dengan unit analisis
hidrologi (Hydrological
Response Units/HRU).
Peta Hydrological Response
Unit
Peta
jaringan
kanal
Peta
kedalaman
gambut
Peta
kontur dari
DEMNas
8
Peta Kontur dari
DEMNas
Peta kedalaman gambut
Peta kanal
Peta Hydrological
Response Unit
Penentuan Unit Analisis Neraca Air
9
Hydrologic Response Units di Lokasi Kajian
10
Kondisi Tutupan Lahan di Lokasi Kajian
11
12
Kondisi Temperatur Bulanan di Lokasi Kajian Tahun 2019
13
14
Hasil Perhitungan Neraca Air di wilayah Mangkok
PREDIKSI NERACA AIR LOKASI KAJIAN
Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah
Suhu 26.56 27.13 27.00 27.55 27.88 27.45 27.09 27.11 27.64 27.97 28.50 27.52
Index panas 12.56 12.92 12.85 13.28 13.50 11.71 12.92 12.92 13.28 13.58 13.94 13.21 156.67
PEblm terkoreksi 4.50 4.70 4.60 4.80 4.90 4.80 4.70 4.70 4.80 4.90 5.10 4.80
f.koreksi 31.20 28.20 31.20 30.30 31.20 30.30 31.20 31.20 30.30 31.20 30.30 31.20
PEterkoreksi 140.40 132.54 143.52 145.44 152.88 145.44 146.64 146.64 145.44 152.88 154.53 149.76
Hujan (P) 332.43 335.75 295.59 334.76 173.32 162.50 45.98 78.46 32.90 177.81 194.80 390.83 2555.14
P-PE 192.03 203.21 152.07 189.32 20.44 17.06 -100.66 -68.18 -112.54 24.93 40.27 241.07
APWL -100.66 -168.84 -281.38
Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 70.68 43.71 20.46 140.00 140.00 140.00
ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -69.32 -26.97 -23.25 119.54 0.00 0.00
AE 140.40 132.54 143.52 145.44 152.88 145.44 115.30 105.43 56.15 152.88 154.53 149.76 1594.27
D 0.00 0.00 0.00 0.00 0.00 0.00 31.34 41.21 89.29 0.00 0.00 0.00
S 192.03 203.21 152.07 189.32 20.44 17.06 -31.34 -41.21 -89.29 -94.61 40.27 241.07 799.03
RO (40%) 94.10 114.45 127.07 111.65 120.39 56.33 29.35 -0.80 -16.80 -42.44 -54.82 -5.82 532.69
15
16
Hasil Perhitungan Neraca Air Belukar Suksesi Alami (RePeat)
Prameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah
Suhu 26.33 26.89 26.77 27.31 27.65 27.21 26.85 26.88 27.41 27.73 28.27 27.28
Index panas 12.35 12.78 12.70 13.17 13.36 12.98 12.78 12.78 13.14 13.36 13.80 13.07 156.27
PEblm terkoreksi 4.40 4.60 4.60 4.70 4.80 4.70 4.60 4.60 4.80 4.80 5.00 4.70
f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50
PEterkoreksi 138.60 129.72 143.52 142.41 148.32 141.00 143.52 143.52 145.44 149.76 153.00 148.05
Hujan (P) 347.14 296.22 304.31 305.28 181.49 177.12 46.80 91.97 29.65 195.08 200.91 374.26 2550.22
P-PE 208.54 166.50 160.79 162.87 33.17 36.12 -96.72 -51.55 -115.79 45.32 47.91 226.21
APWL -96.72 -148.27 -264.06
Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 71.61 50.22 23.25 140.00 140.00 140.00
ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -68.39 -21.39 -26.97 116.75 0.00 0.00
AE 138.60 129.72 143.52 142.41 148.32 141.00 115.19 113.36 56.62 149.76 153.00 148.05 1579.55
D 0.00 0.00 0.00 0.00 0.00 0.00 28.33 30.16 88.82 0.00 0.00 0.00
S 208.54 166.50 160.79 162.87 33.17 36.12 -28.33 -30.16 -88.82 -71.43 47.91 226.21 823.36
RO (40%) 91.03 119.83 114.53 110.13 109.20 56.95 37.23 3.56 -10.64 -39.78 -44.48 1.37 548.90
17
18
Hasil Perhitungan Neraca Air di Lokasi Terbuka (Kahayan)
Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah
Suhu 26.36 26.92 26.80 27.34 27.68 27.24 26.88 26.91 27.44 27.76 28.30 27.31
Index panas 12.42 12.78 12.70 13.07 13.36 12.98 12.78 12.78 13.14 13.43 13.80 13.07 156.31
PEblm terkoreksi 4.50 4.60 4.60 4.70 4.70 4.70 4.60 4.60 4.80 4.90 5.00 4.70
f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50
PEterkoreksi 141.75 129.72 143.52 142.41 145.23 141.00 143.52 143.52 145.44 152.88 153.00 148.05
Hujan (P) 290.77 266.37 291.62 305.28 181.49 177.12 46.80 91.97 29.65 195.08 200.91 297.87 2374.92
P-PE 149.02 136.65 148.10 162.87 36.26 36.12 -96.72 -51.55 -115.79 42.20 47.91 149.82
APWL -96.72 -148.27 -264.06
Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 37.00 22.00 7.00 140.00 140.00 140.00
ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -103.00 -15.00 -15.00 133.00 0.00 0.00
AE 141.75 129.72 143.52 142.41 145.23 141.00 149.80 106.97 44.65 152.88 153.00 148.05 1598.98
D 0.00 0.00 0.00 0.00 0.00 0.00 -6.28 36.55 100.79 0.00 0.00 0.00
S 149.02 136.65 148.10 162.87 36.26 36.12 6.28 -36.55 -100.79 -90.80 47.91 149.82 644.88
RO (40%) 71.69 118.09 129.22 140.55 153.94 83.33 55.00 25.77 10.31 4.12 1.65 29.41 823.08
19
20
Hasil Perhitungan Neraca Air Hutan Sekunder
Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah
Suhu 26.50 27.07 26.94 27.49 27.82 27.39 27.03 27.05 27.58 27.91 28.44 27.46
Index panas 12.49 12.92 12.78 13.21 13.43 13.14 12.85 12.92 13.28 13.50 13.87 13.21 157.60
PE blm terkoreksi 4.50 4.70 4.60 4.70 4.90 4.80 4.60 4.70 4.80 4.90 5.00 4.80
f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50
PE terkoreksi 141.75 132.54 143.52 142.41 151.41 144.00 143.52 146.64 145.44 152.88 153.00 151.20
Hujan (P) 335.29 300.31 314.28 310.28 182.06 185.52 47.54 82.84 30.51 199.84 206.89 374.97 2570.33
P-PE 193.54 167.77 170.76 167.87 30.65 41.52 -95.98 -63.80 -114.93 46.96 53.89 223.77 822.02
APWL -95.98 -159.78 -274.72
Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 72.54 47.43 21.39 140.00 140.00 140.00
ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -67.46 -25.11 -26.04 118.61 0.00 0.00
AE 141.75 132.54 143.52 142.41 151.41 144.00 115.00 107.95 56.55 152.88 153.00 151.20 1592.21
D 0.00 0.00 0.00 0.00 0.00 0.00 28.52 38.69 88.89 0.00 0.00 0.00
S 193.54 167.77 170.76 167.87 30.65 41.52 -28.52 -38.69 -88.89 -71.65 53.89 223.77 822.02
RO (40%) 90.92 113.78 112.62 113.35 112.49 57.26 39.51 4.40 -13.72 -41.04 -45.08 3.53 548.01
21
22
Perbandingan Parameter Neraca Air di Lokasi Kajian
CH Ea RO
Mangkok 2555 1594.27 653.35
Belukar Suksesi Alami 2550 1579.55 548.90
Lokasi Terbuka 2375 1598.98 823.08
Hutan Sekunder 2570 1592.21 647.85
Paludikultur 2607.97 1594.81 583.65
23
Hubungan Curah Hujan dan Limpasan di Lokasi Kajian
24
FOTO-FOTO KEGIATAN
Lokasi Mangkok
25
Lokasi Belukar Suksesi Alami
(RePeat)
26
Lokasi Lahan terbuka (Kahayan) terbakar setiap tahun
27
Lokasi Hutan sekunder
28
Semak belukar dengan suksesi alami
29
Peralatan pengamatan yang dipasang di lapangan
30
31
Terima kasih

More Related Content

More from International Tropical Peatlands Center

Status of Implementation of Peatland Ecosystem Protection and Management i...
Status of Implementation of  Peatland Ecosystem  Protection and Management  i...Status of Implementation of  Peatland Ecosystem  Protection and Management  i...
Status of Implementation of Peatland Ecosystem Protection and Management i...International Tropical Peatlands Center
 
Technology implementation & community involvement on sustainable peatland man...
Technology implementation & community involvement on sustainable peatland man...Technology implementation & community involvement on sustainable peatland man...
Technology implementation & community involvement on sustainable peatland man...International Tropical Peatlands Center
 
Development for Indonesian peatlands as local communities based on cooperativ...
Development for Indonesian peatlands as local communities based on cooperativ...Development for Indonesian peatlands as local communities based on cooperativ...
Development for Indonesian peatlands as local communities based on cooperativ...International Tropical Peatlands Center
 
Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...
 Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in... Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...
Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...International Tropical Peatlands Center
 
Agro-silvo-fishery on degraded peatlands: For food, energy and environment
Agro-silvo-fishery on degraded peatlands: For food, energy and environmentAgro-silvo-fishery on degraded peatlands: For food, energy and environment
Agro-silvo-fishery on degraded peatlands: For food, energy and environmentInternational Tropical Peatlands Center
 
Environmental benefits of bioenergy trees production in degraded peatland
Environmental benefits of bioenergy trees production in degraded peatland Environmental benefits of bioenergy trees production in degraded peatland
Environmental benefits of bioenergy trees production in degraded peatland International Tropical Peatlands Center
 
Prospect of bioenergy plantation on degraded peatland to support restoration ...
Prospect of bioenergy plantation on degraded peatland to support restoration ...Prospect of bioenergy plantation on degraded peatland to support restoration ...
Prospect of bioenergy plantation on degraded peatland to support restoration ...International Tropical Peatlands Center
 
Climate action needs peatlands action! FAO’s work supporting countries
Climate action needs peatlands action! FAO’s work supporting countriesClimate action needs peatlands action! FAO’s work supporting countries
Climate action needs peatlands action! FAO’s work supporting countriesInternational Tropical Peatlands Center
 
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...International Tropical Peatlands Center
 

More from International Tropical Peatlands Center (20)

Status of Implementation of Peatland Ecosystem Protection and Management i...
Status of Implementation of  Peatland Ecosystem  Protection and Management  i...Status of Implementation of  Peatland Ecosystem  Protection and Management  i...
Status of Implementation of Peatland Ecosystem Protection and Management i...
 
Recent and on-going Peat action research in Indonesia
Recent and on-going Peat action research in IndonesiaRecent and on-going Peat action research in Indonesia
Recent and on-going Peat action research in Indonesia
 
The International Tropical Peatlands Center: Objectives and Progress
The International Tropical Peatlands Center: Objectives and ProgressThe International Tropical Peatlands Center: Objectives and Progress
The International Tropical Peatlands Center: Objectives and Progress
 
Contribution of CIFOR’s peatland research to ITPC
Contribution of CIFOR’s peatland research to ITPCContribution of CIFOR’s peatland research to ITPC
Contribution of CIFOR’s peatland research to ITPC
 
CIFOR-ICRAF Trees, forests and landscapes for people and the planet
CIFOR-ICRAF Trees, forests and landscapes for people and the planetCIFOR-ICRAF Trees, forests and landscapes for people and the planet
CIFOR-ICRAF Trees, forests and landscapes for people and the planet
 
Technology implementation & community involvement on sustainable peatland man...
Technology implementation & community involvement on sustainable peatland man...Technology implementation & community involvement on sustainable peatland man...
Technology implementation & community involvement on sustainable peatland man...
 
Development for Indonesian peatlands as local communities based on cooperativ...
Development for Indonesian peatlands as local communities based on cooperativ...Development for Indonesian peatlands as local communities based on cooperativ...
Development for Indonesian peatlands as local communities based on cooperativ...
 
Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...
 Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in... Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...
Government Peatland Knowledge Platform, Sharing of Indonesia’s experience in...
 
Managing lessons learned through an enhanced information system
Managing lessons learned through an enhanced information systemManaging lessons learned through an enhanced information system
Managing lessons learned through an enhanced information system
 
ITPC Knowledge Platform: Connecting knowledge and research to people
ITPC Knowledge Platform: Connecting knowledge and research to peopleITPC Knowledge Platform: Connecting knowledge and research to people
ITPC Knowledge Platform: Connecting knowledge and research to people
 
Agro-silvo-fishery on degraded peatlands: For food, energy and environment
Agro-silvo-fishery on degraded peatlands: For food, energy and environmentAgro-silvo-fishery on degraded peatlands: For food, energy and environment
Agro-silvo-fishery on degraded peatlands: For food, energy and environment
 
Restoration and management of peatlands to fulfil bioenergy demand
Restoration and management of peatlands to fulfil bioenergy demandRestoration and management of peatlands to fulfil bioenergy demand
Restoration and management of peatlands to fulfil bioenergy demand
 
Environmental benefits of bioenergy trees production in degraded peatland
Environmental benefits of bioenergy trees production in degraded peatland Environmental benefits of bioenergy trees production in degraded peatland
Environmental benefits of bioenergy trees production in degraded peatland
 
Prospect of bioenergy plantation on degraded peatland to support restoration ...
Prospect of bioenergy plantation on degraded peatland to support restoration ...Prospect of bioenergy plantation on degraded peatland to support restoration ...
Prospect of bioenergy plantation on degraded peatland to support restoration ...
 
Enabling microfinancing for bioenergy trees in peatland
Enabling microfinancing for bioenergy trees in peatlandEnabling microfinancing for bioenergy trees in peatland
Enabling microfinancing for bioenergy trees in peatland
 
Monitoring and managing tropical peatland restoration
Monitoring and managing tropical peatland restorationMonitoring and managing tropical peatland restoration
Monitoring and managing tropical peatland restoration
 
Protecting & restoring an ecologically important landscape
Protecting & restoring an ecologically important landscapeProtecting & restoring an ecologically important landscape
Protecting & restoring an ecologically important landscape
 
Climate action needs peatlands action! FAO’s work supporting countries
Climate action needs peatlands action! FAO’s work supporting countriesClimate action needs peatlands action! FAO’s work supporting countries
Climate action needs peatlands action! FAO’s work supporting countries
 
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...
Green Partnership Peatland Restoration, Korea-Indonesia Joint Cooperation Pro...
 
ASEAN peatland policy in action
ASEAN peatland policy in actionASEAN peatland policy in action
ASEAN peatland policy in action
 

Prediksi neraca air berbagai topologi lahan gambut di areal KHDTK Tumbang Nusa

  • 1. “Prediksi Neraca Air Berbagai Tipologi Lahan Gambut Di Areal KHDTK Tumbang Nusa” Balai Litbang Teknologi Pengelolaan DAS Badan Litbang dan Inovasi Kementerian Lingkungan Hidup dan Kehutanan 22 Desember 2020
  • 2. 2 Latar Belakang : ▪ Kawasan gambut mempunyai karakteristik yang unik dan penting karena berperan dalam mengatur tata air ▪ Sebagai pengatur tata air, lahan rawa gambut berfungsi sebagai penyimpan air, pensuplai air, dan pengendali banjir ▪ Pengelolaan tata air secara lanskap dalam suatu Kesatuan Hidrologis Gambut (KHG) sangat penting dilakukan untuk menjaga kelestarian lahan gambut. ▪ Salah satu data dasar penting yang dibutuhkan dalam perencanaan pengelolaan tata air lahan gambut adalah informasi neraca air.
  • 3. Neraca Air • Secara umum merupakan keadaan air di suatu wilayah dalam satu periode basah dan periode kering. • Neraca air (water balance) merupakan neraca masukan dan keluaran air disuatu tempat pada periode tertentu, sehingga dapat untuk mengetahui jumlah air tersebut kelebihan (surplus) ataupun kekurangan (defisit). Kegunaan mengetahui kondisi air pada surplus dan defisit dapat mengantisipasi bencana yang kemungkinan terjadi, serta dapat pula untuk mendayagunakan air sebaik-baiknya (Setiawan Dedi, 2012) • Neraca Air (Water-balance ) adalah suatu analisis yang menggambarkan pemanfaatan sumber daya air suatu daerah tinjauan yang didasarkan pada perbandingan antara kebutuhan dan ketersediaan air (Siti Nurbaya Bakar, 2020). 3
  • 4. 4 • Analisis kondisi neraca air suatu kawasan penting untuk diketahui agar pengelolaan sumberdaya air dapat disesuaikan dengan kepentingan dan ketersediannyanya Manfaat Neraca Air
  • 5. 5 Salah Satu Metode Perhitungan Neraca Air ▪ Salah satu metode untuk analisis neraca air yaitu model Thornthwaite Mather. ▪ Modelnya sederhana dan data masukan yang diperlukan cukup mudah diperoleh ▪ Data masukan yang diperlukan adalah data hujan sebagai masukan, data vegetasi penutup lahan, data suhu udara, dan data sifat fisik tanah
  • 6. 6 Diagram Alir Analisis Neraca Air dengan Metode Thornthwaite Mather
  • 7. 7 Penentuan Unit Analisis Neraca Air ▪ Langkah awal untuk menghitung neraca air kawasan adalah dengan menentukan unit analisisnya terlebih dahulu yang sering disebut dengan unit analisis hidrologi (Hydrological Response Units/HRU). Peta Hydrological Response Unit Peta jaringan kanal Peta kedalaman gambut Peta kontur dari DEMNas
  • 8. 8 Peta Kontur dari DEMNas Peta kedalaman gambut Peta kanal Peta Hydrological Response Unit Penentuan Unit Analisis Neraca Air
  • 9. 9 Hydrologic Response Units di Lokasi Kajian
  • 10. 10 Kondisi Tutupan Lahan di Lokasi Kajian
  • 11. 11
  • 12. 12 Kondisi Temperatur Bulanan di Lokasi Kajian Tahun 2019
  • 13. 13
  • 14. 14 Hasil Perhitungan Neraca Air di wilayah Mangkok PREDIKSI NERACA AIR LOKASI KAJIAN Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah Suhu 26.56 27.13 27.00 27.55 27.88 27.45 27.09 27.11 27.64 27.97 28.50 27.52 Index panas 12.56 12.92 12.85 13.28 13.50 11.71 12.92 12.92 13.28 13.58 13.94 13.21 156.67 PEblm terkoreksi 4.50 4.70 4.60 4.80 4.90 4.80 4.70 4.70 4.80 4.90 5.10 4.80 f.koreksi 31.20 28.20 31.20 30.30 31.20 30.30 31.20 31.20 30.30 31.20 30.30 31.20 PEterkoreksi 140.40 132.54 143.52 145.44 152.88 145.44 146.64 146.64 145.44 152.88 154.53 149.76 Hujan (P) 332.43 335.75 295.59 334.76 173.32 162.50 45.98 78.46 32.90 177.81 194.80 390.83 2555.14 P-PE 192.03 203.21 152.07 189.32 20.44 17.06 -100.66 -68.18 -112.54 24.93 40.27 241.07 APWL -100.66 -168.84 -281.38 Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 70.68 43.71 20.46 140.00 140.00 140.00 ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -69.32 -26.97 -23.25 119.54 0.00 0.00 AE 140.40 132.54 143.52 145.44 152.88 145.44 115.30 105.43 56.15 152.88 154.53 149.76 1594.27 D 0.00 0.00 0.00 0.00 0.00 0.00 31.34 41.21 89.29 0.00 0.00 0.00 S 192.03 203.21 152.07 189.32 20.44 17.06 -31.34 -41.21 -89.29 -94.61 40.27 241.07 799.03 RO (40%) 94.10 114.45 127.07 111.65 120.39 56.33 29.35 -0.80 -16.80 -42.44 -54.82 -5.82 532.69
  • 15. 15
  • 16. 16 Hasil Perhitungan Neraca Air Belukar Suksesi Alami (RePeat) Prameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah Suhu 26.33 26.89 26.77 27.31 27.65 27.21 26.85 26.88 27.41 27.73 28.27 27.28 Index panas 12.35 12.78 12.70 13.17 13.36 12.98 12.78 12.78 13.14 13.36 13.80 13.07 156.27 PEblm terkoreksi 4.40 4.60 4.60 4.70 4.80 4.70 4.60 4.60 4.80 4.80 5.00 4.70 f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50 PEterkoreksi 138.60 129.72 143.52 142.41 148.32 141.00 143.52 143.52 145.44 149.76 153.00 148.05 Hujan (P) 347.14 296.22 304.31 305.28 181.49 177.12 46.80 91.97 29.65 195.08 200.91 374.26 2550.22 P-PE 208.54 166.50 160.79 162.87 33.17 36.12 -96.72 -51.55 -115.79 45.32 47.91 226.21 APWL -96.72 -148.27 -264.06 Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 71.61 50.22 23.25 140.00 140.00 140.00 ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -68.39 -21.39 -26.97 116.75 0.00 0.00 AE 138.60 129.72 143.52 142.41 148.32 141.00 115.19 113.36 56.62 149.76 153.00 148.05 1579.55 D 0.00 0.00 0.00 0.00 0.00 0.00 28.33 30.16 88.82 0.00 0.00 0.00 S 208.54 166.50 160.79 162.87 33.17 36.12 -28.33 -30.16 -88.82 -71.43 47.91 226.21 823.36 RO (40%) 91.03 119.83 114.53 110.13 109.20 56.95 37.23 3.56 -10.64 -39.78 -44.48 1.37 548.90
  • 17. 17
  • 18. 18 Hasil Perhitungan Neraca Air di Lokasi Terbuka (Kahayan) Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah Suhu 26.36 26.92 26.80 27.34 27.68 27.24 26.88 26.91 27.44 27.76 28.30 27.31 Index panas 12.42 12.78 12.70 13.07 13.36 12.98 12.78 12.78 13.14 13.43 13.80 13.07 156.31 PEblm terkoreksi 4.50 4.60 4.60 4.70 4.70 4.70 4.60 4.60 4.80 4.90 5.00 4.70 f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50 PEterkoreksi 141.75 129.72 143.52 142.41 145.23 141.00 143.52 143.52 145.44 152.88 153.00 148.05 Hujan (P) 290.77 266.37 291.62 305.28 181.49 177.12 46.80 91.97 29.65 195.08 200.91 297.87 2374.92 P-PE 149.02 136.65 148.10 162.87 36.26 36.12 -96.72 -51.55 -115.79 42.20 47.91 149.82 APWL -96.72 -148.27 -264.06 Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 37.00 22.00 7.00 140.00 140.00 140.00 ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -103.00 -15.00 -15.00 133.00 0.00 0.00 AE 141.75 129.72 143.52 142.41 145.23 141.00 149.80 106.97 44.65 152.88 153.00 148.05 1598.98 D 0.00 0.00 0.00 0.00 0.00 0.00 -6.28 36.55 100.79 0.00 0.00 0.00 S 149.02 136.65 148.10 162.87 36.26 36.12 6.28 -36.55 -100.79 -90.80 47.91 149.82 644.88 RO (40%) 71.69 118.09 129.22 140.55 153.94 83.33 55.00 25.77 10.31 4.12 1.65 29.41 823.08
  • 19. 19
  • 20. 20 Hasil Perhitungan Neraca Air Hutan Sekunder Parameter Jan Feb Mar Apr Mei Jun Jul Ags Sep Okt Nop Des Jumlah Suhu 26.50 27.07 26.94 27.49 27.82 27.39 27.03 27.05 27.58 27.91 28.44 27.46 Index panas 12.49 12.92 12.78 13.21 13.43 13.14 12.85 12.92 13.28 13.50 13.87 13.21 157.60 PE blm terkoreksi 4.50 4.70 4.60 4.70 4.90 4.80 4.60 4.70 4.80 4.90 5.00 4.80 f.koreksi 31.50 28.20 31.20 30.30 30.90 30.00 31.20 31.20 30.30 31.20 30.60 31.50 PE terkoreksi 141.75 132.54 143.52 142.41 151.41 144.00 143.52 146.64 145.44 152.88 153.00 151.20 Hujan (P) 335.29 300.31 314.28 310.28 182.06 185.52 47.54 82.84 30.51 199.84 206.89 374.97 2570.33 P-PE 193.54 167.77 170.76 167.87 30.65 41.52 -95.98 -63.80 -114.93 46.96 53.89 223.77 822.02 APWL -95.98 -159.78 -274.72 Storage (ST) 140.00 140.00 140.00 140.00 140.00 140.00 72.54 47.43 21.39 140.00 140.00 140.00 ΔST 0.00 0.00 0.00 0.00 0.00 0.00 -67.46 -25.11 -26.04 118.61 0.00 0.00 AE 141.75 132.54 143.52 142.41 151.41 144.00 115.00 107.95 56.55 152.88 153.00 151.20 1592.21 D 0.00 0.00 0.00 0.00 0.00 0.00 28.52 38.69 88.89 0.00 0.00 0.00 S 193.54 167.77 170.76 167.87 30.65 41.52 -28.52 -38.69 -88.89 -71.65 53.89 223.77 822.02 RO (40%) 90.92 113.78 112.62 113.35 112.49 57.26 39.51 4.40 -13.72 -41.04 -45.08 3.53 548.01
  • 21. 21
  • 22. 22 Perbandingan Parameter Neraca Air di Lokasi Kajian CH Ea RO Mangkok 2555 1594.27 653.35 Belukar Suksesi Alami 2550 1579.55 548.90 Lokasi Terbuka 2375 1598.98 823.08 Hutan Sekunder 2570 1592.21 647.85 Paludikultur 2607.97 1594.81 583.65
  • 23. 23 Hubungan Curah Hujan dan Limpasan di Lokasi Kajian
  • 25. 25 Lokasi Belukar Suksesi Alami (RePeat)
  • 26. 26 Lokasi Lahan terbuka (Kahayan) terbakar setiap tahun
  • 28. 28 Semak belukar dengan suksesi alami
  • 29. 29 Peralatan pengamatan yang dipasang di lapangan
  • 30. 30