SlideShare a Scribd company logo
1 of 95
Download to read offline
Post embryonic development
Rachel Jacob
ZOO-15-05-10
Unit : 6
Post embryonic development
Post embryonic developmental changes include
metamorphosis, regeneration and aging .
Metamorphosis is the phenomenon in which larva matures
into the adult through a series of drastic changes.
Regeneration is the creation of new organ after the original
one has been removed from the adult animal.
Ageing is the genetically determined species specific
senescence.
Metamorphosis
Metamorphosis
is a biological process by
which an animal physically
develops after birth or
hatching, involving a
conspicuous and relatively
abrupt changes in the
animal's body structure
through cell growth and
differentiation.
Direct and indirect development
• Direct development: Young are smaller versions of the adult.
E.g., Humans.
• Indirect development: Young (larva) has characters different from the
adult. The larva metamorphoses to produce adult.
E.g., Cecropia moths (Hyalophora cecropia).
• In indirect developers larva are specialized for growth and dispersal.
Adults are specialized for reproduction.
Secondary larvae and Primary larvae
• Secondary larvae:
Larvae and adults possess similar
basic body plan.
E.g., Butterfly and Caterpillar
Frog and Tadpole
• Primary larvae:
Body plans of the adult and
larva are drastically distinct.
Eg., Sea urchin larvae and adult
Amphibian Metamorphosis
• Amphibians are named for their ability to undergo
metamorphosis.
• Amphibian metamorphosis is associated with
morphological changes which prepare the aquatic
organism for a terrestrial existence.
• In urodeles (salamanders), the changes include:
– Resorption of tail fin
– Destruction of external gills
– Changes in skin structure
• In anurans (frogs and toads) changes are more dramatic as every organ
is subject to modification.
• Changes in amphibian metamorphosis are initiated by thyroid
hormones.
• Encounter with thyroid hormones can result in any of the four
responses:
– Growth
– Death
– Re-modeling
– Re-specification
• Growth of new structures.
• T3 induces formation of adult
specific organs such as limbs,
eyes and nictitating membranes.
• New neurons proliferate and
differentiate in response to T3 (in
the spinal cord).
• Blocking T3 activity will prevent
neuron development and cause
limb paralysis.
• Movement of eyes towards the
front of the head from their
original lateral position.
• Binocular vision develops due to
establishment of ipsilateral
projections.
• In Xenopus new neuronal
pathways are formed due to
formation of new neurons and
not due to re-modelling. This is in
response to thyroid hormones.
• Ephrin –β is induced in the optic
chiasm by the thyroid hormones.
II. Cell Death
• Larval specific structures die due to influence of
T3.
• Degeneration of paddle-like tail and oxygen
producing gills.
• First part of tail resorption is caused by apoptosis.
• Remnants of the tail are removed by phagocytosis.
• The enzyme caspase-9 is involved in apoptosis.
• Tadpole’s RBCs die due to phagocytosis.
III. Re-modeling
• Larval intestine is made shorter for carnivory.
• Cells of adult intestine are derived from larval
intestine.
• Triggered by digestion of old Extra Cellular Matrix
by metalloproteinase Stromelysin -3 & by
transcription of genes bmp-4 and sonic hedge hog.
• Neurons switch targets. Motor neurons of the
tadpole jaw switch to newly formed adult muscles.
• Neurons innervating tongue muscles form their
first synapses during metamorphosis.
• Lateral line system of the tadpole degenerates and
ears differentiate further.
• Shape of the skull changes as new
bones are being made.
• Tadpole skull is neural crest
derived cartilage. Adult skull is
neural crest derived bone.
• Meckel’s cartilage elongates to
double its length.
• Gill and pharyngeal arc cartilages
degenerate.
• Ceratohyal cartilage which anchors
the tongue is re-modeled.
IV. Biochemical re-specification
• T-3 induces new proteins to
form in existing cells.
• Tadpoles are ammonotelic.
Adult frogs are ureotelic.
• During metamorphosis, liver
synthesizes enzymes necessary
to create urea from CO2 and
NH3.
• T-3 regulates this change by
inducing transcription factors
that activate urea cycle genes &
suppressing genes for ammonia
synthesis.
• This was first demonstrated by
Gundernatsch (1912). Tadpoles
metamorphosed prematurely when fed
with powdered horse thyroid glands.
• Allen (1916) destroyed thyroid glands of
early tadpoles(thyroidectomy).
Metamorphosis was not observed,
instead the tadpoles grew into giant
tadpoles.
• Sequential steps of amphibian
metamorphosis are regulated by
increasing amounts of thyroid hormones.
• Threshold model states that different events of
metamorphosis are triggered by different concentrations of
thyroid hormones.
• Low concentrations of thyroid hormones in the early stages
induces limb development.
• High concentration of thyroid hormones induces tail
resorption and intestine re-modeling.
• Tissues which express increased level of de-iodinase II are the ones which
respond to thyroid hormones first (and convert T4 to T3).
– E.g., limb rudiments (with high levels of de-iodinase II and TR α
receptor.)
• Thus during the early (pre-metamorphosis), limb rudiments receive
thyroid hormone and use it to start leg growth.
• The concentration of T4 increases dramatically and TR β levels
increase, leading to tail resorption.
• TR β is the principal receptor that mediates metamorphic climax. In
this way the tail undergoes resorption only after legs are functional.
• The wisdom of the frog is simple:
“Never get rid of your tail before your legs are functional”
• Some tissues are not responsive to thyroid hormones, e.g., dorsal
retina.
• The frog’s brain down regulates
metamorphosis once metamorphic
climax has been reached.
• Thyroid hormones induce a negative
feedback loop, shutting down
pituitary cells which causes thyroid to
secrete them.
• T-3 is found in the anterior pituitary
at metamorphic climax. This inhibits
transcription of Thyrotrophin gene
and thereby initiates a negative
feedback loop.
• Cellular response to thyroid
hormones can be regulated by
altering the concentration of
T3 and TR.
• The same stimulus can cause
some tissues to degenerate
while stimulating other cells
and tissues to develop.
• Resorption of tadpole’s tail is
brought about by apoptosis.
• The debris leftover is degraded by collagenases
and metalloproteinases and by phagocytosis.
• The response to thyroid hormone is organ
specific.
• Tail tip tissue placed on the trunk degenerates
but eye cup on the tail does not.
• Hence degeneration of the tail is an organ
specific programmed cell death response.
• Insect metamorphosis involves the
destruction of larval tissues and
their replacement by an entirely
different population of cells.
• There are 3 major patterns in
insect development.
• Ametabolous development
• Hemimetabolous development
• Holometabolous development
• Insect development in which there is no
metamorphosis & immature stages appear
similar to the adults, except that they lack
genitalia.
• It occurs in silverfish, springtails and
firebrats.
• Immediately after they hatch is the pro-
nymphal stage bearing the structures which
enabled it to get out of the egg.
• After this pro-nymphal stage, the insect
grows in size but remains unchanged in
form.
• Hemimetabolous development is also known
as incomplete or simple metamorphosis.
• Insects emerge from eggs into nymphs
(larvae) that are similar in shape to the
adults.
• They go through several nymphal stages
(called instars) before they undergo a final
molt into their adult form.
• At the final molt, the insect that emerges out
is winged and sexually mature adult called
Imago.
• Complete or holometabolous metamorphosis is
characteristic of beetles, butterflies and moths, flies, and
wasps.
• Their life cycle includes four stages: egg, larva , pupa and
adult.
• The juvenile form hatches out from the egg and is called a
larva.
• The larva undergoes a series of molts, each stage is called an
instar.
• After the final instar, the larva undergoes a metamorphic
molt to become a pupa, which does not feed.
• During pupation adult structures form and replace larval
structures.
• An imaginal molt enables the adult (imago) to shed its pupal
case and emerge.
• In holometabolous insects, the transformation
from juvenile into adult occurs within the pupal
cuticle.
• Most of the larval body is systematically
destroyed by programmed cell death, while new
adult organs develop from relatively
undifferentiated nests of imaginal cells.
• Thus within any larva, there are two distinct
populations of cells:
• The larval cells
• The imaginal cells
• The cells of the imaginal disc:
Forms cuticular structures of the adult
including wings, legs, antennae, eyes, head,
thorax and genitalia.
• Histoblast nests:
Clusters of imaginal cells that will form in
the adult abdomen.
• Imaginal cells:
Clusters of imaginal cells within each organ
proliferate to form the adult organs as the
larval organs degenerate.
• The imaginal cells of the disc can be
seen in the newly hatched larvae as
thickenings of the epidermis.
• Imaginal discs divide rapidly at specific
characteristic times.
• As their cells proliferate, the discs form
a tubular epithelial membrane that folds
in on itself in a compact spiral.
• At metamorphosis, these cells proliferate
and differentiate further as they
elongate.
• At the end of the third instar, just before pupation, the leg disc is an
epithelial sac connected by a thin stalk to the larval epidermis.
• On one side of the sac, the epithelium is coiled into a series of
concentric folds: reminiscent of a Danish pastry.
• As pupation begins, the cells at the center of the disc become the
most distal portions of the leg- the claws and the tarsus.
• The outer cells become the proximal structures- the
coxa and the adjoining epidermis.
• After differentiating, the cells of the appendages and
epidermis secrete a cuticle appropriate for each.
• A number of adepithelial cells migrate into the disc
early in development.
• During the pupal stage, these cells give rise to muscles
and nerves that serve the leg.
• Specification of the general cell fates occurs in the embryo.
• The more specific cell fates are specified in the larval stages.
• Interactions between several genes in the imaginal disc
determine the type of leg structure.
• In the third instar stage leg disc, the center of the disc secretes
the highest concentration of two morphogens: Wingless (Wg)
and Decapentaplegic (Dpp).
• High concentrations of these paracrine factors cause an
expression of distal-less gene.
• Moderate concentrations cause the expression of Dachshund
gene.
• Lower concentration of paracrine factors cause the expression
of Homothorax gene.
• Homothorax gene (purple), dachshund gene (green), Distal-
less (red)
• Cells expressing distal-less telescope out to
become most distal structures of the leg-
the claw and distal tarsal segments.
• Those expressing homothorax become the
most proximal structure- the coxa.
• Cells expressing the Dachshund become
the femur and proximal tibia.
• Areas where the transcription factors
overlap produces the Trochanter and distal
tibia.
• In this manner, the gradient of Wg and
Dpp proteins is converted into discrete
domains of gene expression.
• The mature leg disc in the third instar stage of Drosophila is unlike the
adult leg.
• It is determined but not yet differentiated.
• Differentiation requires the moulting hormone 20-
hydroxyecdysone(20E).
• The mature leg disc in the third instar of Drosophila does not look like
the adult structure.
• First pulse in the late larval stages initiates formation of the pupa, arrests
cell division in the disc, and initiates the cell shape changes that drive the
eversion of the leg.
• The elongation of imaginal discs occurs without cell division and is due to
cell shape changes within the disc epithelium.
• Using fluorescently labeled phalloidin to stain the peripheral
microfilaments of leg disc cells, it was demonstrated that cells are tightly
arranged along the proximal-distal axis.
• Upon providing a hormonal signal, the cells change shape and the leg is
everted- the central cells of the disc becoming the most distal (claw) cells
of the limb.
• The leg structures will differentiate within the pupa, so that by the time
the adult fly ecloses, they are fully formed and functional .
• The largest of Drosophila's imaginal discs is that of the wing.
• The wing discs are distinguished from the other imaginal
discs by the expression of the vestigial gene.
• When this gene is expressed in any other imaginal disc, wing
tissue emerges.
• Axes of the wing are specified by gene expression patterns.
• In the first instar , expression of the engrailed gene
distinguishes the posterior compartment of the wing from
the anterior compartment.
• The Engrailed transcription factor in the posterior
compartment activates the gene for the BMP-like paracrine
factor Hedgehog .
• Hedgehog functions only when cells have the receptor
(Patched) to receive it.
• Diffusion of Hedgehog activates the gene encoding
Decapentaplegic (Dpp) in a strip of cells at the anterior
region of the wing disc.
• Dpp and a co-expressed BMP called Glass-bottom boat
(Gbb) act to establish a gradient of BMP signaling
activity.
• BMPs activates the Mad transcription factor (a Smad
protein).
• Dpp is a short-range paracrine factor. Gbb exhibits a
much longer range of diffusion to create a gradient.
• At high levels, the spalt (sal) and optomotor blind
(omb) genes are activated, whereas at low levels, only
omb is activated.
• Below a particular level of phosphorylated Mad activity
the brinker (brk) gene is no longer inhibited; thus brk
is expressed outside the signaling domain.
Dorso-ventral & Proximal-distal axis
• The dorsalventral axis of the wing is formed by
the expression of the apterous gene in the
prospective dorsal cells of the wing disc.
• The vestigial gene remains "on" in the ventral
portion of the wing disc.
• The dorsal portion of the wing synthesizes
transmembrane proteins that prevent the
intermixing of the dorsal and ventral cells.
• At the boundary between the dorsal and ventral
compartments, the Apterous and Vestigial
transcription factors interact to activate the gene
encoding the Wnt paracrine factor Wingless.
• Wingless protein acts as a growth factor to
promote the cell proliferation that extends the
wing.
• Wingless also helps establish the proximal-distal
axis of the wing: high levels of Wingless activate
the Distal-less gene, which specifies the most
distal regions of the wing.
• Vestigial protein :green, Apterous::Red , Yellow: Overlap.
Hormonal control of Metamorphosis
• Insect metamorphosis is under hormonal control.
• Metamorphosis of insects is regulated by systemic
hormonal signals, which are controlled by
neurohormones from the brain.
• Insect molting and metamorphosis are controlled by
two effector hormones : the steroid 20-hydroxyecdysone
(20E) and the lipid juvenile hormone (JH ).
• 20Hydroxyecdysone initiates and coordinates each molt
and regulates the changes in gene expression that occur
during metamorphosis.
• Juvenile hormone prevents the ecdysone-induced
changes in gene expression.
• Presence of JH during a molt ensures that the result of
that molt is another larval instar, not a pupa or an adult.
• The molting process is initiated in the brain, where
neurosecretory cells release prothoracicotropic hormone
(PTTH ) .
• PTTH is a peptide hormone and it
stimulates the production of ecdysone by
the prothoracic gland by activating the
RTK pathway in those cells .
• Ecdysone is modified in peripheral
tissues to become the active molting
hormone 20E.
• For a larval molt, the first pulse
produces a small rise in the 20E
concentration in the larval hemolymph
(blood) and elicits a change in cellular
commitment in the epidermis.
• A second, larger pulse o f 20E initiates
differention.
• These pulses o f 20E commit and
stimulate the epidermal cells to
synthesize enzymes that digest the old
cuticle and synthesize a new one.
• Juvenile hormone is secreted by the
corpora allata.
• The secretory cells of the corpora allata are active during larval molts but inactive
during the metamorphic molt and the imaginal molt.
• As long as JH is present, the 20E-stimulated molts result in a new larval instar.
• In the last larval instar, however, the medial nerve from the brain to the corpora
allata inhibits these glands from producing JH, and there is a simultaneous increase
in the body's ability to degrade existing JH.
• Both these mechanisms cause JH levels to drop below a critical threshold value,
triggering the release of PTTH from the brain.
• PTTH, in turn, stimulates the prothoracic gland to secrete a small amount o f
ecdysone.
• The resulting pulse of 20E, in the absence of high levels of JH, commits the
epidermal cells to pupal development.
• Larva-specific mRNAs are not replaced, and new mRNAs are synthesized whose
protein products inhibit the transcription of the larval messages.
• There are two major pulses of 20E during Drosophila metamorphosis.
• The first pulse occurs in the third instar larva and triggers the
initiation of morphogenesis of the leg and wing imaginal discs.
• The larva stops eating and migrates to find a site to begin
pupation.
• The second 20E pulse occurs 10-12 hours later and tells the
"prepupa" to become a pupa.
• The head inverts and the salivary glands degenerate.
• The second pulse transcribes pupa-specific genes and initiates the
molt.
• At the imaginal molt, when 20E acts in the absence of juvenile
hormone, the imaginal discs fully differentiate and the molt gives
rise to an adult.
Ecdysone receptors cannot bind to DNA by
themselves.
They first bind to nuclear receptors.
These are Ecdysone Receptors (ECRs).
An ECR protein forms an active molecule by
pairing with an ultra specific (USP) protein.
In the absence of hormone bound ECR, Usp
binds to ecdysone responsive genes and
inhibits their transcription.
Inhibition is converted into activation when
ecdysone receptors bind to Usp.
ECR exists in several isoforms.
Larval tissues and neurons have ECR –B1
isoform.
Imaginal disc and differentiating neurons
have ECR-A.
• Insect metamorphosis involves complex interaction
between ligands and receptors.
• The target tissues are not mere passive receptors of
hormones.
• They become responsive to hormones only at
particular times.
• When there is a pulse of 20-E at the middle of the 4th
instar of the tobacco hornworm moth Manduca,
epidermis is able to respond because it expresses
ecdysone receptors.
• Thus timing of metamorphosis in insects can be
controlled by synthesis of receptors in target tissues.
• Explain Cecropia metamorphosis using suitable illustrations.
• What do you mean by Biochemical re-specification. How is it important?
• What does the Threshold model of metamorphosis state?
• Elaborate on the responses of cells to thyroid hormones.
• Which are the different stages of metamorphosis in amphibians?
• Which are the different types of develoment in insects?
• What are imaginal discs?
• Explain the establishment of axes in drosophila wing discs.
• How is metamorphosis regulated hormonally?
• Which are the different types of imaginal cells in larvae?
Aging can be defined as the time related
deterioration of the physiological functions
necessary for survival and fertility.
Gerontology (from Greek: geron, "old man" and-logy, "study
of") is the study of
the social, psychological and biological aspect of aging.
It is distinguished from geriatrics, which is the branch of
medicine that studies the diseases of the elderly.
Characteristics of aging affect all the individuals of a species.
Two major topics in research on aging
1) Life span
2) Senescence
These topics are interrelated.
Many evolutionary biologists consider
senescence to be the default state
occuring after the animal has fulfilled the
requirements of natural selection.
After its offspring are born and
raised,the animal can die.eg:Pacific
salmon.
Recent studies indicate that there are
genetic components that regulate rate of
aging. Altering activity of these genes can
alter lifespan of an individual.
The maximum lifespan is a characteristic of a species;
It is the maximum number of years a member of species
has been known to survive.
Life expectancy is not a characteristic of species,but of
populations
It is the age at which half the population still survives.
Life expectancy of Indians
♂ ♂ - 65.77 years ; ♀ ♀ - 67.95 years
Nuclear pyknosis:
With advancing age, the nucleus shrinks
and stains deeply. This is due to the
condensation of the nuclear material.
Aging is accelerated by chromosomal
aberrations and somatic gene mutations
Degeneration of cytoplasmic
organelles
Changes in enzymatic proteins
LDH, Ac Pase, Lysosomal enzymes
Catalase, Glutathione peroxidase
Respiratory enzymes, Alkaline
phosphatase, Glucose dehydrogenase
Telomeres -specific DNA sequences found only
at the tips of chromosome.
Protect the tips of chromosomes from erosion
and from sticking to one another.
In most normal body cells each cycle of cell
division shortens the telomeres.
Eventually, after many cycles of cell division,
the telomeres can be completely gone and even
some of the functional chromosomal material may
be lost.
Erosion of DNA from the tips of our
chromosomes contributes greatly to aging and
death of cells.
Shortening of telomeres
Accumulation of aging pigments
Lipofuscin accumulation
Lipofuscin is the most prevalent and well
studied of age pigments.
It invariably accumulates in most tissues, but
especially in the heart muscle, the skeletal
muscle and the brain.
There is much evidence now that lipofuscin
is a significant contributor to aging and age-
related diseases.
Accumulation of free radicals
Free radicals produce oxidative damage in lipids, proteins, or
nucleic acids by consuming an electron to accompany their
unpaired electrons.
Some effects are wrinkled skin, stiff joints and hardened
arteries.
Normal metabolism—for example, aerobic cellular
respiration in mitochondria—produces some free radicals.
Others are present in air pollution, radiation, and certain
foods we eat. Naturally occurring enzymes in peroxisomes and
in the cytosol normally dispose of free radicals.
Accumulation of free radicals
Ward Dean M.D.
• Functional decrements in neurons and their associated hormones
lead to aging .
• This theory states that hypothalamus, pituitary and adrenal gland
are the primary regulators and timekeepers of aging.
• Thyroxine is the master rate controlling hormone of the body for
metabolism and protein synthesis.
• In addition, secretion of regulatory pituitary hormones influences
the thyroid.
• The theory also indicate that decrease in protective hormones such
as estrogen, growth hormone and adrenal DHEA
(dehydroepiandrosterone) contribute to aging and that increase in
stress hormones (cortisol) can damage the brain’s memeory center
(hippocampus) and destroy immune cells.
Weakened immune system
With age the system's ability to produce necessary
antibodies that fight disease declines.
The immune system may start to attack the body’s
own cells.
This autoimmune response might be caused by
changes in cell-identity markers at the surface of cells
that cause antibodies to attach to and
mark the cell for destruction.
Decrease in rate of cell division
The Hayflick Limit Theory of Aging says that the human
cells ability to divide is limited to approximately 50-times,
after which they simply stop dividing (and hence die).
Leonard Hayflick
 Glucose, the most abundant sugar in the body, plays a
role in the aging process.
 It is haphazardly added to proteins inside and outside
cells, forming irreversible cross-links between adjacent
protein molecules.
 With advancing age, more cross-links form,
which contributes to the stiffening and loss of elasticity
that occur in aging tissues.
The changes occuring in the intercellular spaces and in the lumen of
blood vascular system are examples of extracellular changes.
Dementia
Dementia (taken from Latin, originally meaning "madness", from de-
"without" + ment, the root of mens "mind") is a serious loss of cognitive
ability .
Dementia is common in the geriatric population.
Dementia is a non-specific illness syndrome (i.e., set of symptoms) in
which affected areas of cognition may be memory, attention, language,
and problem solving.
One of the most common forms of dementia is Alzheimer's
disease
In Alzheimer’s disease, Amyloid plaques and Tau tangles builds
up and causes the early death of brain cells, which results in a
progressive loss of memory and other brain functions.
Alzheimer’s disease
Atherosclerosis is a disease in which
plaque builds up inside arteries.
 Plaque is made up of fat, cholesterol,
calcium, and other substances found in the
blood.
 Over time, plaque hardens and narrows
arteries.
 This limits the flow of oxygen-rich blood
to organs and other parts of body.
 Atherosclerosis can lead to serious
problems, including heart attack, stroke, or
even death.
Atherosclerosis
Fibrosis is the formation of excess fibrous connective tissue in an organ or tissue .
This is as opposed to formation of fibrous tissue as a normal constituent of an
organ or tissue.
Eg: Cirrhosis of the liver.
cirrhosis of the liver fibrosis in heart
Fibrosis
Parkinson's disease is a degenerative disorder of the central nervous
system.
The motor symptoms of Parkinson's disease result from the death of
dopamine-generating cells in the region of the midbrain.
The most obvious symptoms are movement-related; these include
shaking, rigidity, slowness of movement and difficulty with walking
and gait.
Dementia commonly occur in the advanced stages of the disease.
Other symptoms include sensory, sleep and emotional problems.
PD is more common in the elderly-after the age of 50.
Parkinson's disease
Changes in collagen
There is an increase in the amount of collagen proteins deposition in the
intercellular spaces. This influences the permeability of cell membranes,
affects the speed of diffusion of substances in and out and significantly
influences the process of aging.
Wrinkles are a by-product of the aging process.
With age, skin cells divide more slowly, and the inner layer, called the dermis,
begins to thin.
The network of elastin (the protein which causes skin to stretch) and collagen
fibers (the major structural proteins in the skin), which support the outer layer,
loosen and unravel, causing depressions on the surface.
With aging, skin also loses its elasticity, is less able to retain moisture, oil-secreting
glands are less efficient and the skin is slower to heal.
All of these contribute to the development of wrinkles.
Aging and Wrinkles
Oxidative damage
Aging is a by-product of normal metabolism;
 About 2- 3% of the oxygen atoms taken up by the mitochondria are
reduced to reactive oxygen species (ROS).
 [Reactive oxygen species (ROS) are chemically reactive molecules
containing oxygen ]
These ROS include the superoxide ion, the hydroxyl radical, and
hydrogen peroxide.
 ROS can oxidize and damage cell membranes, proteins, and nucleic
acids.
Evidence for this theory includes the observation that Drosophila that
overexpress enzymes that destroy ROS
(catalase and superoxide dismutase) live 30 -40% longer than do controls .
Moreover, flies with mutations in the methuselah gene
live 35% longer than wild-type flies.
The methusaleh mutants have enhanced resistance to
paraquat, a poison that works by generating ROS within
cells
These findings not only suggest that aging is under
genetic control, but also provide evidence for the role of
ROS in the aging process.
In C. elegans, too, individuals with mutations that
increase the synthesis of ROS-degrading enzymes live
much longer than wild-type nematodes .
Mitochondrial genome damage
It is thought that mutations in mitochondria could
(1) lead to defects in energy production,
(2) lead to the production of ROS by faulty electron transport,
(3) induce apoptosis.
A recent report shows that there are "hot spots" for age-related mutations
in the mitochondrial genome,
Mitochondria with these mutations have a higher replication frequency
than wild-type mitochondria.
Thus, the mutants are able to outcompete the wild-type mitochondria
and eventually dominate the cell and its progeny.
Moreover, the mutations may not only allow more ROS to be made, but
may make the mitochondrial DNA more susceptible to ROS-mediated
damage.
General wear-and-tear and genetic instability
"Wear-and-tear" theories of aging are among the oldest hypotheses.
Wear and tear theory of aging was first introduced by Dr. August
Weismann, a German biologist, in 1882.
As one gets older, small traumas to the body build up.
Point mutations increase in number, and the efficiencies of the
enzymes encoded by our genes decrease.
If a mutation occured in a part of the protein synthetic apparatus, the cell
would make a large percentage of faulty proteins .
If mutations arose in the DNA-synthesizing enzymes, the rate of
mutations would be expected to increase markedly, .
Likewise, DNA repair may be important in preventing senescence, and
species whose members' cells have more efficient DNA repair
enzymes live longer.
Genetic defects in DNA repair enzymes can produce premature aging
syndromes in humans.
Progeria is a disease characterized by normal development
in the first year of life followed by rapid aging.
It is caused by a genetic defect in which telomeres are considerably shorter
than normal.
Symptoms include dry and wrinkled skin, total baldness, and birdlike facial
features.
Death usually occurs around age 13.
Progeria [Hutchinson-Gilford syndrome ]
Werner syndrome is a rare, inherited disease that causes a
rapid acceleration of aging, usually while the person is only in
his or her twenties.
It is characterized by wrinkling of the skin, graying of the
hair and baldness, cataracts, muscular atrophy, and a tendency
to develop diabetes mellitus, cancer, and cardiovascular disease.
Most afflicted individuals die before age 50.
Werner syndrome
In C. elegans, there appear to be at least two genetic pathways that affect aging.
The first pathway involves the decision to remain a larva or to continue growth.
After hatching, the C. elegans larva proceeds through four instar stages, after
which it can become an adult.
Or (if the nematodes are overcrowded or if there is insufficient food) can enter a
nonfeeding, metabolically dormant dauer stage.
It can remain a dauer larva for up to 6 months, rather than becoming an adult
that lives only a few weeks.
In the dauer stage, adult development is suppressed, and
extra defenses against ROS are synthesized.
If some of the genes involved in this pathway are mutated,
adult development is allowed, but the ROS defenses are still
made.
The resulting adults live twice to four times as long as
wild-type adults
The pathway that regulates dauer formation & longevity is
the insulin signalling pathway
The second pathway involves the gonads.
Germ cells appear to inhibit longevity,
When these cells are removed ,C.elegans live longer.
Germ line stem cells produce a substance that blocks the
effects of a longevity- inducing hormones.
The insulin signalling pathway also regulates lifespan in
Drosophila.
Flies with loss-of-function mutations of insulin receptor gene live
nearly 85% longer than wild type.
The insulin signalling pathway also regulates lifespan in mammals.
1] mice with loss-of-function mutations of insulin signalling
pathway live longer than wild type.
2]dog breeds with low levels of insulin-like growth factor[IGF1]
live longer than those breeds with higher levels of this factor.
3]mice lacking 1 copy of IGF1 receptor gene live 25% longer than
wild type.
As human life expectancy increases due
to our increased ability to prevent and
cure
disease, we are still left with a general
aging syndrome that is characteristic of
our species.
However our knowledge of regeneration
is being put to use by medicine,and we
may soon be able to ameliorate some of
the symptoms of aging.
Questions
• Distinguish between lifespan and life expectancy.
• List the cellular and extracellular changes associated with aging.
• How is oxidative damage responsible for aging.
• Explain the telomerase theory of aging.
• Explain the Wear and Tear Theory of aging.
• What is the influence that hormones exert on the aging process?
• Write on premature aging syndromes.
• What is Hayflick limit?
• How does insulin signalling pathway relate to aging?
• Write on genetically conserved aging patterns with emphasis on
C.elegans.
Post embryonic development

More Related Content

What's hot

Metamorphosis in insects
Metamorphosis in insectsMetamorphosis in insects
Metamorphosis in insectsiqra666
 
Metamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlMetamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlakash mahadev
 
Embryonic induction
Embryonic inductionEmbryonic induction
Embryonic inductionNaveen Gul
 
Mimicry (Evolutionary Biology)
Mimicry (Evolutionary Biology)Mimicry (Evolutionary Biology)
Mimicry (Evolutionary Biology)Jsjahnabi
 
Axis formation in birds and mammals
Axis formation in birds and mammalsAxis formation in birds and mammals
Axis formation in birds and mammalsBhuma Dhinchak
 
Social organization and social behaviour in insects
Social organization and social behaviour in insectsSocial organization and social behaviour in insects
Social organization and social behaviour in insectsPoojaVishnoi7
 
Early Vertebrate development
Early Vertebrate developmentEarly Vertebrate development
Early Vertebrate developmentAzkaSidHu1
 
vittelogenesis.pptx
vittelogenesis.pptxvittelogenesis.pptx
vittelogenesis.pptxCollege
 
Limb development in vertebrates
Limb development in vertebratesLimb development in vertebrates
Limb development in vertebratesArindam Ghosh
 
Origin and evolution of reptiles
Origin and evolution of reptilesOrigin and evolution of reptiles
Origin and evolution of reptilesShafi DK
 
Fixed action pattern (fap)
Fixed action pattern (fap)Fixed action pattern (fap)
Fixed action pattern (fap)Jsjahnabi
 
Hormnoes as mediator development
Hormnoes as mediator developmentHormnoes as mediator development
Hormnoes as mediator developmentTHILAKAR MANI
 
Taxonomic collection, preservation and mounting
Taxonomic collection, preservation and mountingTaxonomic collection, preservation and mounting
Taxonomic collection, preservation and mountingPrachee Rajput
 

What's hot (20)

Imprinting
ImprintingImprinting
Imprinting
 
Metamorphosis in insects
Metamorphosis in insectsMetamorphosis in insects
Metamorphosis in insects
 
Metamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal controlMetamorphosis-amphibians, hormonal control
Metamorphosis-amphibians, hormonal control
 
Embryonic induction
Embryonic inductionEmbryonic induction
Embryonic induction
 
Origin of chordata
Origin of chordataOrigin of chordata
Origin of chordata
 
Integument of vertebrates
Integument of vertebratesIntegument of vertebrates
Integument of vertebrates
 
Mimicry (Evolutionary Biology)
Mimicry (Evolutionary Biology)Mimicry (Evolutionary Biology)
Mimicry (Evolutionary Biology)
 
Comparision of brain in vertebrates
Comparision of brain in vertebratesComparision of brain in vertebrates
Comparision of brain in vertebrates
 
Axis formation in birds and mammals
Axis formation in birds and mammalsAxis formation in birds and mammals
Axis formation in birds and mammals
 
Metamorphosis in Insects
Metamorphosis in InsectsMetamorphosis in Insects
Metamorphosis in Insects
 
Social organization and social behaviour in insects
Social organization and social behaviour in insectsSocial organization and social behaviour in insects
Social organization and social behaviour in insects
 
Early Vertebrate development
Early Vertebrate developmentEarly Vertebrate development
Early Vertebrate development
 
Role of Insect hormones
Role of Insect hormonesRole of Insect hormones
Role of Insect hormones
 
vittelogenesis.pptx
vittelogenesis.pptxvittelogenesis.pptx
vittelogenesis.pptx
 
Limb development in vertebrates
Limb development in vertebratesLimb development in vertebrates
Limb development in vertebrates
 
Origin and evolution of reptiles
Origin and evolution of reptilesOrigin and evolution of reptiles
Origin and evolution of reptiles
 
Fixed action pattern (fap)
Fixed action pattern (fap)Fixed action pattern (fap)
Fixed action pattern (fap)
 
Hormnoes as mediator development
Hormnoes as mediator developmentHormnoes as mediator development
Hormnoes as mediator development
 
Urino genitial system of vertebrates
Urino genitial system of vertebratesUrino genitial system of vertebrates
Urino genitial system of vertebrates
 
Taxonomic collection, preservation and mounting
Taxonomic collection, preservation and mountingTaxonomic collection, preservation and mounting
Taxonomic collection, preservation and mounting
 

Similar to Post embryonic development

Organogenesis by AAR
Organogenesis by AAROrganogenesis by AAR
Organogenesis by AARAhmad Raza
 
Journey of an embryo...development biology
Journey of an embryo...development biologyJourney of an embryo...development biology
Journey of an embryo...development biologyakfanazraf90
 
Development of frog/ embryogenesis
Development of frog/ embryogenesisDevelopment of frog/ embryogenesis
Development of frog/ embryogenesisDambar Khatri
 
Metamorphosis in lepidoptera
Metamorphosis in lepidopteraMetamorphosis in lepidoptera
Metamorphosis in lepidopteraEkramuddin Md
 
DEVELOPMENT OF FACE AND ORAL CAVITY
DEVELOPMENT OF FACE AND ORAL CAVITYDEVELOPMENT OF FACE AND ORAL CAVITY
DEVELOPMENT OF FACE AND ORAL CAVITYDrDevanshiShrama
 
2 Spermatogenesis & Oogenesis
2  Spermatogenesis & Oogenesis2  Spermatogenesis & Oogenesis
2 Spermatogenesis & Oogenesismsu
 
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate Morphogenesis
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate MorphogenesisComparative Anatomy of Vertebrates Chapter 5 Early Craniate Morphogenesis
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate MorphogenesisLarry Sultiz
 
Embryonic and post-embryonic development in insects :its structure, functions...
Embryonic and post-embryonic development in insects :its structure, functions...Embryonic and post-embryonic development in insects :its structure, functions...
Embryonic and post-embryonic development in insects :its structure, functions...N.m.c.a
 

Similar to Post embryonic development (20)

BIO420 Chapter 01
BIO420 Chapter 01BIO420 Chapter 01
BIO420 Chapter 01
 
Organogenesis by AAR
Organogenesis by AAROrganogenesis by AAR
Organogenesis by AAR
 
Spermatogenesis
SpermatogenesisSpermatogenesis
Spermatogenesis
 
Journey of an embryo...development biology
Journey of an embryo...development biologyJourney of an embryo...development biology
Journey of an embryo...development biology
 
Development of frog/ embryogenesis
Development of frog/ embryogenesisDevelopment of frog/ embryogenesis
Development of frog/ embryogenesis
 
Chap 5 Cleavage.pptx
Chap 5 Cleavage.pptxChap 5 Cleavage.pptx
Chap 5 Cleavage.pptx
 
Metamorphosis in lepidoptera
Metamorphosis in lepidopteraMetamorphosis in lepidoptera
Metamorphosis in lepidoptera
 
PHOTOSYNTHESIS.pptx
PHOTOSYNTHESIS.pptxPHOTOSYNTHESIS.pptx
PHOTOSYNTHESIS.pptx
 
DEVELOPMENT OF FACE AND ORAL CAVITY
DEVELOPMENT OF FACE AND ORAL CAVITYDEVELOPMENT OF FACE AND ORAL CAVITY
DEVELOPMENT OF FACE AND ORAL CAVITY
 
2 Spermatogenesis & Oogenesis
2  Spermatogenesis & Oogenesis2  Spermatogenesis & Oogenesis
2 Spermatogenesis & Oogenesis
 
Embryology
EmbryologyEmbryology
Embryology
 
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate Morphogenesis
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate MorphogenesisComparative Anatomy of Vertebrates Chapter 5 Early Craniate Morphogenesis
Comparative Anatomy of Vertebrates Chapter 5 Early Craniate Morphogenesis
 
BIO420 Chapter 09
BIO420 Chapter 09BIO420 Chapter 09
BIO420 Chapter 09
 
Cell Organisation
Cell OrganisationCell Organisation
Cell Organisation
 
BIO420 Chapter 05
BIO420 Chapter 05BIO420 Chapter 05
BIO420 Chapter 05
 
Stem cell therapy
Stem cell therapyStem cell therapy
Stem cell therapy
 
5. Sexual reproduction in marchantia
5. Sexual reproduction in marchantia5. Sexual reproduction in marchantia
5. Sexual reproduction in marchantia
 
Embryonic and post-embryonic development in insects :its structure, functions...
Embryonic and post-embryonic development in insects :its structure, functions...Embryonic and post-embryonic development in insects :its structure, functions...
Embryonic and post-embryonic development in insects :its structure, functions...
 
Gastrulation
GastrulationGastrulation
Gastrulation
 
Embryonic and post embryonic development in insect
Embryonic and post embryonic development in insectEmbryonic and post embryonic development in insect
Embryonic and post embryonic development in insect
 

Recently uploaded

Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 

Recently uploaded (20)

Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 

Post embryonic development

  • 2. Unit : 6 Post embryonic development
  • 3. Post embryonic developmental changes include metamorphosis, regeneration and aging . Metamorphosis is the phenomenon in which larva matures into the adult through a series of drastic changes. Regeneration is the creation of new organ after the original one has been removed from the adult animal. Ageing is the genetically determined species specific senescence.
  • 5. Metamorphosis is a biological process by which an animal physically develops after birth or hatching, involving a conspicuous and relatively abrupt changes in the animal's body structure through cell growth and differentiation.
  • 6. Direct and indirect development • Direct development: Young are smaller versions of the adult. E.g., Humans. • Indirect development: Young (larva) has characters different from the adult. The larva metamorphoses to produce adult. E.g., Cecropia moths (Hyalophora cecropia). • In indirect developers larva are specialized for growth and dispersal. Adults are specialized for reproduction.
  • 7.
  • 8. Secondary larvae and Primary larvae • Secondary larvae: Larvae and adults possess similar basic body plan. E.g., Butterfly and Caterpillar Frog and Tadpole • Primary larvae: Body plans of the adult and larva are drastically distinct. Eg., Sea urchin larvae and adult
  • 9. Amphibian Metamorphosis • Amphibians are named for their ability to undergo metamorphosis. • Amphibian metamorphosis is associated with morphological changes which prepare the aquatic organism for a terrestrial existence. • In urodeles (salamanders), the changes include: – Resorption of tail fin – Destruction of external gills – Changes in skin structure
  • 10. • In anurans (frogs and toads) changes are more dramatic as every organ is subject to modification. • Changes in amphibian metamorphosis are initiated by thyroid hormones. • Encounter with thyroid hormones can result in any of the four responses: – Growth – Death – Re-modeling – Re-specification
  • 11. • Growth of new structures. • T3 induces formation of adult specific organs such as limbs, eyes and nictitating membranes. • New neurons proliferate and differentiate in response to T3 (in the spinal cord). • Blocking T3 activity will prevent neuron development and cause limb paralysis.
  • 12. • Movement of eyes towards the front of the head from their original lateral position. • Binocular vision develops due to establishment of ipsilateral projections. • In Xenopus new neuronal pathways are formed due to formation of new neurons and not due to re-modelling. This is in response to thyroid hormones. • Ephrin –β is induced in the optic chiasm by the thyroid hormones.
  • 13. II. Cell Death • Larval specific structures die due to influence of T3. • Degeneration of paddle-like tail and oxygen producing gills. • First part of tail resorption is caused by apoptosis. • Remnants of the tail are removed by phagocytosis. • The enzyme caspase-9 is involved in apoptosis. • Tadpole’s RBCs die due to phagocytosis.
  • 14. III. Re-modeling • Larval intestine is made shorter for carnivory. • Cells of adult intestine are derived from larval intestine. • Triggered by digestion of old Extra Cellular Matrix by metalloproteinase Stromelysin -3 & by transcription of genes bmp-4 and sonic hedge hog. • Neurons switch targets. Motor neurons of the tadpole jaw switch to newly formed adult muscles. • Neurons innervating tongue muscles form their first synapses during metamorphosis. • Lateral line system of the tadpole degenerates and ears differentiate further.
  • 15. • Shape of the skull changes as new bones are being made. • Tadpole skull is neural crest derived cartilage. Adult skull is neural crest derived bone. • Meckel’s cartilage elongates to double its length. • Gill and pharyngeal arc cartilages degenerate. • Ceratohyal cartilage which anchors the tongue is re-modeled.
  • 16. IV. Biochemical re-specification • T-3 induces new proteins to form in existing cells. • Tadpoles are ammonotelic. Adult frogs are ureotelic. • During metamorphosis, liver synthesizes enzymes necessary to create urea from CO2 and NH3. • T-3 regulates this change by inducing transcription factors that activate urea cycle genes & suppressing genes for ammonia synthesis.
  • 17.
  • 18. • This was first demonstrated by Gundernatsch (1912). Tadpoles metamorphosed prematurely when fed with powdered horse thyroid glands. • Allen (1916) destroyed thyroid glands of early tadpoles(thyroidectomy). Metamorphosis was not observed, instead the tadpoles grew into giant tadpoles. • Sequential steps of amphibian metamorphosis are regulated by increasing amounts of thyroid hormones.
  • 19. • Threshold model states that different events of metamorphosis are triggered by different concentrations of thyroid hormones. • Low concentrations of thyroid hormones in the early stages induces limb development. • High concentration of thyroid hormones induces tail resorption and intestine re-modeling.
  • 20. • Tissues which express increased level of de-iodinase II are the ones which respond to thyroid hormones first (and convert T4 to T3). – E.g., limb rudiments (with high levels of de-iodinase II and TR α receptor.) • Thus during the early (pre-metamorphosis), limb rudiments receive thyroid hormone and use it to start leg growth.
  • 21. • The concentration of T4 increases dramatically and TR β levels increase, leading to tail resorption. • TR β is the principal receptor that mediates metamorphic climax. In this way the tail undergoes resorption only after legs are functional. • The wisdom of the frog is simple: “Never get rid of your tail before your legs are functional” • Some tissues are not responsive to thyroid hormones, e.g., dorsal retina.
  • 22. • The frog’s brain down regulates metamorphosis once metamorphic climax has been reached. • Thyroid hormones induce a negative feedback loop, shutting down pituitary cells which causes thyroid to secrete them. • T-3 is found in the anterior pituitary at metamorphic climax. This inhibits transcription of Thyrotrophin gene and thereby initiates a negative feedback loop.
  • 23. • Cellular response to thyroid hormones can be regulated by altering the concentration of T3 and TR. • The same stimulus can cause some tissues to degenerate while stimulating other cells and tissues to develop. • Resorption of tadpole’s tail is brought about by apoptosis.
  • 24. • The debris leftover is degraded by collagenases and metalloproteinases and by phagocytosis. • The response to thyroid hormone is organ specific. • Tail tip tissue placed on the trunk degenerates but eye cup on the tail does not. • Hence degeneration of the tail is an organ specific programmed cell death response.
  • 25. • Insect metamorphosis involves the destruction of larval tissues and their replacement by an entirely different population of cells. • There are 3 major patterns in insect development. • Ametabolous development • Hemimetabolous development • Holometabolous development
  • 26. • Insect development in which there is no metamorphosis & immature stages appear similar to the adults, except that they lack genitalia. • It occurs in silverfish, springtails and firebrats. • Immediately after they hatch is the pro- nymphal stage bearing the structures which enabled it to get out of the egg. • After this pro-nymphal stage, the insect grows in size but remains unchanged in form.
  • 27. • Hemimetabolous development is also known as incomplete or simple metamorphosis. • Insects emerge from eggs into nymphs (larvae) that are similar in shape to the adults. • They go through several nymphal stages (called instars) before they undergo a final molt into their adult form. • At the final molt, the insect that emerges out is winged and sexually mature adult called Imago.
  • 28. • Complete or holometabolous metamorphosis is characteristic of beetles, butterflies and moths, flies, and wasps. • Their life cycle includes four stages: egg, larva , pupa and adult. • The juvenile form hatches out from the egg and is called a larva. • The larva undergoes a series of molts, each stage is called an instar. • After the final instar, the larva undergoes a metamorphic molt to become a pupa, which does not feed. • During pupation adult structures form and replace larval structures. • An imaginal molt enables the adult (imago) to shed its pupal case and emerge.
  • 29. • In holometabolous insects, the transformation from juvenile into adult occurs within the pupal cuticle. • Most of the larval body is systematically destroyed by programmed cell death, while new adult organs develop from relatively undifferentiated nests of imaginal cells. • Thus within any larva, there are two distinct populations of cells: • The larval cells • The imaginal cells
  • 30. • The cells of the imaginal disc: Forms cuticular structures of the adult including wings, legs, antennae, eyes, head, thorax and genitalia. • Histoblast nests: Clusters of imaginal cells that will form in the adult abdomen. • Imaginal cells: Clusters of imaginal cells within each organ proliferate to form the adult organs as the larval organs degenerate.
  • 31. • The imaginal cells of the disc can be seen in the newly hatched larvae as thickenings of the epidermis. • Imaginal discs divide rapidly at specific characteristic times. • As their cells proliferate, the discs form a tubular epithelial membrane that folds in on itself in a compact spiral. • At metamorphosis, these cells proliferate and differentiate further as they elongate.
  • 32. • At the end of the third instar, just before pupation, the leg disc is an epithelial sac connected by a thin stalk to the larval epidermis. • On one side of the sac, the epithelium is coiled into a series of concentric folds: reminiscent of a Danish pastry. • As pupation begins, the cells at the center of the disc become the most distal portions of the leg- the claws and the tarsus.
  • 33.
  • 34. • The outer cells become the proximal structures- the coxa and the adjoining epidermis. • After differentiating, the cells of the appendages and epidermis secrete a cuticle appropriate for each. • A number of adepithelial cells migrate into the disc early in development. • During the pupal stage, these cells give rise to muscles and nerves that serve the leg.
  • 35. • Specification of the general cell fates occurs in the embryo. • The more specific cell fates are specified in the larval stages. • Interactions between several genes in the imaginal disc determine the type of leg structure. • In the third instar stage leg disc, the center of the disc secretes the highest concentration of two morphogens: Wingless (Wg) and Decapentaplegic (Dpp). • High concentrations of these paracrine factors cause an expression of distal-less gene. • Moderate concentrations cause the expression of Dachshund gene. • Lower concentration of paracrine factors cause the expression of Homothorax gene. • Homothorax gene (purple), dachshund gene (green), Distal- less (red)
  • 36. • Cells expressing distal-less telescope out to become most distal structures of the leg- the claw and distal tarsal segments. • Those expressing homothorax become the most proximal structure- the coxa. • Cells expressing the Dachshund become the femur and proximal tibia. • Areas where the transcription factors overlap produces the Trochanter and distal tibia. • In this manner, the gradient of Wg and Dpp proteins is converted into discrete domains of gene expression.
  • 37. • The mature leg disc in the third instar stage of Drosophila is unlike the adult leg. • It is determined but not yet differentiated. • Differentiation requires the moulting hormone 20- hydroxyecdysone(20E). • The mature leg disc in the third instar of Drosophila does not look like the adult structure. • First pulse in the late larval stages initiates formation of the pupa, arrests cell division in the disc, and initiates the cell shape changes that drive the eversion of the leg.
  • 38. • The elongation of imaginal discs occurs without cell division and is due to cell shape changes within the disc epithelium. • Using fluorescently labeled phalloidin to stain the peripheral microfilaments of leg disc cells, it was demonstrated that cells are tightly arranged along the proximal-distal axis. • Upon providing a hormonal signal, the cells change shape and the leg is everted- the central cells of the disc becoming the most distal (claw) cells of the limb. • The leg structures will differentiate within the pupa, so that by the time the adult fly ecloses, they are fully formed and functional .
  • 39. • The largest of Drosophila's imaginal discs is that of the wing. • The wing discs are distinguished from the other imaginal discs by the expression of the vestigial gene. • When this gene is expressed in any other imaginal disc, wing tissue emerges.
  • 40. • Axes of the wing are specified by gene expression patterns. • In the first instar , expression of the engrailed gene distinguishes the posterior compartment of the wing from the anterior compartment. • The Engrailed transcription factor in the posterior compartment activates the gene for the BMP-like paracrine factor Hedgehog . • Hedgehog functions only when cells have the receptor (Patched) to receive it. • Diffusion of Hedgehog activates the gene encoding Decapentaplegic (Dpp) in a strip of cells at the anterior region of the wing disc.
  • 41. • Dpp and a co-expressed BMP called Glass-bottom boat (Gbb) act to establish a gradient of BMP signaling activity. • BMPs activates the Mad transcription factor (a Smad protein). • Dpp is a short-range paracrine factor. Gbb exhibits a much longer range of diffusion to create a gradient. • At high levels, the spalt (sal) and optomotor blind (omb) genes are activated, whereas at low levels, only omb is activated. • Below a particular level of phosphorylated Mad activity the brinker (brk) gene is no longer inhibited; thus brk is expressed outside the signaling domain.
  • 42. Dorso-ventral & Proximal-distal axis • The dorsalventral axis of the wing is formed by the expression of the apterous gene in the prospective dorsal cells of the wing disc. • The vestigial gene remains "on" in the ventral portion of the wing disc. • The dorsal portion of the wing synthesizes transmembrane proteins that prevent the intermixing of the dorsal and ventral cells. • At the boundary between the dorsal and ventral compartments, the Apterous and Vestigial transcription factors interact to activate the gene encoding the Wnt paracrine factor Wingless. • Wingless protein acts as a growth factor to promote the cell proliferation that extends the wing. • Wingless also helps establish the proximal-distal axis of the wing: high levels of Wingless activate the Distal-less gene, which specifies the most distal regions of the wing. • Vestigial protein :green, Apterous::Red , Yellow: Overlap.
  • 43. Hormonal control of Metamorphosis • Insect metamorphosis is under hormonal control. • Metamorphosis of insects is regulated by systemic hormonal signals, which are controlled by neurohormones from the brain. • Insect molting and metamorphosis are controlled by two effector hormones : the steroid 20-hydroxyecdysone (20E) and the lipid juvenile hormone (JH ). • 20Hydroxyecdysone initiates and coordinates each molt and regulates the changes in gene expression that occur during metamorphosis. • Juvenile hormone prevents the ecdysone-induced changes in gene expression. • Presence of JH during a molt ensures that the result of that molt is another larval instar, not a pupa or an adult. • The molting process is initiated in the brain, where neurosecretory cells release prothoracicotropic hormone (PTTH ) .
  • 44. • PTTH is a peptide hormone and it stimulates the production of ecdysone by the prothoracic gland by activating the RTK pathway in those cells . • Ecdysone is modified in peripheral tissues to become the active molting hormone 20E. • For a larval molt, the first pulse produces a small rise in the 20E concentration in the larval hemolymph (blood) and elicits a change in cellular commitment in the epidermis. • A second, larger pulse o f 20E initiates differention. • These pulses o f 20E commit and stimulate the epidermal cells to synthesize enzymes that digest the old cuticle and synthesize a new one. • Juvenile hormone is secreted by the corpora allata.
  • 45. • The secretory cells of the corpora allata are active during larval molts but inactive during the metamorphic molt and the imaginal molt. • As long as JH is present, the 20E-stimulated molts result in a new larval instar. • In the last larval instar, however, the medial nerve from the brain to the corpora allata inhibits these glands from producing JH, and there is a simultaneous increase in the body's ability to degrade existing JH. • Both these mechanisms cause JH levels to drop below a critical threshold value, triggering the release of PTTH from the brain. • PTTH, in turn, stimulates the prothoracic gland to secrete a small amount o f ecdysone. • The resulting pulse of 20E, in the absence of high levels of JH, commits the epidermal cells to pupal development. • Larva-specific mRNAs are not replaced, and new mRNAs are synthesized whose protein products inhibit the transcription of the larval messages. • There are two major pulses of 20E during Drosophila metamorphosis.
  • 46. • The first pulse occurs in the third instar larva and triggers the initiation of morphogenesis of the leg and wing imaginal discs. • The larva stops eating and migrates to find a site to begin pupation. • The second 20E pulse occurs 10-12 hours later and tells the "prepupa" to become a pupa. • The head inverts and the salivary glands degenerate. • The second pulse transcribes pupa-specific genes and initiates the molt. • At the imaginal molt, when 20E acts in the absence of juvenile hormone, the imaginal discs fully differentiate and the molt gives rise to an adult.
  • 47. Ecdysone receptors cannot bind to DNA by themselves. They first bind to nuclear receptors. These are Ecdysone Receptors (ECRs). An ECR protein forms an active molecule by pairing with an ultra specific (USP) protein. In the absence of hormone bound ECR, Usp binds to ecdysone responsive genes and inhibits their transcription. Inhibition is converted into activation when ecdysone receptors bind to Usp. ECR exists in several isoforms. Larval tissues and neurons have ECR –B1 isoform. Imaginal disc and differentiating neurons have ECR-A.
  • 48. • Insect metamorphosis involves complex interaction between ligands and receptors. • The target tissues are not mere passive receptors of hormones. • They become responsive to hormones only at particular times. • When there is a pulse of 20-E at the middle of the 4th instar of the tobacco hornworm moth Manduca, epidermis is able to respond because it expresses ecdysone receptors. • Thus timing of metamorphosis in insects can be controlled by synthesis of receptors in target tissues.
  • 49. • Explain Cecropia metamorphosis using suitable illustrations. • What do you mean by Biochemical re-specification. How is it important? • What does the Threshold model of metamorphosis state? • Elaborate on the responses of cells to thyroid hormones. • Which are the different stages of metamorphosis in amphibians? • Which are the different types of develoment in insects? • What are imaginal discs? • Explain the establishment of axes in drosophila wing discs. • How is metamorphosis regulated hormonally? • Which are the different types of imaginal cells in larvae?
  • 50.
  • 51. Aging can be defined as the time related deterioration of the physiological functions necessary for survival and fertility.
  • 52.
  • 53. Gerontology (from Greek: geron, "old man" and-logy, "study of") is the study of the social, psychological and biological aspect of aging. It is distinguished from geriatrics, which is the branch of medicine that studies the diseases of the elderly. Characteristics of aging affect all the individuals of a species. Two major topics in research on aging 1) Life span 2) Senescence These topics are interrelated.
  • 54. Many evolutionary biologists consider senescence to be the default state occuring after the animal has fulfilled the requirements of natural selection. After its offspring are born and raised,the animal can die.eg:Pacific salmon. Recent studies indicate that there are genetic components that regulate rate of aging. Altering activity of these genes can alter lifespan of an individual.
  • 55. The maximum lifespan is a characteristic of a species; It is the maximum number of years a member of species has been known to survive. Life expectancy is not a characteristic of species,but of populations It is the age at which half the population still survives.
  • 56. Life expectancy of Indians ♂ ♂ - 65.77 years ; ♀ ♀ - 67.95 years
  • 57.
  • 58.
  • 59. Nuclear pyknosis: With advancing age, the nucleus shrinks and stains deeply. This is due to the condensation of the nuclear material. Aging is accelerated by chromosomal aberrations and somatic gene mutations Degeneration of cytoplasmic organelles
  • 60. Changes in enzymatic proteins LDH, Ac Pase, Lysosomal enzymes Catalase, Glutathione peroxidase Respiratory enzymes, Alkaline phosphatase, Glucose dehydrogenase
  • 61. Telomeres -specific DNA sequences found only at the tips of chromosome. Protect the tips of chromosomes from erosion and from sticking to one another. In most normal body cells each cycle of cell division shortens the telomeres. Eventually, after many cycles of cell division, the telomeres can be completely gone and even some of the functional chromosomal material may be lost. Erosion of DNA from the tips of our chromosomes contributes greatly to aging and death of cells. Shortening of telomeres
  • 62. Accumulation of aging pigments Lipofuscin accumulation Lipofuscin is the most prevalent and well studied of age pigments. It invariably accumulates in most tissues, but especially in the heart muscle, the skeletal muscle and the brain. There is much evidence now that lipofuscin is a significant contributor to aging and age- related diseases.
  • 63. Accumulation of free radicals Free radicals produce oxidative damage in lipids, proteins, or nucleic acids by consuming an electron to accompany their unpaired electrons. Some effects are wrinkled skin, stiff joints and hardened arteries. Normal metabolism—for example, aerobic cellular respiration in mitochondria—produces some free radicals. Others are present in air pollution, radiation, and certain foods we eat. Naturally occurring enzymes in peroxisomes and in the cytosol normally dispose of free radicals. Accumulation of free radicals
  • 64.
  • 65. Ward Dean M.D. • Functional decrements in neurons and their associated hormones lead to aging . • This theory states that hypothalamus, pituitary and adrenal gland are the primary regulators and timekeepers of aging. • Thyroxine is the master rate controlling hormone of the body for metabolism and protein synthesis. • In addition, secretion of regulatory pituitary hormones influences the thyroid. • The theory also indicate that decrease in protective hormones such as estrogen, growth hormone and adrenal DHEA (dehydroepiandrosterone) contribute to aging and that increase in stress hormones (cortisol) can damage the brain’s memeory center (hippocampus) and destroy immune cells.
  • 66. Weakened immune system With age the system's ability to produce necessary antibodies that fight disease declines. The immune system may start to attack the body’s own cells. This autoimmune response might be caused by changes in cell-identity markers at the surface of cells that cause antibodies to attach to and mark the cell for destruction.
  • 67. Decrease in rate of cell division The Hayflick Limit Theory of Aging says that the human cells ability to divide is limited to approximately 50-times, after which they simply stop dividing (and hence die). Leonard Hayflick
  • 68.  Glucose, the most abundant sugar in the body, plays a role in the aging process.  It is haphazardly added to proteins inside and outside cells, forming irreversible cross-links between adjacent protein molecules.  With advancing age, more cross-links form, which contributes to the stiffening and loss of elasticity that occur in aging tissues.
  • 69.
  • 70. The changes occuring in the intercellular spaces and in the lumen of blood vascular system are examples of extracellular changes. Dementia Dementia (taken from Latin, originally meaning "madness", from de- "without" + ment, the root of mens "mind") is a serious loss of cognitive ability . Dementia is common in the geriatric population. Dementia is a non-specific illness syndrome (i.e., set of symptoms) in which affected areas of cognition may be memory, attention, language, and problem solving. One of the most common forms of dementia is Alzheimer's disease
  • 71. In Alzheimer’s disease, Amyloid plaques and Tau tangles builds up and causes the early death of brain cells, which results in a progressive loss of memory and other brain functions. Alzheimer’s disease
  • 72. Atherosclerosis is a disease in which plaque builds up inside arteries.  Plaque is made up of fat, cholesterol, calcium, and other substances found in the blood.  Over time, plaque hardens and narrows arteries.  This limits the flow of oxygen-rich blood to organs and other parts of body.  Atherosclerosis can lead to serious problems, including heart attack, stroke, or even death. Atherosclerosis
  • 73. Fibrosis is the formation of excess fibrous connective tissue in an organ or tissue . This is as opposed to formation of fibrous tissue as a normal constituent of an organ or tissue. Eg: Cirrhosis of the liver. cirrhosis of the liver fibrosis in heart Fibrosis
  • 74. Parkinson's disease is a degenerative disorder of the central nervous system. The motor symptoms of Parkinson's disease result from the death of dopamine-generating cells in the region of the midbrain. The most obvious symptoms are movement-related; these include shaking, rigidity, slowness of movement and difficulty with walking and gait. Dementia commonly occur in the advanced stages of the disease. Other symptoms include sensory, sleep and emotional problems. PD is more common in the elderly-after the age of 50. Parkinson's disease
  • 75.
  • 76.
  • 77. Changes in collagen There is an increase in the amount of collagen proteins deposition in the intercellular spaces. This influences the permeability of cell membranes, affects the speed of diffusion of substances in and out and significantly influences the process of aging.
  • 78. Wrinkles are a by-product of the aging process. With age, skin cells divide more slowly, and the inner layer, called the dermis, begins to thin. The network of elastin (the protein which causes skin to stretch) and collagen fibers (the major structural proteins in the skin), which support the outer layer, loosen and unravel, causing depressions on the surface. With aging, skin also loses its elasticity, is less able to retain moisture, oil-secreting glands are less efficient and the skin is slower to heal. All of these contribute to the development of wrinkles. Aging and Wrinkles
  • 79.
  • 80. Oxidative damage Aging is a by-product of normal metabolism;  About 2- 3% of the oxygen atoms taken up by the mitochondria are reduced to reactive oxygen species (ROS).  [Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen ] These ROS include the superoxide ion, the hydroxyl radical, and hydrogen peroxide.  ROS can oxidize and damage cell membranes, proteins, and nucleic acids. Evidence for this theory includes the observation that Drosophila that overexpress enzymes that destroy ROS (catalase and superoxide dismutase) live 30 -40% longer than do controls .
  • 81. Moreover, flies with mutations in the methuselah gene live 35% longer than wild-type flies. The methusaleh mutants have enhanced resistance to paraquat, a poison that works by generating ROS within cells These findings not only suggest that aging is under genetic control, but also provide evidence for the role of ROS in the aging process. In C. elegans, too, individuals with mutations that increase the synthesis of ROS-degrading enzymes live much longer than wild-type nematodes .
  • 82. Mitochondrial genome damage It is thought that mutations in mitochondria could (1) lead to defects in energy production, (2) lead to the production of ROS by faulty electron transport, (3) induce apoptosis. A recent report shows that there are "hot spots" for age-related mutations in the mitochondrial genome, Mitochondria with these mutations have a higher replication frequency than wild-type mitochondria. Thus, the mutants are able to outcompete the wild-type mitochondria and eventually dominate the cell and its progeny. Moreover, the mutations may not only allow more ROS to be made, but may make the mitochondrial DNA more susceptible to ROS-mediated damage.
  • 83. General wear-and-tear and genetic instability "Wear-and-tear" theories of aging are among the oldest hypotheses. Wear and tear theory of aging was first introduced by Dr. August Weismann, a German biologist, in 1882. As one gets older, small traumas to the body build up. Point mutations increase in number, and the efficiencies of the enzymes encoded by our genes decrease. If a mutation occured in a part of the protein synthetic apparatus, the cell would make a large percentage of faulty proteins . If mutations arose in the DNA-synthesizing enzymes, the rate of mutations would be expected to increase markedly, . Likewise, DNA repair may be important in preventing senescence, and species whose members' cells have more efficient DNA repair enzymes live longer. Genetic defects in DNA repair enzymes can produce premature aging syndromes in humans.
  • 84.
  • 85.
  • 86. Progeria is a disease characterized by normal development in the first year of life followed by rapid aging. It is caused by a genetic defect in which telomeres are considerably shorter than normal. Symptoms include dry and wrinkled skin, total baldness, and birdlike facial features. Death usually occurs around age 13. Progeria [Hutchinson-Gilford syndrome ]
  • 87. Werner syndrome is a rare, inherited disease that causes a rapid acceleration of aging, usually while the person is only in his or her twenties. It is characterized by wrinkling of the skin, graying of the hair and baldness, cataracts, muscular atrophy, and a tendency to develop diabetes mellitus, cancer, and cardiovascular disease. Most afflicted individuals die before age 50. Werner syndrome
  • 88.
  • 89. In C. elegans, there appear to be at least two genetic pathways that affect aging. The first pathway involves the decision to remain a larva or to continue growth. After hatching, the C. elegans larva proceeds through four instar stages, after which it can become an adult. Or (if the nematodes are overcrowded or if there is insufficient food) can enter a nonfeeding, metabolically dormant dauer stage. It can remain a dauer larva for up to 6 months, rather than becoming an adult that lives only a few weeks.
  • 90. In the dauer stage, adult development is suppressed, and extra defenses against ROS are synthesized. If some of the genes involved in this pathway are mutated, adult development is allowed, but the ROS defenses are still made. The resulting adults live twice to four times as long as wild-type adults The pathway that regulates dauer formation & longevity is the insulin signalling pathway
  • 91. The second pathway involves the gonads. Germ cells appear to inhibit longevity, When these cells are removed ,C.elegans live longer. Germ line stem cells produce a substance that blocks the effects of a longevity- inducing hormones.
  • 92. The insulin signalling pathway also regulates lifespan in Drosophila. Flies with loss-of-function mutations of insulin receptor gene live nearly 85% longer than wild type. The insulin signalling pathway also regulates lifespan in mammals. 1] mice with loss-of-function mutations of insulin signalling pathway live longer than wild type. 2]dog breeds with low levels of insulin-like growth factor[IGF1] live longer than those breeds with higher levels of this factor. 3]mice lacking 1 copy of IGF1 receptor gene live 25% longer than wild type.
  • 93. As human life expectancy increases due to our increased ability to prevent and cure disease, we are still left with a general aging syndrome that is characteristic of our species. However our knowledge of regeneration is being put to use by medicine,and we may soon be able to ameliorate some of the symptoms of aging.
  • 94. Questions • Distinguish between lifespan and life expectancy. • List the cellular and extracellular changes associated with aging. • How is oxidative damage responsible for aging. • Explain the telomerase theory of aging. • Explain the Wear and Tear Theory of aging. • What is the influence that hormones exert on the aging process? • Write on premature aging syndromes. • What is Hayflick limit? • How does insulin signalling pathway relate to aging? • Write on genetically conserved aging patterns with emphasis on C.elegans.