SlideShare a Scribd company logo
1 of 66
Download to read offline
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
A first order hyperbolic framework for large strain
computational solid dynamics: An upwind cell centred
Total Lagrangian scheme
Jibran Haider a, b
, Chun Hean Lee a
, Antonio J. Gil a
, Javier Bonet c
& Antonio Huerta b
a
Zienkiewicz Centre for Computational Engineering (ZCCE)
College of Engineering, Swansea University, UK
b
Laboratori de Càlcul Numèric (LaCàN),
Universitat Politèchnica de Catalunya (UPC BarcelonaTech), Spain
c
University of Greenwich, London, UK
20th
May 2016
Website: http://www.jibranhaider.weebly.com
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 1/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 2/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 3/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
1.1 Motivation
Solid dynamics
Objectives:
• Simulate fast-transient solid dynamic problems.
• Develop an efficient library of low order numerical schemes.
Displacement based FEM/FVM formulations:
• Linear tetrahedral elements suffer from:
× Volumetric locking in nearly incompressible materials.
× Reduced order of convergence for stresses and strains.
× Poor performance in bending and shock dominated
scenarios.
Proposed mixed formulation [Haider et al., 2016]:
• An upwind cell-centred FVM Total Lagrangian scheme.
• Entitled TOtal Lagrangian Upwind Cell-centred FVM for
Hyperbolic conservation laws (TOUCH).
Utilises an explicit time integration scheme.
Programmed in the open-source CFD software OpenFOAM.
0 0.5 1
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.03s
-1
-0.5
0
0.5
1x 10
7
-0.5 0 0.5 1 1.5
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.0006s
Q1-P0 FEM
0 0.5 1
0
0.5
1
1.5
X-CoordinateY-Coordinate
t=0.03s
-1
-0.5
0
0.5
1x 10
7
-0.5 0 0.5 1 1.5
0
0.5
1
1.5
X-Coordinate
Y-Coordinate
t=0.0006s
Upwind FVM
Haider J, Lee CH, Gil AJ, Bonet J. A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total
Lagrangian scheme. International Journal for Numerical Methods in Engineering 2016; (In Press), doi: 10.1002/nme.5293
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 4/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
1.2 Mixed solid dynamics
Adapted CFD technologies
(LLNL - 1991) Upwind cell centred FVM (1D) - [Trangenstein & Colella]
(DU - 1994) Upwind cell centred FVM (2D) - [Trangenstein]
(UPMC - 2010) Cell centred FVM (2D Hyperelastic GLACE) - [Kluth & Després]
(SU - 2012) Two-step Taylor-Galerkin FEM (2D) - [Karim, Lee, Gil & Bonet]
(MIT - 2012) Hybridizable Discontinuous Galerkin FEM (2D) - [Nguyen & Peraire]
(SU - 2013) Upwind cell centred FVM (2D) - [Lee, Gil & Bonet]
(SU - 2013) JST vertex centred FVM (3D) - [Aguirre, Gil, Bonet & Carreño]
(SU - 2013) Petrov-Galerkin FEM (3D) - [Lee, Gil & Bonet]
(CEA - 2013) Cell centred FVM (2D EUCCLHYD) - [Maire, Abgrall, Breil, Loubére & Rebourcet]
(SU - 2014) Fractional step Petrov-Galerkin FEM (3D) - [Gil, Lee, Bonet & Aguirre]
(DU - 2015) D-VMS FEM (3D) - [Scovazzi, Carnes & Zeng]
(SU - 2015) Polyconvex Petrov-Galerkin FEM (3D) - [Bonet, Gil, Lee, Aguirre & Ortigosa]
(SU - 2015) Upwind vertex centred FVM (3D) - [Aguirre, Gil, Bonet & Lee]
(SU - 2016) Polyconvex (Fractional) Hydrocode (3D) - [Gil, Lee, Bonet & Ortigosa]
(SU - 2016) Upwind cell centred FVM (3D TOUCH) - [Haider, Lee, Gil & Bonet, In press]
(SU - 2016) JST SPH (3D) - [Lee, Gil, Greto, Kulasegaram & Bonet, Under review]
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 5/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
1.3 OpenFOAM
Solid dynamics in OpenFOAM
What is OpenFOAM?
• An open-source CFD software package in C++.
• Based on the cell centred Finite Volume Method.
• Limited functionality for solid dynamics.
v = 100 m/s
(0.5, 0.5, 0.5)
(−0.5, −0.5, −0.5)
[Punch cube]
OpenFOAM solvers [Jasak & Weller, 2000]
× Linear elastic material
× Small strain deformation
TOUCH scheme [Haider, 2016; Lee, 2013]
Complex constitutive models
Large strain deformation
Jasak H, Weller H. Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical
Methods in Engineering 2000; 48(2):267–287
Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural
dynamics. Computers and Structures 2013; 118:13–38
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 6/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 7/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
2.1 Governing equations
Total Lagrangian formulation
Conservation Laws
1. Linear momentum:
∂p
∂t
= 0 · P(F) + ρ0b; p = ρ0v
2. Deformation gradient:
∂F
∂t
= 0 ·
1
ρ0
p ⊗ I
Additional equations
3. Total energy:
∂E
∂t
= 0 ·
1
ρ0
P
T
p − Q + s
4. Geometry update:
∂x
∂t
=
1
ρ0
p; x = X + u
An appropriate constitutive model is required to close the system.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 8/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
2.1 Governing equations
Total Lagrangian formulation
First order hyperbolic system:
∂U
∂t
= 0 · F(U) + S
where
U =







p
F
E
x







; F =







P(F)
1
ρ0
p ⊗ I
1
ρ0
PT p − Q
0







; S =







ρ0b
0
s
1
ρ0
p







.
First order hyperbolic system widely used in CFD.
Develop an efficient second order numerical scheme for mixed transient solid dynamics.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 9/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 10/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology
Finite volume methodology
Steps:
1. Reconstruction
• Spatial discretisation
• Linear reconstruction procedure
2. Flux computation
• Lagrangian contact dynamics
• Acoustic Riemann solver
3. Involutions
• Constrained transport schemes
4. Evolution
• Time discretisation
Constrained transport schemes are widely used in Magnetohydrodynamics (MHD).
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 11/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Reconstruction
Spatial discretisation
Conservation equations for an arbitrary element:
dUe
dt
=
1
Ωe
0 Ωe
0
∂FI
∂XI
dΩ0 −→ ∀ I = 1, 2, 3;
=
1
Ωe
0 ∂Ωe
0
FI NI
FN
dA (Gauss Divergence theorem)
≈
1
Ωe
0
f∈Λ
f
e
g∈Λ
g
f
F
C
Neg
(U
+
, U
−
) Ceg
Only 1 Gauss quadrature point per face!
dUe
dt
=
1
Ωe
0
f∈Λ
f
e
F
C
Nef
(U
+
, U
−
) Cef
Ceg
e
FC
Neg
Ce f
e
FC
Ne f
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 12/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Reconstruction
Spatial discretisation
Standard face-based CC-FVM
dUe
dt
=
1
Ωe
0



f∈Λ
f
e
F
C
Nef
(U
−
f , U
+
f ) Cef



e FC
Ne f
Ce f Ωe
0
Node-based CC-FVM [Kluth & Després, 2010]
dUe
dt
=
1
Ωe
0



a∈Λa
e
F
C
Nea
(U
−
a , U
+
a ) Cea



FC
Nea
Cea
Ωe
0
e
Kluth G, Després B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational
Physics 2010; 229(24):9092–9118
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 13/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Reconstruction
Spatial discretisation
Standard face-based CC-FVM
dUe
dt
=
1
Ωe
0



f∈Λ
f
e
F
C
Nef
(U
−
f , U
+
f ) Cef



dpe
dt
=
1
Ωe
0
f∈Λ
f
e
t
C
f Cef
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
1
ρ0
p
C
f ⊗ Cef
dEe
dt
=
1
Ωe
0
f∈Λ
f
e
1
ρ0
p
C
f · t
C
f Cef
dxe
dt
=
1
ρ0
pe
Node-based CC-FVM [Kluth & Després, 2010]
dUe
dt
=
1
Ωe
0



a∈Λa
e
F
C
Nea
(U
−
a , U
+
a ) Cea



dpe
dt
=
1
Ωe
0 a∈Λa
e
t
C
ea Cea
dFe
dt
=
1
Ωe
0 a∈Λa
e
1
ρ0
p
C
a ⊗ Cea
dEe
dt
=
1
Ωe
0 a∈Λa
e
1
ρ0
p
C
a · t
C
ea Cea
dxa
dt
=
1
ρ0
pa
Kluth G, Després B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational
Physics 2010; 229(24):9092–9118
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 14/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Reconstruction
Godunov’s method
• Piecewise constant representation in every cell.
• Methodology is first order accurate in space.
x
y
U
Ue
Uα1
Uα4
Uα2
Uα3
(a) Piecewise constant values ×
x
y
U
Uα4
Uα3
Uα2
Uα1
Ue
Uα3
Uα4
(b) Linear reconstruction
× First order simulations suffer from excessive numerical dissipation.
A linear reconstruction procedure is essential to increase spatial accuracy.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 15/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Reconstruction
Linear reconstruction procedure
Gradient operator:
• Classical least squares minimisation procedure.
Π(Ge) =
1
2 α∈Λα
e
1
deα
2
[Uα − (Ue + Ge · deα)]
2
;
deα = Xα − Xe; ˆdeα =
deα
deα
.
Ge =


α∈Λα
e
ˆdeα ⊗ ˆdeα


−1
α∈Λα
e
Uα − Ue
deα
ˆdeα
Linear extrapolation to flux integration point:
U{f,a} = Ue + Ge · X{f,a} − Xe
de1α2
e1
α1
α2
α3
α4
αf1
αf2
αf3αf4
αf5
e2
de2α4
Gradient correction procedure:
• Necessary for the satisfaction of monotonicity through Barth and Jespersen limiter (φe).
U{f,a} = Ue + φe Ge(Ue, Uα) · X{f,a} − Xe
Ensures that the spatial discretisation is second order accurate.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 16/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Flux computation
Lagrangian contact dynamics
Rankine-Hugoniot jump conditions:
c U = F N
where = +
− −
c p = t
c F =
1
ρ0
p ⊗ N
c E =
1
ρ0
P
T
p · N
X, x
Y, y
Z, z
Ω+
0
Ω−
0
N+
N−
n−
n+
Ω+(t)
Ω−(t)
φ+
φ−
n−
n+
c−
s
c+
s
c+
pc−
p
Time t = 0
Time t
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 17/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Flux computation
Acoustic Riemann solver
Contact flux:
F
C
N =




tC
1
ρ0
pC
⊗ N
1
ρ0
tC
· pC




where p
C
= p
C
n + p
C
t
t
C
= t
C
n + t
C
t
Jump condition for linear momentum equation:
c p = t
Normal jump → cp pn = tn
Tangential jump → cs pt = tt
p+
n , t+
np−
n , t−
n
c+
pc−
p
pC
n , tC
n
x
t
Normal jump
p+
t , t+
tp−
t , t−
t
c+
sc−
s
pC
t , tC
t
x
t
Tangential jump
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 18/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Flux computation
Acoustic Riemann solver
Riemann flux:
p
C
= (n ⊗ n)
c−
p p−
+ c+
p p+
c−
p + c+
p
+ (I − n ⊗ n)
c−
s p−
+ c+
s p+
c−
s + c+
s
pC
Ave
+ (n ⊗ n)
t+
− t−
c−
p + c+
p
+ (I − n ⊗ n)
t+
− t−
c−
s + c+
s
pC
Stab
.
t
C
= (n ⊗ n)
c+
p t−
+ c−
p t+
c−
p + c+
p
+ (I − n ⊗ n)
c+
s t−
+ c−
s t+
c−
s + c+
s
tC
Ave
(n ⊗ n)
c−
p c+
p (p+
− p−
)
c−
p + c+
p
+ (I − n ⊗ n)
c−
s c+
s (p+
− p−
)
c−
s + c+
s
tC
Stab
.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 19/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Flux computation
Boundary flux
1. Fixed boundary:
p
C
= pB
t
C
= t
−
− c
−
p (n ⊗ n) + c
−
s (I − n ⊗ n) (pB − p
−
)
2. Free boundary:
p
C
= p
−
+
1
c−
p
(n ⊗ n) +
1
c−
s
(I − n ⊗ n) (tB − t
−
)
t
C
= tB
3. Symmetric (tangentially sliding) boundary:
p
C
= (I − n ⊗ n) p
−
+
1
c−
s
(tB − t
−
)
t
C
= (n ⊗ n) t
−
− c
−
p p
−
+ (I − n ⊗ n)tB
4. Skew-symmetric (normally sliding) boundary:
p
C
= (n ⊗ n) p
−
+
1
c−
s
(tB − t
−
)
t
C
= (I − n ⊗ n) t
−
− c
−
p p
−
+ (n ⊗ n)tB
c+
p = c+
s = ∞
p−
pB
c+
p = c+
s = 0
p−
tB
p+
n = 0, c+
p = ∞, c+
s = 0
p−
tB
p+
t = 0, c+
p = 0, c+
s = ∞
p−
tB
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 20/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Involutions
Constrained transport schemes
Compatibility condition [Lee, Gil & Bonet, 2013]: CURL F = 0
Face based F update
1. Standard Godunov’s scheme:
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
pC
f
ρ0
⊗ Cef X
2. Constrained-TOUCH scheme:
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
˜pC
f (pC
f )
ρ0
⊗ Cef
3. Penalised-TOUCH scheme:
Fe = Fe
Update from Godunov’s scheme
+ ξF ( 0 x − Fe)
Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural
dynamics. Computers and Structures 2013; 118:13–38
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 21/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Involutions
Godunov-type FVM: constrained-TOUCH
Constrained-TOUCH update:
dFe
dt
=
1
Ωe
0
f∈Λ
f
e
˜pC
f (pC
f )
ρ0
⊗ Cef
1. Cell averaged linear momentum:
˜pe =
1
Λ
f
e
f∈Λ
f
e
p
C
f
2. Local gradient operator:
Ge =




f∈Λ
f
e
ˆdef ⊗ ˆdef




−1
f∈Λ
f
e


pC
f − ˜pe
def

ˆdef
3. Nodal linear momentum
pea = ˜pe + φeGe(Xa − Xe); pa =
1
Λe
a e∈Λe
a
pea
4. Modified contact linear momentum
˜p
C
f =
1
Λa
f a∈Λa
f
pa
Ge
˜pepe
= Linear reconstruction + Riemann solver
˜pC
f
pa
pC
f
= Gradient calculation through averaged
= Extrapolation / interpolation to nodes
= Interpolation to face centers
linear momentum
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 22/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.1 Methodology: Evolution
Temporal discretisation
dUe
dt
= ˙Ue
Runge-Kutta time integration:
1
st
RK stage −→ U
∗
e = U
n
e + ∆t ˙U
n
e (U
n
e , t
n
)
2
nd
RK stage −→ U
∗∗
e = U
∗
e + ∆t ˙U
∗
e (U
∗
e , t
n+1
)
U
n+1
e =
1
2
U
n
e + U
∗∗
e
with stability constraint:
∆t = αCFL
hmin
cp,max
An explicit Total Variation Diminishing Runge-Kutta scheme widely used in CFD context.
Ensures that the formulation is second order accurate in time.
Monolithic time update for geometry.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 23/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
3.2 Conservation of angular momentum
Global Lagrangian projection procedure
Functional:
Π ˜˙pe, λAng, λLin =
1
2 e
Ω
e
0
˜˙pe − ˙pe · ˜˙pe − ˙pe + λAng ·
e
Ω
e
0 T
e
Torque − Xe × ˜˙pe
+ λLin ·
e
T
e
Force − Ω
e
0
˜˙pe
where Xe =
xn
e → 1st
RK stage
xn+1/2
e + ∆t
2ρ0
pe → 2nd
RK stage
Te
Force =
f∈Λ
f
e
tC
f Cef
Te
Torque =
f∈Λ
f
e
xf × tC
f Cef
Modified rate of linear momentum:
˜˙pe = ˙pe + λAng × Xe + λLin
Lagrange multipliers:



e
Ωe
0 [Xe ⊗ Xe − (Xe · Xe)I] −
e
Ωe
0
ˆXe
e
Ωe
0
ˆXe −
e
Ωe
0






λAng
λLin


 =



e
Ωe
0 Xe × ˙pe − Te
Torque
e
Ωe
0 ˙pe − Te
Force


 ; ˆXe
ik
= Eijk [Xe]j
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 24/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 25/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.1 Cable
Shock dominated scenario
L = 10m
x
P(t)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 26/61
Problem description: Linear elastic material, ρ0 = 8000 kg/m3
, E = 200 GPa, ν = 0, αCFL = 0.5,
Discretisation = 100 cells and P(L, t) = −5 × 107
Pa.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.1 Cable
Shock dominated scenario
Stress evolution at mid cable (x = 5 m)
0 0.002 0.004 0.006 0.008 0.01 0.012
−12.5
−10
−7.5
−5
−2.5
0
2.5
5
x 10
7
Time (sec)
Stress(Pa)
Analytical
TOUCH (1st order)
TOUCH (2nd order w/o limiter)
TOUCH (2nd order with limiter)
JST VCFVM
6 7 8 9 10
x 10
−3
−7.5
−5
−2.5
0
2.5
x 10
7
Time (sec)
Stress(Pa)
Demonstrates the ability of the formulation to handle shock problems.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 27/61
Problem description: Linear elastic material, ρ0 = 8000 kg/m3
, E = 200 GPa, ν = 0, αCFL = 0.5,
Discretisation = 100 cells and P(L, t) = −5 × 107
Pa.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.1 Cable
Mesh convergence
Velocity at t = 34.47 s
10
−2
10
−1
10
0
10
−8
10
−7
10
−6
10
−5
10
−4
10
−3
Grid Size (m)
VelocityError
slope = 1
L1
norm (1st order)
L2
norm (1st order)
slope = 2
L1
norm (2nd order)
L2
norm (2nd order)
Stress at t = 34.47 s
10
−2
10
−1
10
0
10
−8
10
−7
10
−6
10
−5
10
−4
10
−3
Grid Size (m)
StressError
slope = 1
L1
norm (1st order)
L2
norm (1st order)
slope = 2
L1
norm (2nd order)
L2
norm (2nd order)
Demonstrates the expected convergence of the available schemes for all variables.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 28/61
Problem description: Linear elastic material, ρ0 = 1 kg/m3
, E = 1 GPa, ν = 0.3 αCFL = 0.5 and
P(L, t) = 1 × 10−3
[sin ((πt)/20 − π/2) + 1] Pa.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.2 Low dispersion cube
Mesh convergence
X, x
Y, y
Z, z
(0, 0, 0)
(1, 1, 1)
Displacements scaled 300 times
t = 0 s t = 2 ms t = 4 ms t = 6 ms
Pressure (Pa)
Boundary conditions:
1. Symmetric conditions at:
X = 0, Y = 0, Z = 0
2. Skew-symmetric conditions at:
X = 1, Y = 1, Z = 1
Analytical solution:
u(X, t) = U0 cos
√
3
2
cdπt





A sin
πX1
2 cos
πX2
2 cos
πX3
2
B cos
πX1
2 sin
πX2
2 cos
πX3
2
C cos
πX1
2 cos
πX2
2 sin
πX3
2





where U0 = 5 × 10
−4
m; cd =
λ + 2µ
ρ0
; A = B = C = 1.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 29/61
Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3
, E = 17 MPa, ν = 0.3
and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.2 Low dispersion cube
Mesh convergence (Constrained-TOUCH)
Velocity at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
vx
vy
vZ
Slope = 2
Stress at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
Pxx
Pyy
Pzz
Slope = 2
Demonstrates second order convergence using constrained-TOUCH scheme.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 30/61
Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3
, E = 17 MPa, ν = 0.3
and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.2 Low dispersion cube
Mesh convergence (Penalised-TOUCH)
Velocity at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
vx
vy
vZ
Slope = 2
Stress at t = 0.004 s
10
−2
10
−1
10
0
10
−7
10
−6
10
−5
10
−4
Grid Size (m)
L2NormError
Pxx
Pyy
Pzz
Slope = 2
Demonstrates second order convergence using penalised-TOUCH scheme.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 31/61
Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3
, E = 17 MPa, ν = 0.3
and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.3 Spinning Plate
Structured vs unstructured elements
X, x
Y, y
(0.5, 0.5, 0)
ω0 = [0, 0, Ω]T
(−0.5, −0.5, 0)
Time = 0.15 s
(a) Structured 20 × 20 cells (b) Unstructured 484 cells
Pressure (Pa)
Demonstrates the ability of the framework to handle unstructured grids.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 32/61
Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material,
ρ0 = 1000 kg/m3
, E = 17 MPa, ν = 0.45 and αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.3 Spinning Plate
Structured vs unstructured elements
X, x
Y, y
(0.5, 0.5, 0)
ω0 = [0, 0, Ω]T
(−0.5, −0.5, 0)
Displacement of point X = [0.5, 0.5, 0]T
0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
−1.5
−1.25
−1
−0.75
−0.5
−0.25
0
0.25
0.5
0.75
1
Time (sec)
Displacement(m)
ux
structured
uy
structured
ux
unstructured
uy
unstructured
Demonstrates the ability of the framework to handle unstructured grids.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 33/61
Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material,
ρ0 = 1000 kg/m3
, E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.3 Spinning Plate
Momentum conservation
Global angular momentum
0 0.05 0.1 0.15 0.2
0
0.5
1
1.5
2
2.5
3
3.5
x 10
4
Time (sec)
Angularmomentum(N.m.s
−1
)
A
x
(structured)
A
y
(structured)
A
z
(structured)
Ax
(unstructured)
A
y
(unstructured)
A
z
(unstructured)
Global linear momentum
0 0.05 0.1 0.15 0.2
−5
−4
−3
−2
−1
0
1
2
3
4
5
x 10
−11
Time (sec)
Linearmomentum(kg.m.s−1
)
p
x
(structured)
p
y
(structured)
p
z
(structured)
p
x
(unstructured)
py
(unstructured)
p
z
(unstructured)
Conservation the angular and linear momenta of the system.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 34/61
Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material,
ρ0 = 1000 kg/m3
, E = 17 MPa, ν = 0.45 and αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.4 L-shaped block
Momentum conservation
Y, y
(0, 10, 0)
X, x
Z, z
F1(t) F2(t)
(6, 0, 0)
(3, 3, 3)
[L-shaped block]
F1(t) = −F2(t) = (150, 300, 450)
T
p(t)
p(t) =



t 0 ≤ t < 2.5
5 − t 2.5 ≤ t < 5
0 t ≥ 5
[Simo, 1992]
t = 2.5 s t = 5 s
t = 7.5 s t = 10 s
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 35/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3
,
E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.4 L-shaped block
Momentum conservation
Global angular momentum
0 5 10 15 20 25 30
−3
−2
−1
0
1
2
3
x 10
5
Time (sec)
AngularMomentum(N.m.s−1
)
Ax
A
y
Az
A
x
w/o AMPA
Ay
w/o AMPA
Az
w/o AMPA
Global linear momentum
0 5 10 15 20 25 30
−6
−4
−2
0
2
4
6
x 10
−11
Time (sec)
LinearMomentum(kg.m.s
−1
)
px
py
pz
Conservation the angular and linear momenta of the system.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 36/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3
,
E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.4 L-shaped block
Energy conservation
Global total energy
0 5 10 15 20 25 30 35 40
0
1
2
3
4
5
x 10
4
Time (sec)
Energy(J)
Total energy
6x10x3
12x20x6
24x40x12
Lower numerical dissipation with mesh refinement.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 37/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3
,
E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.4 L-shaped block
Cuboid elements
Mesh refinement along z axis at t = 7.5 s
(a) 6 × 10 × 4 cells (b) 6 × 10 × 8 cells (c) 6 × 10 × 16 cells
Proposed methodology performs well for high aspect ratio elements.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 38/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3
,
E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.5 Bending Column
Bending dominated scenario
X, x
Y, y
(−0.5, 0, 0.5)
(0.5, 6, −0.5)
Z, z
L = 6m
v0 = [V Y/L, 0, 0]T
[Bending column]
Mesh convergence at t = 1.5 s
Pressure (Pa)
Eliminates bending difficulty.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 39/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.5 Bending Column
Enhanced reconstruction
Time = 0.5 s
(b) Standard reconstruction (b) Enhanced reconstruction
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 40/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.5 Bending Column
Comparison with hyperelastic-GLACE scheme
Evolution of tip displacement (X = [0.5, 6, 0.5]T
)
0 1 2 3 4 5 6 7
−4
−2
0
2
4
6
8
Time (sec)
xdisplacement(m)
Constrained TOUCH (4x24x4)
Constrained TOUCH (8x48x8)
Constrained TOUCH (16x96x16)
GLACE (4x24x4)
GLACE (8x48x8)
GLACE (16x96x16)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 41/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Highly non-linear problem
X, x
Y, y
(−0.5, 0, 0.5)
(0.5, 6, −0.5)
Z, z
ω0 = [0, Ω sin(πY/2L), 0]T
L
[Twisting column - Refinement]
Mesh refinement at t = 0.1 s
(a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40
(a) 4 × 24 × 4
(b) 8 × 48 × 8
(c) 40 × 240 × 40
Pressure (Pa)
Demonstrates the robustness of the numerical scheme
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 42/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Mesh convergence
X, x
Y, y
(−0.5, 0, 0.5)
(0.5, 6, −0.5)
Z, z
ω0 = [0, Ω sin(πY/2L), 0]T
L
Column height at t = 0.1 s
0 20 40 60 80
6
6.02
6.04
6.06
6.08
Cells along x and z axes
Height(m)
constrained−TOUCH
Demonstrates mesh convergence of the numerical scheme
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 43/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Constrained-TOUCH vs hyperelastic GLACE
X, x
Y, y
(−0.5, 0, 0.5)
(0.5, 6, −0.5)
Z, z
ω0 = [0, Ω sin(πY/2L), 0]T
L
[Twisting column - Comparison]
t = 0.1 s
(a) Constrained-TOUCH (b) GLACE (c) GLACE (Fine)
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 44/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Comparison of various alternative numerical schemes
t = 0.1 s
(a) C-TOUCH (b) P-TOUCH (c) GLACE (d) B-bar (e) upwind-VC (f) JST-VC (g) PG-FEM (h) Hu-Washizu
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 45/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Comparison of various alternative numerical schemes
t = 0.1 s
(a) C-TOUCH (b) P-TOUCH (c) B-bar (d) PG-FEM (e) Hu-Washizu (f) Q2-Q1 FEM
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 46/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Standard FVM update (penalised-TOUCH with ξF = 0)
t = 0.01 s t = 0.04 s t = 0.07 s t = 0.1 s t = 0.13 s t = 0.16 s
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 47/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.6 Twisting Column
Increased initial angular velocity
t = 0.02 s t = 0.04 s t = 0.06 s t = 0.08 s t = 0.1 s
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 48/61
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 200 rad/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.7 Taylor Impact
von-Mises plasticity
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
[Taylor impact]
[Taylor impact - Radius]
Evolution of pressure wave
t = 0.1 µs t = 0.2 µs t = 0.3 µs t = 0.4 µs t = 0.5 µs t = 0.6 µs
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate plastic behaviour.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 49/61
Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3
, E = 117 GPa, ν = 0.35,
αCFL = 0.3, ¯τ0
y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.7 Taylor Impact
Comparison of cell centred FVM schemes
X, x
Y, y
v0
(−0.003, 0, 0.003)
(0.003, 0.03, −0.003)
Z, z
t = 60 µs
(a) Constrained-TOUCH (b) Penalised-TOUCH (c) HyperelasticGLACE
Plastic strain p
Demonstrates the ability of the algorithm to simulate plastic behaviour.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 50/61
Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3
, E = 117 GPa, ν = 0.35,
αCFL = 0.3, ¯τ0
y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.7 Taylor Impact
Comparison of cell centred FVM schemes
X, x
Y, y
v0
(−0.003, 0, 0.003)
(0.003, 0.03, −0.003)
Z, z
t = 60 µs
(a) Constrained-TOUCH (b) Penalised-TOUCH (c) HyperelasticGLACE
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate plastic behaviour.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 51/61
Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3
, E = 117 GPa, ν = 0.35,
αCFL = 0.3, ¯τ0
y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.7 Taylor Impact
Comparison of cell centred FVM schemes
X, x
Y, y
v0
(−0.003, 0, 0.003)
(0.003, 0.03, −0.003)
Z, z
x coordinate of the point X = [0.003, 0, 0]T
0 2 4 6 8
x 10
−5
3
4
5
6
7
8
x 10
−3
Time (sec)
x−coordinate(m)
Constrained−TOUCH (6x30x6)
Constrained−TOUCH (12x60x12)
Penalised−TOUCH (6x30x6)
Penalised−TOUCH (12x60x12)
Hyperelastic−GLACE (6x30x6)
Hyperelastic−GLACE (12x60x12)
Hyperelastic−GLACE (20x100x20)
Demonstrates the ability of the algorithm to simulate plastic behaviour.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 52/61
Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3
, E = 117 GPa, ν = 0.35,
αCFL = 0.3, ¯τ0
y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.8 Bar rebound
Contact problem
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
0.004
[Bar rebound]
t = 6 ms t = 9 ms t = 12 ms t = 18 ms t = 24 ms
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate contact problems.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 53/61
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3
, E = 585 MPa,
ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.8 Bar rebound
Height evolution
X, x
Y, y
v0
(−0.0032, 0, 0)
(0.0032, 0.0324, 0)
Z, z
r0
0.004
y Displacement of the points X = [0, 0.0324, 0]T
and X = [0, 0, 0]T
0 0.5 1 1.5 2 2.5 3
x 10
−4
−20
−16
−12
−8
−4
0
4
8
x 10
−3
Time (sec)
yDispacement(m)
Top (2880 cells)
Top (23040 cells)
Bottom (2880 cells)
Bottom (23040 cells)
Demonstrates the ability of the algorithm to simulate contact problems.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 54/61
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3
, E = 585 MPa,
ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.9 Ring impact
Contact problem
X, x
Y, y
(−0.03, 0)
0.004
v0
(0, −0.04)
[Ring impact]
t = 10 µs t = 15 µs t = 20 µs
t = 25 µs t = 30 µs t = 35 µs
Pressure (Pa)
Demonstrates the ability of the algorithm to simulate contact behaviour.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 55/61
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3
, E = 1 MPa,
ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.9 Ring impact
Energy conservation
X, x
Y, y
(−0.03, 0)
0.004
v0
(0, −0.04)
Global total energy
0 0.01 0.02 0.03 0.04
0.25
0.3
0.35
0.4
0.45
0.5
Time (sec)
Energy(J)
Total energy
K.E + P.E (420 cells)
K.E + P.E (1640 cells)
K.E + P.E (3660 cells)
K.E + P.E (6480 cells)
K.E + P.E (25760 cells)
Lower numerical dissipation with mesh refinement.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 56/61
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3
, E = 1 MPa,
ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.9 Ring impact
Momentum conservation
Global linear momentum
0 0.01 0.02 0.03 0.04
−1.5
−1
−0.5
0
0.5
1
1.5
Time (sec)
Linearmomentum(kg.m.s
−1
)
px
(420 cells)
py
(420 cells)
pz
(420 cells)
p
x
(3660 cells)
py
(3660 cells)
pz
(3660 cells)
px
(25760 cells)
py
(25760 cells)
pz
(25760 cells)
Global angular momentum
0 0.01 0.02 0.03 0.04
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
Time (sec)
Angularmomentum(N.m.s−1
)
Ax
(420 cells)
Ay
(420 cells)
Az
(420 cells)
Ax
(3660 cells)
A
y
(3660 cells)
Az
(3660 cells)
Ax
(25760 cells)
Ay
(25760 cells)
Az
(25760 cells)
Conservation of linear and angular momenta of the system.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 57/61
Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3
, E = 1 MPa,
ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
4.10 Torus impact
Contact problem
[Torus impact]
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 58/61
Problem description: Neo-Hookean material, ρ0 = 1000 kg/m3
, E = 1 MPa, ν = 0.4, αCFL = 0.3
and v0 = −3 m/s.
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Scheme of presentation
1 Introduction
Motivation
Mixed solid dynamics
OpenFOAM
2 Reversible elastodynamics
Governing equations
3 Numerical technique
Finite Volume Methodology
Angular momentum preserving scheme
4 Numerical results
5 Conclusions
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 59/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
Conclusions and further research
Conclusions
• Upwind FVM is presented for fast solid dynamic simulations within the OpenFOAM environment.
• Linear elements can be used without usual volumetric and bending locking.
• Velocities and stresses display the same rate of convergence.
On-going work
• Investigation into an advanced Roe’s Riemann solver with robust shock capturing algorithm.
• Extension to multiple body and self contact.
• Ability to handle tetrahedral elements.
Future work
• Implementation of an Arbitrary Lagrangian-Eulerian (ALE) formulation.
• Extension to Fluid-Struction Interaction (FSI) problems.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 60/61
1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions
References
1. Haider J, Lee CH, Gil AJ, Bonet J. A first order hyperbolic framework for large strain computational solid dynamics: An
upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering 2016; (In Press),
doi: 10.1002/nme.5293.
2. Bonet J, Gil AJ, Lee CH, Aguirre M, Ortigosa R. A first order hyperbolic framework for large strain computational solid
dynamics. Part I: Total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering 2015;
283:689–732.
3. Aguirre M, Gil AJ, Bonet J, Lee CH. An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics. Journal of
Computational Physics 2015; 300:387–422.
4. Aguirre M, Gil AJ, Bonet J, Carreño AA. A vertex centred finite volume Jameson–Schmidt–Turkel (JST) algorithm for a mixed
conservation formulation in solid dynamics. Journal of Computational Physics 2014; 259:672–699.
5. Gil AJ, Lee CH, Bonet J, Aguirre M. A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible,
nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering
2014; 276:659–690.
6. Lee CH, Gil AJ, Bonet J. Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast
solid dynamics. Computer Methods in Applied Mechanics and Engineering 2014; 268:40–64.
7. Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law
formulation in structural dynamics. Computers and Structures 2013; 118:13–38.
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 61/61
References
APPENDIX
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 1/5
References
Eigenvalue structure
Vector of conserved variables:
U = p F E x
T
Flux vector:
FN = PN 1
ρ0
p ⊗ N 1
ρ0
t · p 0
T
Flux Jacobian matrix:
AN =
∂FN
∂U
=









03×3 CN 03×1 03×3
1
ρ0
IN 09×9 09×1 09×3
1
ρ0
PN 1
ρ0
pT
CN 0 01×3
03×3 03×9 03×1 03×3









;
where [CN ]ijJ = CiIjJNI
CiIjJ =
∂PiI
∂FjJ
[IN ]iIj = δijNI
Right eigenvector:
ANRα = cαRα where Rα = p
R
α F
R
α E
R
α x
R
α
T
Eigen decomposition:
cαp
R
α = CN : F
R
α
cαF
R
α =
1
ρ0
p
R
α ⊗ N
ρ0c
2
αp
R
α = CNN p
R
α
where [CNN ]ij = [C]iIjJNI NJ
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 2/5
References
Acoustic wave speeds
Neo-Hookean constitutive model:
CNN = −
2
3
µJ
−5/3
F [(HFN) ⊗ (FN) + (FN) ⊗ (HFN)]
+ µJ
−2/3
F I +
5
9
µJ
−8/3
F (F : F) + κ (HFN) ⊗ (HFN)
= γ1 m ⊗ m
∗
+ m
∗
⊗ m + γ2I + γ3m ⊗ m
Eigen-system:
ρ0c
2
αp
R
α = CNN p
R
α
= γ1 m ⊗ m
∗
+ m
∗
⊗ m + γ2I + γ3m ⊗ m p
R
α
Longitudinal wave speed:
c1,2 = ±cp
cp =
2γ1
JF
λ + γ3
JF
λ
2
+ γ2
ρ0
Shear wave speed:
c3,4 = c5,6 = ±cs
cs =
γ2
ρ0
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 3/5
References
Riemann solver
Upwind Riemann solver:
F
C
N = F
C
NAve
+ F
C
NStab
=
1
2
FN(U
−
f ) + FN(U
+
f ) −
1
2
U
+
f
U
−
f
|AN| dU
Upwinding stabilisation
Decomposition of flux Jacobian matrix:
|AN| =
1
2
6
α=1
|cα|RαL
T
α
=
1
2
(R1, . . . , R6)








cp 0 0 0 0 0
0 cp 0 0 0 0
0 0 cs 0 0 0
0 0 0 cs 0 0
0 0 0 0 cs 0
0 0 0 0 0 cs












LT
1
.
.
.
LT
6




=
1
2
cp(R1L
T
1 + R2L
T
2 ) + cs(R3L
T
3 + R4L
T
4 + R5L
T
5 + R6L
T
6 )
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 4/5
References
Pressure instabilities?
t = 0.125 s
(a) Cell values (4) (b) Nodal values (4) (c) Cell values (6) (d) Cell values (8) (e) Cell values (16)
Pressure (Pa)
Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 5/5
Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3
,
E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.

More Related Content

What's hot

Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular ArchitectureJose Miguel Moreno
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...narmo
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationApostolos Chalkis
 
p-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsp-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsmmasdeu
 
Final presentation
Final presentationFinal presentation
Final presentationYash Bhalgat
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...IJMIT JOURNAL
 
International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)IJMIT JOURNAL
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...IJMIT JOURNAL
 
Fine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsFine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsAkankshaAgrawal55
 
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...Federico Cerutti
 
Computationally efficient surrogate based multi-objective optimisation for PS...
Computationally efficient surrogate based multi-objective optimisation for PS...Computationally efficient surrogate based multi-objective optimisation for PS...
Computationally efficient surrogate based multi-objective optimisation for PS...Eric Fraga
 
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...Federico Cerutti
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueAmro Elfeki
 
Algorithm Selection for Preferred Extensions Enumeration
Algorithm Selection for Preferred Extensions EnumerationAlgorithm Selection for Preferred Extensions Enumeration
Algorithm Selection for Preferred Extensions EnumerationFederico Cerutti
 
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
Approximation Algorithms for the Directed k-Tour and k-Stroll ProblemsApproximation Algorithms for the Directed k-Tour and k-Stroll Problems
Approximation Algorithms for the Directed k-Tour and k-Stroll ProblemsSunny Kr
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVissarion Fisikopoulos
 
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsDuval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsLaurent Duval
 

What's hot (18)

Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and Optimization
 
p-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsp-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fields
 
Cerutti -- TAFA2013
Cerutti -- TAFA2013Cerutti -- TAFA2013
Cerutti -- TAFA2013
 
Final presentation
Final presentationFinal presentation
Final presentation
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...
 
International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)International Journal of Managing Information Technology (IJMIT)
International Journal of Managing Information Technology (IJMIT)
 
An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...An improved spfa algorithm for single source shortest path problem using forw...
An improved spfa algorithm for single source shortest path problem using forw...
 
Fine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsFine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its Variants
 
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract...
 
Computationally efficient surrogate based multi-objective optimisation for PS...
Computationally efficient surrogate based multi-objective optimisation for PS...Computationally efficient surrogate based multi-objective optimisation for PS...
Computationally efficient surrogate based multi-objective optimisation for PS...
 
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Algorithm Selection for Preferred Extensions Enumeration
Algorithm Selection for Preferred Extensions EnumerationAlgorithm Selection for Preferred Extensions Enumeration
Algorithm Selection for Preferred Extensions Enumeration
 
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
Approximation Algorithms for the Directed k-Tour and k-Stroll ProblemsApproximation Algorithms for the Directed k-Tour and k-Stroll Problems
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensions
 
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsDuval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
 

Viewers also liked

OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingJibran Haider
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming TipsFumiya Nozaki
 
Boundary Conditions in OpenFOAM
Boundary Conditions in OpenFOAMBoundary Conditions in OpenFOAM
Boundary Conditions in OpenFOAMFumiya Nozaki
 
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』Fumiya Nozaki
 
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-Fumiya Nozaki
 
OpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能についてOpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能についてFumiya Nozaki
 
OpenFOAMの壁関数
OpenFOAMの壁関数OpenFOAMの壁関数
OpenFOAMの壁関数Fumiya Nozaki
 
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-Fumiya Nozaki
 
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...Rachel Lindt
 
Nigel Hardiman_Master CV
Nigel Hardiman_Master CVNigel Hardiman_Master CV
Nigel Hardiman_Master CVNigel Hardiman
 
What is e commerce
What is e commerceWhat is e commerce
What is e commercebewaqoof
 
Asia-Pacific_Wealth_Report_2011_____English_Version
Asia-Pacific_Wealth_Report_2011_____English_VersionAsia-Pacific_Wealth_Report_2011_____English_Version
Asia-Pacific_Wealth_Report_2011_____English_VersionChia-Peck Wong
 
International business copy (1)
International business   copy (1)International business   copy (1)
International business copy (1)bewaqoof
 
Research in to music magazine
Research in to music magazineResearch in to music magazine
Research in to music magazinegriffwill98
 
Digital commerce
Digital commerceDigital commerce
Digital commerceksstep01
 
3118_midres
3118_midres3118_midres
3118_midresRies Mol
 
Semcon oscic10 des_20101105_captured
Semcon oscic10 des_20101105_capturedSemcon oscic10 des_20101105_captured
Semcon oscic10 des_20101105_capturedUlf Bunge
 

Viewers also liked (20)

OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on training
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming Tips
 
Boundary Conditions in OpenFOAM
Boundary Conditions in OpenFOAMBoundary Conditions in OpenFOAM
Boundary Conditions in OpenFOAM
 
Avinash_PPT
Avinash_PPTAvinash_PPT
Avinash_PPT
 
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
OpenFOAM v2.3.0のチュートリアル 『oscillatingInletACMI2D』
 
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
OpenFOAM -回転領域を含む流体計算 (Rotating Geometry)-
 
OpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能についてOpenFOAM の Function Object 機能について
OpenFOAM の Function Object 機能について
 
OpenFOAM Training v5-1-en
OpenFOAM Training v5-1-enOpenFOAM Training v5-1-en
OpenFOAM Training v5-1-en
 
OpenFOAMの壁関数
OpenFOAMの壁関数OpenFOAMの壁関数
OpenFOAMの壁関数
 
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
OpenFOAM -空間の離散化と係数行列の取り扱い(Spatial Discretization and Coefficient Matrix)-
 
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...
Los Angeles’ Untapped Resource: Recommendations to Streamline and Standardize...
 
Nigel Hardiman_Master CV
Nigel Hardiman_Master CVNigel Hardiman_Master CV
Nigel Hardiman_Master CV
 
What is e commerce
What is e commerceWhat is e commerce
What is e commerce
 
Asia-Pacific_Wealth_Report_2011_____English_Version
Asia-Pacific_Wealth_Report_2011_____English_VersionAsia-Pacific_Wealth_Report_2011_____English_Version
Asia-Pacific_Wealth_Report_2011_____English_Version
 
International business copy (1)
International business   copy (1)International business   copy (1)
International business copy (1)
 
Research in to music magazine
Research in to music magazineResearch in to music magazine
Research in to music magazine
 
Digital commerce
Digital commerceDigital commerce
Digital commerce
 
3118_midres
3118_midres3118_midres
3118_midres
 
Semcon oscic10 des_20101105_captured
Semcon oscic10 des_20101105_capturedSemcon oscic10 des_20101105_captured
Semcon oscic10 des_20101105_captured
 
THESIS
THESISTHESIS
THESIS
 

Similar to A first order hyperbolic framework for large strain computational computational solid dynamics in OpenFOAM

A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...Chun Hean Lee
 
Updated Lagrangian SPH
Updated Lagrangian SPHUpdated Lagrangian SPH
Updated Lagrangian SPHpaulorrcampos1
 
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...Aleix Valls
 
Impact of the Time Step in DEM Simulations on Granular Mixing Properties
Impact of the Time Step in DEM Simulations on Granular Mixing PropertiesImpact of the Time Step in DEM Simulations on Granular Mixing Properties
Impact of the Time Step in DEM Simulations on Granular Mixing Propertiesjodoua
 
A delay decomposition approach to robust stability analysis of uncertain syst...
A delay decomposition approach to robust stability analysis of uncertain syst...A delay decomposition approach to robust stability analysis of uncertain syst...
A delay decomposition approach to robust stability analysis of uncertain syst...ISA Interchange
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...IJECEIAES
 
Ab experiments of fluid flow in polymer microchannel
Ab experiments of fluid flow in polymer microchannelAb experiments of fluid flow in polymer microchannel
Ab experiments of fluid flow in polymer microchannelShaelMalik
 
A Two Step Taylor Galerkin Formulation For Fast Dynamics
A Two Step Taylor Galerkin Formulation For Fast DynamicsA Two Step Taylor Galerkin Formulation For Fast Dynamics
A Two Step Taylor Galerkin Formulation For Fast DynamicsHeather Strinden
 
Hyperheuristics in Logistics - kassem danach
Hyperheuristics in Logistics - kassem danachHyperheuristics in Logistics - kassem danach
Hyperheuristics in Logistics - kassem danachKassem Danach
 
ADVENTURE_sFlowの最新動向
ADVENTURE_sFlowの最新動向ADVENTURE_sFlowの最新動向
ADVENTURE_sFlowの最新動向ADVENTURE Project
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineeringTalal Ashraf
 
An Exact Branch And Bound Algorithm For The General Quadratic Assignment Problem
An Exact Branch And Bound Algorithm For The General Quadratic Assignment ProblemAn Exact Branch And Bound Algorithm For The General Quadratic Assignment Problem
An Exact Branch And Bound Algorithm For The General Quadratic Assignment ProblemJoe Andelija
 
2005 pinto santiago_marchi_cobem_2005
2005 pinto santiago_marchi_cobem_20052005 pinto santiago_marchi_cobem_2005
2005 pinto santiago_marchi_cobem_2005CosmoSantiago
 

Similar to A first order hyperbolic framework for large strain computational computational solid dynamics in OpenFOAM (20)

A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in c...
 
Updated Lagrangian SPH
Updated Lagrangian SPHUpdated Lagrangian SPH
Updated Lagrangian SPH
 
USNCCM13
USNCCM13USNCCM13
USNCCM13
 
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
FINITE ELEMENT FORMULATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS WITH SHARP GRADI...
 
Impact of the Time Step in DEM Simulations on Granular Mixing Properties
Impact of the Time Step in DEM Simulations on Granular Mixing PropertiesImpact of the Time Step in DEM Simulations on Granular Mixing Properties
Impact of the Time Step in DEM Simulations on Granular Mixing Properties
 
A delay decomposition approach to robust stability analysis of uncertain syst...
A delay decomposition approach to robust stability analysis of uncertain syst...A delay decomposition approach to robust stability analysis of uncertain syst...
A delay decomposition approach to robust stability analysis of uncertain syst...
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
 
intro
introintro
intro
 
Ab experiments of fluid flow in polymer microchannel
Ab experiments of fluid flow in polymer microchannelAb experiments of fluid flow in polymer microchannel
Ab experiments of fluid flow in polymer microchannel
 
Mine Risk Control
Mine Risk ControlMine Risk Control
Mine Risk Control
 
A Two Step Taylor Galerkin Formulation For Fast Dynamics
A Two Step Taylor Galerkin Formulation For Fast DynamicsA Two Step Taylor Galerkin Formulation For Fast Dynamics
A Two Step Taylor Galerkin Formulation For Fast Dynamics
 
Hyperheuristics in Logistics - kassem danach
Hyperheuristics in Logistics - kassem danachHyperheuristics in Logistics - kassem danach
Hyperheuristics in Logistics - kassem danach
 
Hmtc1300663
Hmtc1300663Hmtc1300663
Hmtc1300663
 
ADVENTURE_sFlowの最新動向
ADVENTURE_sFlowの最新動向ADVENTURE_sFlowの最新動向
ADVENTURE_sFlowの最新動向
 
COZYME_0523.pdf
COZYME_0523.pdfCOZYME_0523.pdf
COZYME_0523.pdf
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineering
 
An Exact Branch And Bound Algorithm For The General Quadratic Assignment Problem
An Exact Branch And Bound Algorithm For The General Quadratic Assignment ProblemAn Exact Branch And Bound Algorithm For The General Quadratic Assignment Problem
An Exact Branch And Bound Algorithm For The General Quadratic Assignment Problem
 
08039246
0803924608039246
08039246
 
2005 pinto santiago_marchi_cobem_2005
2005 pinto santiago_marchi_cobem_20052005 pinto santiago_marchi_cobem_2005
2005 pinto santiago_marchi_cobem_2005
 
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
Nonnegative Matrix Factorization with Side Information for Time Series Recove...Nonnegative Matrix Factorization with Side Information for Time Series Recove...
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
 

Recently uploaded

Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 

Recently uploaded (20)

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 

A first order hyperbolic framework for large strain computational computational solid dynamics in OpenFOAM

  • 1. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme Jibran Haider a, b , Chun Hean Lee a , Antonio J. Gil a , Javier Bonet c & Antonio Huerta b a Zienkiewicz Centre for Computational Engineering (ZCCE) College of Engineering, Swansea University, UK b Laboratori de Càlcul Numèric (LaCàN), Universitat Politèchnica de Catalunya (UPC BarcelonaTech), Spain c University of Greenwich, London, UK 20th May 2016 Website: http://www.jibranhaider.weebly.com Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 1/61
  • 2. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 2/61
  • 3. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 3/61
  • 4. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 1.1 Motivation Solid dynamics Objectives: • Simulate fast-transient solid dynamic problems. • Develop an efficient library of low order numerical schemes. Displacement based FEM/FVM formulations: • Linear tetrahedral elements suffer from: × Volumetric locking in nearly incompressible materials. × Reduced order of convergence for stresses and strains. × Poor performance in bending and shock dominated scenarios. Proposed mixed formulation [Haider et al., 2016]: • An upwind cell-centred FVM Total Lagrangian scheme. • Entitled TOtal Lagrangian Upwind Cell-centred FVM for Hyperbolic conservation laws (TOUCH). Utilises an explicit time integration scheme. Programmed in the open-source CFD software OpenFOAM. 0 0.5 1 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.03s -1 -0.5 0 0.5 1x 10 7 -0.5 0 0.5 1 1.5 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.0006s Q1-P0 FEM 0 0.5 1 0 0.5 1 1.5 X-CoordinateY-Coordinate t=0.03s -1 -0.5 0 0.5 1x 10 7 -0.5 0 0.5 1 1.5 0 0.5 1 1.5 X-Coordinate Y-Coordinate t=0.0006s Upwind FVM Haider J, Lee CH, Gil AJ, Bonet J. A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering 2016; (In Press), doi: 10.1002/nme.5293 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 4/61
  • 5. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 1.2 Mixed solid dynamics Adapted CFD technologies (LLNL - 1991) Upwind cell centred FVM (1D) - [Trangenstein & Colella] (DU - 1994) Upwind cell centred FVM (2D) - [Trangenstein] (UPMC - 2010) Cell centred FVM (2D Hyperelastic GLACE) - [Kluth & Després] (SU - 2012) Two-step Taylor-Galerkin FEM (2D) - [Karim, Lee, Gil & Bonet] (MIT - 2012) Hybridizable Discontinuous Galerkin FEM (2D) - [Nguyen & Peraire] (SU - 2013) Upwind cell centred FVM (2D) - [Lee, Gil & Bonet] (SU - 2013) JST vertex centred FVM (3D) - [Aguirre, Gil, Bonet & Carreño] (SU - 2013) Petrov-Galerkin FEM (3D) - [Lee, Gil & Bonet] (CEA - 2013) Cell centred FVM (2D EUCCLHYD) - [Maire, Abgrall, Breil, Loubére & Rebourcet] (SU - 2014) Fractional step Petrov-Galerkin FEM (3D) - [Gil, Lee, Bonet & Aguirre] (DU - 2015) D-VMS FEM (3D) - [Scovazzi, Carnes & Zeng] (SU - 2015) Polyconvex Petrov-Galerkin FEM (3D) - [Bonet, Gil, Lee, Aguirre & Ortigosa] (SU - 2015) Upwind vertex centred FVM (3D) - [Aguirre, Gil, Bonet & Lee] (SU - 2016) Polyconvex (Fractional) Hydrocode (3D) - [Gil, Lee, Bonet & Ortigosa] (SU - 2016) Upwind cell centred FVM (3D TOUCH) - [Haider, Lee, Gil & Bonet, In press] (SU - 2016) JST SPH (3D) - [Lee, Gil, Greto, Kulasegaram & Bonet, Under review] Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 5/61
  • 6. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 1.3 OpenFOAM Solid dynamics in OpenFOAM What is OpenFOAM? • An open-source CFD software package in C++. • Based on the cell centred Finite Volume Method. • Limited functionality for solid dynamics. v = 100 m/s (0.5, 0.5, 0.5) (−0.5, −0.5, −0.5) [Punch cube] OpenFOAM solvers [Jasak & Weller, 2000] × Linear elastic material × Small strain deformation TOUCH scheme [Haider, 2016; Lee, 2013] Complex constitutive models Large strain deformation Jasak H, Weller H. Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering 2000; 48(2):267–287 Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures 2013; 118:13–38 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 6/61
  • 7. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 7/61
  • 8. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 2.1 Governing equations Total Lagrangian formulation Conservation Laws 1. Linear momentum: ∂p ∂t = 0 · P(F) + ρ0b; p = ρ0v 2. Deformation gradient: ∂F ∂t = 0 · 1 ρ0 p ⊗ I Additional equations 3. Total energy: ∂E ∂t = 0 · 1 ρ0 P T p − Q + s 4. Geometry update: ∂x ∂t = 1 ρ0 p; x = X + u An appropriate constitutive model is required to close the system. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 8/61
  • 9. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 2.1 Governing equations Total Lagrangian formulation First order hyperbolic system: ∂U ∂t = 0 · F(U) + S where U =        p F E x        ; F =        P(F) 1 ρ0 p ⊗ I 1 ρ0 PT p − Q 0        ; S =        ρ0b 0 s 1 ρ0 p        . First order hyperbolic system widely used in CFD. Develop an efficient second order numerical scheme for mixed transient solid dynamics. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 9/61
  • 10. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 10/61
  • 11. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology Finite volume methodology Steps: 1. Reconstruction • Spatial discretisation • Linear reconstruction procedure 2. Flux computation • Lagrangian contact dynamics • Acoustic Riemann solver 3. Involutions • Constrained transport schemes 4. Evolution • Time discretisation Constrained transport schemes are widely used in Magnetohydrodynamics (MHD). Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 11/61
  • 12. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Reconstruction Spatial discretisation Conservation equations for an arbitrary element: dUe dt = 1 Ωe 0 Ωe 0 ∂FI ∂XI dΩ0 −→ ∀ I = 1, 2, 3; = 1 Ωe 0 ∂Ωe 0 FI NI FN dA (Gauss Divergence theorem) ≈ 1 Ωe 0 f∈Λ f e g∈Λ g f F C Neg (U + , U − ) Ceg Only 1 Gauss quadrature point per face! dUe dt = 1 Ωe 0 f∈Λ f e F C Nef (U + , U − ) Cef Ceg e FC Neg Ce f e FC Ne f Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 12/61
  • 13. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Reconstruction Spatial discretisation Standard face-based CC-FVM dUe dt = 1 Ωe 0    f∈Λ f e F C Nef (U − f , U + f ) Cef    e FC Ne f Ce f Ωe 0 Node-based CC-FVM [Kluth & Després, 2010] dUe dt = 1 Ωe 0    a∈Λa e F C Nea (U − a , U + a ) Cea    FC Nea Cea Ωe 0 e Kluth G, Després B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics 2010; 229(24):9092–9118 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 13/61
  • 14. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Reconstruction Spatial discretisation Standard face-based CC-FVM dUe dt = 1 Ωe 0    f∈Λ f e F C Nef (U − f , U + f ) Cef    dpe dt = 1 Ωe 0 f∈Λ f e t C f Cef dFe dt = 1 Ωe 0 f∈Λ f e 1 ρ0 p C f ⊗ Cef dEe dt = 1 Ωe 0 f∈Λ f e 1 ρ0 p C f · t C f Cef dxe dt = 1 ρ0 pe Node-based CC-FVM [Kluth & Després, 2010] dUe dt = 1 Ωe 0    a∈Λa e F C Nea (U − a , U + a ) Cea    dpe dt = 1 Ωe 0 a∈Λa e t C ea Cea dFe dt = 1 Ωe 0 a∈Λa e 1 ρ0 p C a ⊗ Cea dEe dt = 1 Ωe 0 a∈Λa e 1 ρ0 p C a · t C ea Cea dxa dt = 1 ρ0 pa Kluth G, Després B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics 2010; 229(24):9092–9118 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 14/61
  • 15. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Reconstruction Godunov’s method • Piecewise constant representation in every cell. • Methodology is first order accurate in space. x y U Ue Uα1 Uα4 Uα2 Uα3 (a) Piecewise constant values × x y U Uα4 Uα3 Uα2 Uα1 Ue Uα3 Uα4 (b) Linear reconstruction × First order simulations suffer from excessive numerical dissipation. A linear reconstruction procedure is essential to increase spatial accuracy. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 15/61
  • 16. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Reconstruction Linear reconstruction procedure Gradient operator: • Classical least squares minimisation procedure. Π(Ge) = 1 2 α∈Λα e 1 deα 2 [Uα − (Ue + Ge · deα)] 2 ; deα = Xα − Xe; ˆdeα = deα deα . Ge =   α∈Λα e ˆdeα ⊗ ˆdeα   −1 α∈Λα e Uα − Ue deα ˆdeα Linear extrapolation to flux integration point: U{f,a} = Ue + Ge · X{f,a} − Xe de1α2 e1 α1 α2 α3 α4 αf1 αf2 αf3αf4 αf5 e2 de2α4 Gradient correction procedure: • Necessary for the satisfaction of monotonicity through Barth and Jespersen limiter (φe). U{f,a} = Ue + φe Ge(Ue, Uα) · X{f,a} − Xe Ensures that the spatial discretisation is second order accurate. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 16/61
  • 17. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Flux computation Lagrangian contact dynamics Rankine-Hugoniot jump conditions: c U = F N where = + − − c p = t c F = 1 ρ0 p ⊗ N c E = 1 ρ0 P T p · N X, x Y, y Z, z Ω+ 0 Ω− 0 N+ N− n− n+ Ω+(t) Ω−(t) φ+ φ− n− n+ c− s c+ s c+ pc− p Time t = 0 Time t Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 17/61
  • 18. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Flux computation Acoustic Riemann solver Contact flux: F C N =     tC 1 ρ0 pC ⊗ N 1 ρ0 tC · pC     where p C = p C n + p C t t C = t C n + t C t Jump condition for linear momentum equation: c p = t Normal jump → cp pn = tn Tangential jump → cs pt = tt p+ n , t+ np− n , t− n c+ pc− p pC n , tC n x t Normal jump p+ t , t+ tp− t , t− t c+ sc− s pC t , tC t x t Tangential jump Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 18/61
  • 19. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Flux computation Acoustic Riemann solver Riemann flux: p C = (n ⊗ n) c− p p− + c+ p p+ c− p + c+ p + (I − n ⊗ n) c− s p− + c+ s p+ c− s + c+ s pC Ave + (n ⊗ n) t+ − t− c− p + c+ p + (I − n ⊗ n) t+ − t− c− s + c+ s pC Stab . t C = (n ⊗ n) c+ p t− + c− p t+ c− p + c+ p + (I − n ⊗ n) c+ s t− + c− s t+ c− s + c+ s tC Ave (n ⊗ n) c− p c+ p (p+ − p− ) c− p + c+ p + (I − n ⊗ n) c− s c+ s (p+ − p− ) c− s + c+ s tC Stab . Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 19/61
  • 20. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Flux computation Boundary flux 1. Fixed boundary: p C = pB t C = t − − c − p (n ⊗ n) + c − s (I − n ⊗ n) (pB − p − ) 2. Free boundary: p C = p − + 1 c− p (n ⊗ n) + 1 c− s (I − n ⊗ n) (tB − t − ) t C = tB 3. Symmetric (tangentially sliding) boundary: p C = (I − n ⊗ n) p − + 1 c− s (tB − t − ) t C = (n ⊗ n) t − − c − p p − + (I − n ⊗ n)tB 4. Skew-symmetric (normally sliding) boundary: p C = (n ⊗ n) p − + 1 c− s (tB − t − ) t C = (I − n ⊗ n) t − − c − p p − + (n ⊗ n)tB c+ p = c+ s = ∞ p− pB c+ p = c+ s = 0 p− tB p+ n = 0, c+ p = ∞, c+ s = 0 p− tB p+ t = 0, c+ p = 0, c+ s = ∞ p− tB Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 20/61
  • 21. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Involutions Constrained transport schemes Compatibility condition [Lee, Gil & Bonet, 2013]: CURL F = 0 Face based F update 1. Standard Godunov’s scheme: dFe dt = 1 Ωe 0 f∈Λ f e pC f ρ0 ⊗ Cef X 2. Constrained-TOUCH scheme: dFe dt = 1 Ωe 0 f∈Λ f e ˜pC f (pC f ) ρ0 ⊗ Cef 3. Penalised-TOUCH scheme: Fe = Fe Update from Godunov’s scheme + ξF ( 0 x − Fe) Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures 2013; 118:13–38 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 21/61
  • 22. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Involutions Godunov-type FVM: constrained-TOUCH Constrained-TOUCH update: dFe dt = 1 Ωe 0 f∈Λ f e ˜pC f (pC f ) ρ0 ⊗ Cef 1. Cell averaged linear momentum: ˜pe = 1 Λ f e f∈Λ f e p C f 2. Local gradient operator: Ge =     f∈Λ f e ˆdef ⊗ ˆdef     −1 f∈Λ f e   pC f − ˜pe def  ˆdef 3. Nodal linear momentum pea = ˜pe + φeGe(Xa − Xe); pa = 1 Λe a e∈Λe a pea 4. Modified contact linear momentum ˜p C f = 1 Λa f a∈Λa f pa Ge ˜pepe = Linear reconstruction + Riemann solver ˜pC f pa pC f = Gradient calculation through averaged = Extrapolation / interpolation to nodes = Interpolation to face centers linear momentum Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 22/61
  • 23. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.1 Methodology: Evolution Temporal discretisation dUe dt = ˙Ue Runge-Kutta time integration: 1 st RK stage −→ U ∗ e = U n e + ∆t ˙U n e (U n e , t n ) 2 nd RK stage −→ U ∗∗ e = U ∗ e + ∆t ˙U ∗ e (U ∗ e , t n+1 ) U n+1 e = 1 2 U n e + U ∗∗ e with stability constraint: ∆t = αCFL hmin cp,max An explicit Total Variation Diminishing Runge-Kutta scheme widely used in CFD context. Ensures that the formulation is second order accurate in time. Monolithic time update for geometry. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 23/61
  • 24. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 3.2 Conservation of angular momentum Global Lagrangian projection procedure Functional: Π ˜˙pe, λAng, λLin = 1 2 e Ω e 0 ˜˙pe − ˙pe · ˜˙pe − ˙pe + λAng · e Ω e 0 T e Torque − Xe × ˜˙pe + λLin · e T e Force − Ω e 0 ˜˙pe where Xe = xn e → 1st RK stage xn+1/2 e + ∆t 2ρ0 pe → 2nd RK stage Te Force = f∈Λ f e tC f Cef Te Torque = f∈Λ f e xf × tC f Cef Modified rate of linear momentum: ˜˙pe = ˙pe + λAng × Xe + λLin Lagrange multipliers:    e Ωe 0 [Xe ⊗ Xe − (Xe · Xe)I] − e Ωe 0 ˆXe e Ωe 0 ˆXe − e Ωe 0       λAng λLin    =    e Ωe 0 Xe × ˙pe − Te Torque e Ωe 0 ˙pe − Te Force    ; ˆXe ik = Eijk [Xe]j Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 24/61
  • 25. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 25/61
  • 26. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.1 Cable Shock dominated scenario L = 10m x P(t) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 26/61 Problem description: Linear elastic material, ρ0 = 8000 kg/m3 , E = 200 GPa, ν = 0, αCFL = 0.5, Discretisation = 100 cells and P(L, t) = −5 × 107 Pa.
  • 27. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.1 Cable Shock dominated scenario Stress evolution at mid cable (x = 5 m) 0 0.002 0.004 0.006 0.008 0.01 0.012 −12.5 −10 −7.5 −5 −2.5 0 2.5 5 x 10 7 Time (sec) Stress(Pa) Analytical TOUCH (1st order) TOUCH (2nd order w/o limiter) TOUCH (2nd order with limiter) JST VCFVM 6 7 8 9 10 x 10 −3 −7.5 −5 −2.5 0 2.5 x 10 7 Time (sec) Stress(Pa) Demonstrates the ability of the formulation to handle shock problems. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 27/61 Problem description: Linear elastic material, ρ0 = 8000 kg/m3 , E = 200 GPa, ν = 0, αCFL = 0.5, Discretisation = 100 cells and P(L, t) = −5 × 107 Pa.
  • 28. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.1 Cable Mesh convergence Velocity at t = 34.47 s 10 −2 10 −1 10 0 10 −8 10 −7 10 −6 10 −5 10 −4 10 −3 Grid Size (m) VelocityError slope = 1 L1 norm (1st order) L2 norm (1st order) slope = 2 L1 norm (2nd order) L2 norm (2nd order) Stress at t = 34.47 s 10 −2 10 −1 10 0 10 −8 10 −7 10 −6 10 −5 10 −4 10 −3 Grid Size (m) StressError slope = 1 L1 norm (1st order) L2 norm (1st order) slope = 2 L1 norm (2nd order) L2 norm (2nd order) Demonstrates the expected convergence of the available schemes for all variables. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 28/61 Problem description: Linear elastic material, ρ0 = 1 kg/m3 , E = 1 GPa, ν = 0.3 αCFL = 0.5 and P(L, t) = 1 × 10−3 [sin ((πt)/20 − π/2) + 1] Pa.
  • 29. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.2 Low dispersion cube Mesh convergence X, x Y, y Z, z (0, 0, 0) (1, 1, 1) Displacements scaled 300 times t = 0 s t = 2 ms t = 4 ms t = 6 ms Pressure (Pa) Boundary conditions: 1. Symmetric conditions at: X = 0, Y = 0, Z = 0 2. Skew-symmetric conditions at: X = 1, Y = 1, Z = 1 Analytical solution: u(X, t) = U0 cos √ 3 2 cdπt      A sin πX1 2 cos πX2 2 cos πX3 2 B cos πX1 2 sin πX2 2 cos πX3 2 C cos πX1 2 cos πX2 2 sin πX3 2      where U0 = 5 × 10 −4 m; cd = λ + 2µ ρ0 ; A = B = C = 1. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 29/61 Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.3 and αCFL = 0.3.
  • 30. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.2 Low dispersion cube Mesh convergence (Constrained-TOUCH) Velocity at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError vx vy vZ Slope = 2 Stress at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError Pxx Pyy Pzz Slope = 2 Demonstrates second order convergence using constrained-TOUCH scheme. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 30/61 Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.3 and αCFL = 0.3.
  • 31. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.2 Low dispersion cube Mesh convergence (Penalised-TOUCH) Velocity at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError vx vy vZ Slope = 2 Stress at t = 0.004 s 10 −2 10 −1 10 0 10 −7 10 −6 10 −5 10 −4 Grid Size (m) L2NormError Pxx Pyy Pzz Slope = 2 Demonstrates second order convergence using penalised-TOUCH scheme. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 31/61 Problem description: Unit side cube, linear elastic material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.3 and αCFL = 0.3.
  • 32. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.3 Spinning Plate Structured vs unstructured elements X, x Y, y (0.5, 0.5, 0) ω0 = [0, 0, Ω]T (−0.5, −0.5, 0) Time = 0.15 s (a) Structured 20 × 20 cells (b) Unstructured 484 cells Pressure (Pa) Demonstrates the ability of the framework to handle unstructured grids. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 32/61 Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 17 MPa, ν = 0.45 and αCFL = 0.3 and Ω = 105 rad/s.
  • 33. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.3 Spinning Plate Structured vs unstructured elements X, x Y, y (0.5, 0.5, 0) ω0 = [0, 0, Ω]T (−0.5, −0.5, 0) Displacement of point X = [0.5, 0.5, 0]T 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 −1.5 −1.25 −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1 Time (sec) Displacement(m) ux structured uy structured ux unstructured uy unstructured Demonstrates the ability of the framework to handle unstructured grids. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 33/61 Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 34. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.3 Spinning Plate Momentum conservation Global angular momentum 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 2 2.5 3 3.5 x 10 4 Time (sec) Angularmomentum(N.m.s −1 ) A x (structured) A y (structured) A z (structured) Ax (unstructured) A y (unstructured) A z (unstructured) Global linear momentum 0 0.05 0.1 0.15 0.2 −5 −4 −3 −2 −1 0 1 2 3 4 5 x 10 −11 Time (sec) Linearmomentum(kg.m.s−1 ) p x (structured) p y (structured) p z (structured) p x (unstructured) py (unstructured) p z (unstructured) Conservation the angular and linear momenta of the system. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 34/61 Problem description: Unit side square, nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 17 MPa, ν = 0.45 and αCFL = 0.3 and Ω = 105 rad/s.
  • 35. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.4 L-shaped block Momentum conservation Y, y (0, 10, 0) X, x Z, z F1(t) F2(t) (6, 0, 0) (3, 3, 3) [L-shaped block] F1(t) = −F2(t) = (150, 300, 450) T p(t) p(t) =    t 0 ≤ t < 2.5 5 − t 2.5 ≤ t < 5 0 t ≥ 5 [Simo, 1992] t = 2.5 s t = 5 s t = 7.5 s t = 10 s Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 35/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
  • 36. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.4 L-shaped block Momentum conservation Global angular momentum 0 5 10 15 20 25 30 −3 −2 −1 0 1 2 3 x 10 5 Time (sec) AngularMomentum(N.m.s−1 ) Ax A y Az A x w/o AMPA Ay w/o AMPA Az w/o AMPA Global linear momentum 0 5 10 15 20 25 30 −6 −4 −2 0 2 4 6 x 10 −11 Time (sec) LinearMomentum(kg.m.s −1 ) px py pz Conservation the angular and linear momenta of the system. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 36/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
  • 37. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.4 L-shaped block Energy conservation Global total energy 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 x 10 4 Time (sec) Energy(J) Total energy 6x10x3 12x20x6 24x40x12 Lower numerical dissipation with mesh refinement. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 37/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
  • 38. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.4 L-shaped block Cuboid elements Mesh refinement along z axis at t = 7.5 s (a) 6 × 10 × 4 cells (b) 6 × 10 × 8 cells (c) 6 × 10 × 16 cells Proposed methodology performs well for high aspect ratio elements. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 38/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1000 kg/m3 , E = 50.05 kPa, ν = 0.3 and αCFL = 0.3.
  • 39. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.5 Bending Column Bending dominated scenario X, x Y, y (−0.5, 0, 0.5) (0.5, 6, −0.5) Z, z L = 6m v0 = [V Y/L, 0, 0]T [Bending column] Mesh convergence at t = 1.5 s Pressure (Pa) Eliminates bending difficulty. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 39/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
  • 40. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.5 Bending Column Enhanced reconstruction Time = 0.5 s (b) Standard reconstruction (b) Enhanced reconstruction Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 40/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
  • 41. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.5 Bending Column Comparison with hyperelastic-GLACE scheme Evolution of tip displacement (X = [0.5, 6, 0.5]T ) 0 1 2 3 4 5 6 7 −4 −2 0 2 4 6 8 Time (sec) xdisplacement(m) Constrained TOUCH (4x24x4) Constrained TOUCH (8x48x8) Constrained TOUCH (16x96x16) GLACE (4x24x4) GLACE (8x48x8) GLACE (16x96x16) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 41/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and V = 10 m/s.
  • 42. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Highly non-linear problem X, x Y, y (−0.5, 0, 0.5) (0.5, 6, −0.5) Z, z ω0 = [0, Ω sin(πY/2L), 0]T L [Twisting column - Refinement] Mesh refinement at t = 0.1 s (a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40 (a) 4 × 24 × 4 (b) 8 × 48 × 8 (c) 40 × 240 × 40 Pressure (Pa) Demonstrates the robustness of the numerical scheme Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 42/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 43. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Mesh convergence X, x Y, y (−0.5, 0, 0.5) (0.5, 6, −0.5) Z, z ω0 = [0, Ω sin(πY/2L), 0]T L Column height at t = 0.1 s 0 20 40 60 80 6 6.02 6.04 6.06 6.08 Cells along x and z axes Height(m) constrained−TOUCH Demonstrates mesh convergence of the numerical scheme Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 43/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 44. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Constrained-TOUCH vs hyperelastic GLACE X, x Y, y (−0.5, 0, 0.5) (0.5, 6, −0.5) Z, z ω0 = [0, Ω sin(πY/2L), 0]T L [Twisting column - Comparison] t = 0.1 s (a) Constrained-TOUCH (b) GLACE (c) GLACE (Fine) Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 44/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 45. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Comparison of various alternative numerical schemes t = 0.1 s (a) C-TOUCH (b) P-TOUCH (c) GLACE (d) B-bar (e) upwind-VC (f) JST-VC (g) PG-FEM (h) Hu-Washizu Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 45/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.
  • 46. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Comparison of various alternative numerical schemes t = 0.1 s (a) C-TOUCH (b) P-TOUCH (c) B-bar (d) PG-FEM (e) Hu-Washizu (f) Q2-Q1 FEM Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 46/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
  • 47. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Standard FVM update (penalised-TOUCH with ξF = 0) t = 0.01 s t = 0.04 s t = 0.07 s t = 0.1 s t = 0.13 s t = 0.16 s Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 47/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.495, αCFL = 0.3 and Ω = 105 rad/s.
  • 48. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.6 Twisting Column Increased initial angular velocity t = 0.02 s t = 0.04 s t = 0.06 s t = 0.08 s t = 0.1 s Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 48/61 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 200 rad/s.
  • 49. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.7 Taylor Impact von-Mises plasticity X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 [Taylor impact] [Taylor impact - Radius] Evolution of pressure wave t = 0.1 µs t = 0.2 µs t = 0.3 µs t = 0.4 µs t = 0.5 µs t = 0.6 µs Pressure (Pa) Demonstrates the ability of the algorithm to simulate plastic behaviour. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 49/61 Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3 , E = 117 GPa, ν = 0.35, αCFL = 0.3, ¯τ0 y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
  • 50. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.7 Taylor Impact Comparison of cell centred FVM schemes X, x Y, y v0 (−0.003, 0, 0.003) (0.003, 0.03, −0.003) Z, z t = 60 µs (a) Constrained-TOUCH (b) Penalised-TOUCH (c) HyperelasticGLACE Plastic strain p Demonstrates the ability of the algorithm to simulate plastic behaviour. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 50/61 Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3 , E = 117 GPa, ν = 0.35, αCFL = 0.3, ¯τ0 y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
  • 51. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.7 Taylor Impact Comparison of cell centred FVM schemes X, x Y, y v0 (−0.003, 0, 0.003) (0.003, 0.03, −0.003) Z, z t = 60 µs (a) Constrained-TOUCH (b) Penalised-TOUCH (c) HyperelasticGLACE Pressure (Pa) Demonstrates the ability of the algorithm to simulate plastic behaviour. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 51/61 Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3 , E = 117 GPa, ν = 0.35, αCFL = 0.3, ¯τ0 y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
  • 52. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.7 Taylor Impact Comparison of cell centred FVM schemes X, x Y, y v0 (−0.003, 0, 0.003) (0.003, 0.03, −0.003) Z, z x coordinate of the point X = [0.003, 0, 0]T 0 2 4 6 8 x 10 −5 3 4 5 6 7 8 x 10 −3 Time (sec) x−coordinate(m) Constrained−TOUCH (6x30x6) Constrained−TOUCH (12x60x12) Penalised−TOUCH (6x30x6) Penalised−TOUCH (12x60x12) Hyperelastic−GLACE (6x30x6) Hyperelastic−GLACE (12x60x12) Hyperelastic−GLACE (20x100x20) Demonstrates the ability of the algorithm to simulate plastic behaviour. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 52/61 Problem description: Hyperelastic-plastic material, ρ0 = 8930 kg/m3 , E = 117 GPa, ν = 0.35, αCFL = 0.3, ¯τ0 y = 0.4 GPa, H = 0.1 GPa and v0 = −227 m/s.
  • 53. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.8 Bar rebound Contact problem X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 0.004 [Bar rebound] t = 6 ms t = 9 ms t = 12 ms t = 18 ms t = 24 ms Pressure (Pa) Demonstrates the ability of the algorithm to simulate contact problems. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 53/61 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3 , E = 585 MPa, ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
  • 54. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.8 Bar rebound Height evolution X, x Y, y v0 (−0.0032, 0, 0) (0.0032, 0.0324, 0) Z, z r0 0.004 y Displacement of the points X = [0, 0.0324, 0]T and X = [0, 0, 0]T 0 0.5 1 1.5 2 2.5 3 x 10 −4 −20 −16 −12 −8 −4 0 4 8 x 10 −3 Time (sec) yDispacement(m) Top (2880 cells) Top (23040 cells) Bottom (2880 cells) Bottom (23040 cells) Demonstrates the ability of the algorithm to simulate contact problems. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 54/61 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 8930 kg/m3 , E = 585 MPa, ν = 0.45, αCFL = 0.3 and v0 = −150 m/s.
  • 55. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.9 Ring impact Contact problem X, x Y, y (−0.03, 0) 0.004 v0 (0, −0.04) [Ring impact] t = 10 µs t = 15 µs t = 20 µs t = 25 µs t = 30 µs t = 35 µs Pressure (Pa) Demonstrates the ability of the algorithm to simulate contact behaviour. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 55/61 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3 , E = 1 MPa, ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
  • 56. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.9 Ring impact Energy conservation X, x Y, y (−0.03, 0) 0.004 v0 (0, −0.04) Global total energy 0 0.01 0.02 0.03 0.04 0.25 0.3 0.35 0.4 0.45 0.5 Time (sec) Energy(J) Total energy K.E + P.E (420 cells) K.E + P.E (1640 cells) K.E + P.E (3660 cells) K.E + P.E (6480 cells) K.E + P.E (25760 cells) Lower numerical dissipation with mesh refinement. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 56/61 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3 , E = 1 MPa, ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
  • 57. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.9 Ring impact Momentum conservation Global linear momentum 0 0.01 0.02 0.03 0.04 −1.5 −1 −0.5 0 0.5 1 1.5 Time (sec) Linearmomentum(kg.m.s −1 ) px (420 cells) py (420 cells) pz (420 cells) p x (3660 cells) py (3660 cells) pz (3660 cells) px (25760 cells) py (25760 cells) pz (25760 cells) Global angular momentum 0 0.01 0.02 0.03 0.04 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 Time (sec) Angularmomentum(N.m.s−1 ) Ax (420 cells) Ay (420 cells) Az (420 cells) Ax (3660 cells) A y (3660 cells) Az (3660 cells) Ax (25760 cells) Ay (25760 cells) Az (25760 cells) Conservation of linear and angular momenta of the system. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 57/61 Problem description: Nearly incompressible neo-Hookean material, ρ0 = 1000 kg/m3 , E = 1 MPa, ν = 0.4, αCFL = 0.3 and v0 = −0.59 m/s.
  • 58. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions 4.10 Torus impact Contact problem [Torus impact] Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 58/61 Problem description: Neo-Hookean material, ρ0 = 1000 kg/m3 , E = 1 MPa, ν = 0.4, αCFL = 0.3 and v0 = −3 m/s.
  • 59. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Scheme of presentation 1 Introduction Motivation Mixed solid dynamics OpenFOAM 2 Reversible elastodynamics Governing equations 3 Numerical technique Finite Volume Methodology Angular momentum preserving scheme 4 Numerical results 5 Conclusions Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 59/61
  • 60. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions Conclusions and further research Conclusions • Upwind FVM is presented for fast solid dynamic simulations within the OpenFOAM environment. • Linear elements can be used without usual volumetric and bending locking. • Velocities and stresses display the same rate of convergence. On-going work • Investigation into an advanced Roe’s Riemann solver with robust shock capturing algorithm. • Extension to multiple body and self contact. • Ability to handle tetrahedral elements. Future work • Implementation of an Arbitrary Lagrangian-Eulerian (ALE) formulation. • Extension to Fluid-Struction Interaction (FSI) problems. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 60/61
  • 61. 1. Introduction 2. Reversible elastodynamics 3. Numerical technique 4. Numerical results 5. Conclusions References 1. Haider J, Lee CH, Gil AJ, Bonet J. A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering 2016; (In Press), doi: 10.1002/nme.5293. 2. Bonet J, Gil AJ, Lee CH, Aguirre M, Ortigosa R. A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering 2015; 283:689–732. 3. Aguirre M, Gil AJ, Bonet J, Lee CH. An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics. Journal of Computational Physics 2015; 300:387–422. 4. Aguirre M, Gil AJ, Bonet J, Carreño AA. A vertex centred finite volume Jameson–Schmidt–Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics. Journal of Computational Physics 2014; 259:672–699. 5. Gil AJ, Lee CH, Bonet J, Aguirre M. A stabilised Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering 2014; 276:659–690. 6. Lee CH, Gil AJ, Bonet J. Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Computer Methods in Applied Mechanics and Engineering 2014; 268:40–64. 7. Lee CH, Gil AJ, Bonet J. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures 2013; 118:13–38. Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 61/61
  • 62. References APPENDIX Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 1/5
  • 63. References Eigenvalue structure Vector of conserved variables: U = p F E x T Flux vector: FN = PN 1 ρ0 p ⊗ N 1 ρ0 t · p 0 T Flux Jacobian matrix: AN = ∂FN ∂U =          03×3 CN 03×1 03×3 1 ρ0 IN 09×9 09×1 09×3 1 ρ0 PN 1 ρ0 pT CN 0 01×3 03×3 03×9 03×1 03×3          ; where [CN ]ijJ = CiIjJNI CiIjJ = ∂PiI ∂FjJ [IN ]iIj = δijNI Right eigenvector: ANRα = cαRα where Rα = p R α F R α E R α x R α T Eigen decomposition: cαp R α = CN : F R α cαF R α = 1 ρ0 p R α ⊗ N ρ0c 2 αp R α = CNN p R α where [CNN ]ij = [C]iIjJNI NJ Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 2/5
  • 64. References Acoustic wave speeds Neo-Hookean constitutive model: CNN = − 2 3 µJ −5/3 F [(HFN) ⊗ (FN) + (FN) ⊗ (HFN)] + µJ −2/3 F I + 5 9 µJ −8/3 F (F : F) + κ (HFN) ⊗ (HFN) = γ1 m ⊗ m ∗ + m ∗ ⊗ m + γ2I + γ3m ⊗ m Eigen-system: ρ0c 2 αp R α = CNN p R α = γ1 m ⊗ m ∗ + m ∗ ⊗ m + γ2I + γ3m ⊗ m p R α Longitudinal wave speed: c1,2 = ±cp cp = 2γ1 JF λ + γ3 JF λ 2 + γ2 ρ0 Shear wave speed: c3,4 = c5,6 = ±cs cs = γ2 ρ0 Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 3/5
  • 65. References Riemann solver Upwind Riemann solver: F C N = F C NAve + F C NStab = 1 2 FN(U − f ) + FN(U + f ) − 1 2 U + f U − f |AN| dU Upwinding stabilisation Decomposition of flux Jacobian matrix: |AN| = 1 2 6 α=1 |cα|RαL T α = 1 2 (R1, . . . , R6)         cp 0 0 0 0 0 0 cp 0 0 0 0 0 0 cs 0 0 0 0 0 0 cs 0 0 0 0 0 0 cs 0 0 0 0 0 0 cs             LT 1 . . . LT 6     = 1 2 cp(R1L T 1 + R2L T 2 ) + cs(R3L T 3 + R4L T 4 + R5L T 5 + R6L T 6 ) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 4/5
  • 66. References Pressure instabilities? t = 0.125 s (a) Cell values (4) (b) Nodal values (4) (c) Cell values (6) (d) Cell values (8) (e) Cell values (16) Pressure (Pa) Jibran Haider Fast solid dynamics in OpenFOAM CoMe Seminar, UPC BarcelonaTech 5/5 Problem description: Nearly incompressible hyperelastic neo-Hookean material, ρ0 = 1100 kg/m3 , E = 17 MPa, ν = 0.45, αCFL = 0.3 and Ω = 105 rad/s.