SlideShare a Scribd company logo
1 of 33
Download to read offline
JARVIS
Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fields and
Machine Learning
By
Kamal Choudhary
Northwestern University, May 19, 2017
1
Acknowledgments
NIST NISTNIST/LBNL NIST NIST
NIST NIST NIST NISTGMU Google
Others : Richard Hennig (UF), Susan Sinnott (PSU), Tao Liang (PSU), Kiran Mathew (LBNL), Kristin Persson (LBNL)
Computational resources: CTCMS, RARITAN, XSEDE, NERSC
Software packages: VASP, LAMMPS, Pymatgen, ASE, Phonopy, Magpie, Matminer, Flask
NISTNIST
NIST NIST
2
Outline
1. JARVIS-FF
➢ Evaluation of elastic constants, convex hull
➢ Defects, surfaces, phonons
2. JARVIS-DFT:
➢ 2D or not 2D?
➢ Properties
3. JARVIS-ML:
➢ Generalized Material-descriptors/features (challenge?)
➢ Neural-Network+classical physics based hybrid force-field
4. Conclusions
3
Email: kamal.choudhary@nist.gov
Few basics
• Materials Science is all about: Structure-Property-Performance relationship and minimization of
free-energy
• Computationally: Structure = lattice constants (a,b,c), angles (alpha, beta, gamma) and basis
vectors ([Si,0, 0,0],[Si,0.5,0.0,0.5],…..)
• To calculate property: classical physics (e.g. classical force-fields), quantum physics (e.g. density
functional theory)
• MGI motivated current computational databases: Materials-project (MP), AFLOW, OQMD
ICSD
database
(with
experiment
al lattice
constant)
AFLOW
OQMD
PBE
Materials Project MIT, LBNL
(67,486 materials)
Duke University
(1,640,245 materials)
Northwestern university
(471,857 materials)+SQS
Others: AIIDA, MaterialWeb, NREL-MatDB etc.
4
Email: kamal.choudhary@nist.gov
JARVIS-FF
1A Introduction to force-fields
1B Property evaluation: elastic constants, convex hull
1C Defects, surfaces, phonons
5
Email: kamal.choudhary@nist.gov
1A Intro Force-fields
• Coulomb potential
• Lennard-Jones potential
• Morse-potential
• Stilinger-Weber potential
• EAM and MEAM potential
• Bond-order/Tersoff/Brenner
• Fixed charge potentials: Coulomb-Buckingham
• Other FFs: ReaxFF, COMB, AMBER, CHARMM, OPLS etc.
6
    
12
21
2211 ,
rr
qkq
rqrqV 


 One parameter to fit/optimize
Repulsive and attractive terms, Two parameters to fit
These potentials lack angular information hence not able to capture elastic constants well
Uses electron density, for metallic systems
These potentials lack charge information
Uses angle but transferability problem
Uses bond information, for covalent systems
Berni Alder
iii amF  , VF ii  , 2
2
dt
rd
m
dr
dV i
i
i

Email: kamal.choudhary@nist.gov
JARVIS-FF-workflow
• Force-fields obtained from NIST’s interatomic potential repository
and LAMMPS-potential folder (e.g. Mishin-Ni-Al-2009.alloy)
• DFT relaxed structures obtained from materials-project
for corresponding system (say Ni-Al system: Al, Ni, Ni3Al, NiAl etc. )
• Convert the files from DFT format to LAMMPS format
write corresponding input files from LAMMPS
• HT LAMMPS calculations
7
Email: kamal.choudhary@nist.gov
Public Webpage
a)
b)
c)
d)
Old version
Development version
Choudhary et al. , Nature:Scientific Data 4, 160125 (2017)
http://www.ctcms.nist.gov/~knc6/periodic.html
http://www.ctcms.nist.gov/~knc6/JLAMMPS.html
8
Email: kamal.choudhary@nist.gov
1B Convex-hull plot
• Comparison of DFT convex-hull plot with LAMMPS
• Some points shown unstable for FF, because they are not fit to it !
Choudhary et al., Nature:Scientific Data 4, 160125 (2017)
Choudhary et al., Computational Materials Science 113, 80 (2016)
9
Email: kamal.choudhary@nist.gov
1B Bulk modulus
Choudhary et al, Nature:Scientific Data 4, 160125 (2017)
• Comparison of DFT bulk modulus with LAMMPS, ~500
points in common
• Some FFs are not fit for elastic properties
10
Email: kamal.choudhary@nist.gov
1C Vacancy formation energies
• Real materials are VERY defective !
• Vacancy structures based on unique Wyckoff positions
• Delete symmetrically distinct sites only
11
Email: kamal.choudhary@nist.gov
1C Phonons
http://wiredspace.wits.ac.za/bitstream/handle/10539/21022/Dongho_Moise_704598_PhD_Thesis.pdf?sequence=1&isAllowed=y
12
Email: kamal.choudhary@nist.gov
1C Surface energies
Wulff construction: Used in predicting equilibrium
shape of materials
Mathew et al., Computational Materials Science, 122 183 (2016
13
Email: kamal.choudhary@nist.gov
Summary Part-1
• New website for FF calculation data
• Enable user to select FF before doing any calculations
• Can be complement to DFT where computational cost is too high,
such as phonons, defects, grain boundaries etc.
• Genetic algorithm based evaluation, melting point, thermal expansion
coefficient, thermal conductivity, Grüneisen parameter calculations
on the way
• Outreach: thousands of website hits in few months, JARVIS-FF listed
as a post-processing tools for LAMMPS
14
Email: kamal.choudhary@nist.gov
PART 2 JARVIS-DFT
2B 2D Materials
➢ Applications: Sub-micron electronics, Flexible and
tunable electronics, photo-voltaics, energy-storage
2A Introduction to Density functional theory
15
Email: kamal.choudhary@nist.gov
2A Density Functional Theory
• Classical Newton’s laws not applicable for electrons (very fast, very tiny);
• Schrödinger equation: mathematical equation that describes the evolution
over time of a physical system in which quantum effects, such as wave–particle duality,
are significant (such as electrons)
• Schrödinger equation of a fictitious system (the "Kohn–Sham system") of non-interacting particles (typically electrons) that
generate the same density as any given system of interacting particles
• Uses density (scalar) vs wavefunction (vector) quantity
• Different functionals: LDA, GGA (PBE, PW91), HSE06 etc.
• LDA: developed for homogenous systems (Thomas-Fermi model), such as metals
• GGA: uses density gradient information on top of GGA
• vdW-DF2: uses exchange from GGA, correlation from LDA, quantum-Monte-Carlo
based non-local corrections, optB88 used here mainly
https://en.wikipedia.org/wiki/Classical_mechanics
http://www.psi-k.org/Update3.shtml
http://www.physlink.com/Education/AskExperts/ae329.cfm
       rrErrV
m
iiiEff  





 2
2
2

XCeeNeEff VVVTV  EH 
Walter Kohn
Exchange-correlation
Hohenberg, Pierre; Walter Kohn (1964). "Inhomogeneous electron gas". Physical Review. 136 (3B): B864–B871
  0
8
2
2
2
2





VE
h
m
x
P o s i t i o n
Second
derivative wrt X
Schrodinger
Wave-function
Position Energy Potential Energy
16
Email: kamal.choudhary@nist.gov
2B Two-dimensional materials
• Vander-Waal bonding in z-direction, covalent bonding in x, y-directions, e.g. Graphene,MoS2
DIMENSIONALITY ==PERIODICITY
• Easily exfoliated, scotch-tape type, potential candidate for sub-nanometer technology,
Si-replacement, flexible electronics, and other applications
• For DFT calculation on 2D materials: position of atoms (r) obtained from XRD and other
experiments, ICSD database and other DFT databases
• DFT databases (Materials Project, AFLOW, OQMD) took structures from ICSD
and used PBE functionals consistently for all structures, JARVIS-DFT took from them
• Catch: PBE functionals overestimate lattice constants ( the r’s in PBE-DFT are not correct)
• JARVIS-DFT: Using REST API at Materials-project got all the crystal structures with
ICSD and PBE data and calculated relative error
• If the error is more than 5%, we predict them to be 2D materials; at least 1356 such materials
Found, recalculate with better optB88 functionals, tight DFT convergence
ICSD
ICSDPBE
l
ll 

http://ammcttwtht.tumblr.com/post/101405895438/a-miracle-material-can-take-the-world-to-the
17
Email: kamal.choudhary@nist.gov
JARVIS-DFT workflow
• Written in python language
• Separate calculation for mono-layer
and bulk materials
• Mono-layer created by adding additional
vacuum (20 Angstrom) in z-direction
• c-lattice constant not-optimized for mono-
layer (custom compilation of VASP)
• Example:
18
Email: kamal.choudhary@nist.gov
Webpage
http://www.ctcms.nist.gov/~knc6/JVASP.html
• Click on elements, click search, click JARVIS-ID
• Kpoint, Energy cut-off and force convergence
(N/A in other DFT databases, but very important!)
• Both bulk and single-layer materials available
• Makes ~5 times slower, but much reliable
• >1280 hits in <6months
• Soon will be part of Citrine databaseRead WARNINGS!
19
Email: kamal.choudhary@nist.gov
Exfoliation energy calculations
• Exfoliation energy:
• 1012 bulk, 430 Single layer, 371 common, calculations
still running (thousands of processors needed)
bulk
bulk
L
L
f
N
E
N
E
E 
1
1
Energy
range
(meV)
Materials
a) 0-40 TiNCl, SiH4, HfBrN, Mg(AlSe2)2
b) 40-60 GaSe, CrS2, ZrS3, NiO2, GaS, ZrSe3, NdTe3, US3, TiS3, PrIO, DySI, Sc2CCl2, ThIN, TiBrN,
InClO, LuSBr, SrHI, BiIO, BiBrO, KMnP, TiIN, Sc2NCl2, TlSbO3, ZrCl, SmTe3, PrTe3,
As2O3, Nb2CS2, RbMnAs, SiH, Bi2TeI, ScCl, TbBr, Ge(BiTe2)2, GaS
c) 60-80 WSe2, WS2, MoS2, C, SnO2, PtO2, CdBr2, ReSe2, CrSe, MgCl2, CoBr2, ZrCl2, MgBr2, TcS2,
FeCl2, MnCl2, MnBr2, InSe, CrBr3, VCl3, USe3, IrCl3, ScCl3, RhCl3, TaI2O, DySBr, ErSeI,
ErSCl, BiClO, OsCl2O, CdCl2, BN, Nb(SCl)2, Bi2Te2S, ThBrN, HfCl4, Bi2Te2Se, MgPSe3,
CdPS3, ScPS4, PPdS, TmAg(PSe3)2, ScAg(PSe3)2, ErAg(PSe3)2, ScAg(PS3)2, Nb3Cl8,
Nb3TeCl7, InAg(PSe3)2, Hf3Te2, SNCl, Sr3Si2, TiCl2, HfFeCl6, GaTe, CS2, Nb(SeCl)2, CrCl3,
BiI, TiBr2, GaAg(PSe3)2, CdPS3, TiS2
d) 80-100 NbS2, MoSe2, NbSe2, WTe2, MoTe2, VSe2, ZrS2, HfS2, HfSe2, MoS2, PtO2, PtS2, SnS2, SnSe2,
TiO2, TiS2, TiSe2, ZrSe2, TaS2, SiTe2, TaSe2, VS2, TaSe2, MgI2, SbI3, PbI2, GeI2, SiS2, MnI2,
CaI2, RhBr3, BiI3, MoBr3, RuBr3, PCl3, AuI, BPS4, IrBr3, Re(AgCl3)2, AlPS4, AlSiTe3, PPdSe,
CrSiTe3, Nb3TeI7, NdI2, Al2Te3, S5N6, AlTeI7, AlSeBr7, CdI2, PSe, Ta3TeI7, TmI2, SbBr3, P4S5
e) 100-120 HfTe2, PtSe2, TiTe2, WO2, SnO, BCl3, Te2Br, Te2I, PBr3, TiI3, BiTeCl, BiTeI, TlPt2S3, AlBr3,
BiSBr, CaN, Mn2Bi, HgI2, SrThBr6, P
f) 120-140 BBr3, AlI3, TlTe3Pt2, SbSBr, TlPd2Se3, P2Se5
g) 140-160 PdS2, Te2Pt, BI3, Ta(ICl)2
h) 160-180 PdSe2, NiTe2, NbI5
i) 180-200 ZrS, PI3, BaBrCl
j) 200-220 Te2Pd, Te2Ir, BiSe2
k) 220-240 SbSeI, BiSI
l) 240-260 Bi2Te3
m) 260-300 VS2
n) 300-340 CaSn, KAuSe
o) 340-360 KAuS, RbAuS, RbAuSe
p) 360-440 Sc2C
q) 440-500 GaN, TiSe2
r) 500-560 Sr2H3, Ca2H3
s) 560-640 AlN
t) 640-660 TiTe2
u) 660-680 CrSe2
v) 680-700 ZrTe2
w) 700-720 CoAs2
x) 720-960 Ti2O
Choudhary et al., (Submitted)
20
Email: kamal.choudhary@nist.gov
Classification of database
• 2D materials are not just AB2
• More than 2H (𝑃ത6𝑚2) and 1T (𝑃ത3𝑚1) prototype
• Venn diagram
• Majority of 2D materials are binary
Choudhary et al., (Submitted)21
Email: kamal.choudhary@nist.gov
Computational X-Ray diffraction
• Experimental data from Irina Kalish (MoTe2-2H)
• Computational XRD implemented in pymatgen
• Excellent agreement of optB88 and experiments
• PBE gives erroneous peaks
• Single-layer XRD also available
http://faculty.gvsu.edu/majumdak/public_html/OnlineMaterials/XRay.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
• Computational X-ray diffraction:
Read WARNINGS!
Choudhary et al., (Submitted)
22
Email: kamal.choudhary@nist.gov
Computational band-structure
• Density of states and Band-structures:
Read WARNINGS!
Brillouin zone for hexagonal system
• optB88 bandgaps
• Few LDA, PBE and HSE06 bandgaps
• DOS can be used to approximately calculate magnetic property such as Orbital magnetic moment
23
Email: kamal.choudhary@nist.gov
Elastic constants, Γ-point phononsDFT Phonon
mode 1x1x1
cell (cm-1
)
DFT 1x1x1
Representation
Experimental
modes
Experimental
Representation
DFT Phonon modes
for 2x2x2 cell
DFT 2x2x2x
Representation
-0.13 Bu I -0.58 Bu I
-0.06 Au I -0.04 Bu I
-0.04 Bu I 0.06 Au I
7.36 Bu I 6.08 Bu I
25.80 Au I 24.65 Au I
31.04 Bu I 26.09 Bu I
76.66 Ag R 74.09 Ag R
84.86 Ag R 80.56 Ag R 81.54 Ag R
88.03 Bg R 87.63 Bg R
90.32 Bg R 89.60 Bg R
103.28 Bg R 96.54 Bg R 102.36 Bg R
104.17 Bg R 108.32 Bg R 102.95 Bg R
107.55 Au I 106.61 Au I
108.54 Ag R 107.12 Ag R
109.91 Au I 108.66 Au R
112.03 Ag R 112.8 Ag R 111.10 Ag R
114.06 Bu I 115.46 Bu I
122.27 Bu I 121.19 Bu I
124.29 Ag R 121.90 Ag R
126.27 Ag R 129.2 Ag R 123.58 Ag R
129.64 Bu I 126.25 Bu I
134.19 Bu I 130.53 Bu I
151.35 Ag R 150.19 Ag R
156.27 Ag R 163.32 Ag R 153.05 Ag R
175.28 Au I 176.42 Au I
175.94 Au I 176.93 Au I
184.24 Bg R 181.76 Bg R
186.30 Bg R 191.64 Bg R 185.04 Bg R
190.81 Bu I 189.22 Bu I
190.93 Bu I 189.61 Bu I
236.52 Ag R 234.90 Ag R
239.60 Ag R 248.45 Ag R 239.42 Ag R
252.88 Ag R 258.61 Ag R 250.04 Ag R
253.04 Ag R 263.34 Ag R 252.26 Ag R
264.26 Bu I 264.26 Bu I
265.13 Bu I 264.73 Bu I
Read WARNINGS!
• Experimental data from Ryan Beams, NIST
• <9% error, Beams et al., ACS Nano, 10 (10), 9626 (2016)
24
Email: kamal.choudhary@nist.gov
Thermoelectric properties
Read WARNINGS!
• BoltzTrap code in pymatgen
• Constant relaxation time approximation
• Only electronic contribution to thermal conductivity
• Perturbation in Fermi-distribution
• Doping dependent properties for:
Hall tensor, thermal conductivity,
electronic conductivity tensor, Seebeck tensor
(UNDER CONSTRUCTION)
http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000017259/Lukas_Hammerschmidt.Thesis.pdf
25
Email: kamal.choudhary@nist.gov
Providing References to other databases
26
Email: kamal.choudhary@nist.gov
Summary Part-2
• New publicly available database specially dedicated to 2D materials (both
bulk and single layer )
• Simple criteria to identify 2D materials, Nanowires and Quantum dots?
• 2D-2L, piezoelectric properties, defects and interface properties on the way
• Largest dataset for optical materials, easy screening of materials,
characterizing nature of optical transitions
• Many-body effects (GW,BSE), Nonlinear optical properties on the way
• JARVIS-DFT data will be available in Citrine database soon
• We welcome your experimental data for validation !
27
Email: kamal.choudhary@nist.gov
JARVIS-ML
• 3A Introduction
• 3B Implementation using current methods
• 3C New hybrid ML + FF
28
Email: kamal.choudhary@nist.gov
3A Intro Machine Learning
• Similarly, for materials == linear combination of features
• Very simple examples for feature selection:
X: input data, say NaCl: [mean of atomic radii of constituents, electronegativity, atomic mass,….]
Y: target data: [heat of formation, bulk modulus, bandgap,……]
Machine-Learning packages : Scikit-learn (Google), Tensor-flow (Google), Theano (Université de Montréal ,Canada)
Train a machine learning model with Neural network, linear regression, random-forest etc.
For new material say (KCl), convet in the format of X, then query the model
• Learning == Dimensionality reduction
• No one knows the Potential Energy Surface (PES) : Need of ML
29
Email: kamal.choudhary@nist.gov
3B Example using JARVIS-DFT data
• Bandgap, refractive index elastic constant for example
• Currently running on my computer, testing and debugging may take several months
30
Email: kamal.choudhary@nist.gov
3C Artificial Neural network + FF
• Present trend: Thousands of DFT calculation, structure-property(energy) relationship, parametrize force-
fields, limited to what we train—wrong extrapolation features! (E-V curve)
• Attempt to make new force-field: Machine-learning+FF-contribution (LJ, EAM, COMB and so on), Machine
learning for interpolation, Physics for extrapolation
• ~500 DFT calculations for training database
*Notes Yuri Mishin
31
Email: kamal.choudhary@nist.gov
DEMO !
32
Email: kamal.choudhary@nist.gov
Conclusions and Future work
• New publicly available databases!
• Simply Google “JARVIS-DFT”, “JARVIS-FF” or browse
http://www.ctcms.nist.gov/~knc6/JARVIS.html
• Identification and characterization of new/existing materials using classical and
quantum methods
• Flexible python framework to accommodate other models as well: CALPHAD, FEM, PF;
golden time for Multi-scale modelling
• Need of your Experimental data for validation!
• Soon JARVIS will be available on smart-phones
with voice-recognition apps!
• JARVIS-Wiki for documentation, and Hands-on tutorials will be
available soon
THANKS FOR YOUR ATTENTION ! JARVIS for YOU !33
Email: kamal.choudhary@nist.gov

More Related Content

What's hot

Nanoindentation
NanoindentationNanoindentation
Nanoindentation
Sum K
 
Nanocomposites gopi
Nanocomposites gopiNanocomposites gopi
Nanocomposites gopi
gopi krishna
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
oriolespinal
 

What's hot (20)

Plasmonics
PlasmonicsPlasmonics
Plasmonics
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space GroupsUCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space Groups
 
Powerpoint slides
Powerpoint slidesPowerpoint slides
Powerpoint slides
 
Nanoindentation
NanoindentationNanoindentation
Nanoindentation
 
Theory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BNTheory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BN
 
Nanocomposites gopi
Nanocomposites gopiNanocomposites gopi
Nanocomposites gopi
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Graphene
GrapheneGraphene
Graphene
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
Ashok quantum dots
Ashok quantum dotsAshok quantum dots
Ashok quantum dots
 
Theory of surface plasmon polaritons
Theory of surface plasmon polaritonsTheory of surface plasmon polaritons
Theory of surface plasmon polaritons
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
Magnetic domain and domain walls
 Magnetic domain and domain walls Magnetic domain and domain walls
Magnetic domain and domain walls
 
Quantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg ModelQuantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg Model
 
CNT
CNTCNT
CNT
 
Cobalt Ferrite Nanoparticles
Cobalt Ferrite Nanoparticles Cobalt Ferrite Nanoparticles
Cobalt Ferrite Nanoparticles
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
Applications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysisApplications of metal nanoparticles in photocatalysis
Applications of metal nanoparticles in photocatalysis
 
Graphene
GrapheneGraphene
Graphene
 

Similar to Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fields and Machine Learning

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
aimsnist
 

Similar to Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fields and Machine Learning (20)

Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
 
Smart Metrics for High Performance Material Design
Smart Metrics for High Performance Material DesignSmart Metrics for High Performance Material Design
Smart Metrics for High Performance Material Design
 
Smart Metrics for High Performance Material Design
Smart Metrics for High Performance Material DesignSmart Metrics for High Performance Material Design
Smart Metrics for High Performance Material Design
 
qmms_wines.pptx
qmms_wines.pptxqmms_wines.pptx
qmms_wines.pptx
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
(PhD Dissertation Defense) Theoretical and Numerical Investigations on Crysta...
 
Physics inspired artificial intelligence/machine learning
Physics inspired artificial intelligence/machine learningPhysics inspired artificial intelligence/machine learning
Physics inspired artificial intelligence/machine learning
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Exploring Architected Materials Using Machine Learning
Exploring Architected Materials Using Machine LearningExploring Architected Materials Using Machine Learning
Exploring Architected Materials Using Machine Learning
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model
 
Rapid optimisation techniques
Rapid optimisation techniquesRapid optimisation techniques
Rapid optimisation techniques
 
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
 
Morgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 distMorgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 dist
 

More from KAMAL CHOUDHARY

Elastic properties of bulk and low-dimensional materials using Van der Waals ...
Elastic properties of bulk and low-dimensional materials using Van der Waals ...Elastic properties of bulk and low-dimensional materials using Van der Waals ...
Elastic properties of bulk and low-dimensional materials using Van der Waals ...
KAMAL CHOUDHARY
 
High-throughput discovery of low-dimensional and topologically non-trivial ma...
High-throughput discovery of low-dimensional and topologically non-trivial ma...High-throughput discovery of low-dimensional and topologically non-trivial ma...
High-throughput discovery of low-dimensional and topologically non-trivial ma...
KAMAL CHOUDHARY
 

More from KAMAL CHOUDHARY (6)

ChemNLP: A Natural Language Processing based Library for Materials Chemistry ...
ChemNLP: A Natural Language Processing based Library for Materials Chemistry ...ChemNLP: A Natural Language Processing based Library for Materials Chemistry ...
ChemNLP: A Natural Language Processing based Library for Materials Chemistry ...
 
Quantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of SolidsQuantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of Solids
 
Database of Topological Materials and Spin-orbit Spillage
Database of Topological Materials and Spin-orbit SpillageDatabase of Topological Materials and Spin-orbit Spillage
Database of Topological Materials and Spin-orbit Spillage
 
Elastic properties of bulk and low-dimensional materials using Van der Waals ...
Elastic properties of bulk and low-dimensional materials using Van der Waals ...Elastic properties of bulk and low-dimensional materials using Van der Waals ...
Elastic properties of bulk and low-dimensional materials using Van der Waals ...
 
High-throughput discovery of low-dimensional and topologically non-trivial ma...
High-throughput discovery of low-dimensional and topologically non-trivial ma...High-throughput discovery of low-dimensional and topologically non-trivial ma...
High-throughput discovery of low-dimensional and topologically non-trivial ma...
 
Computational Database for 3D and 2D materials to accelerate discovery
Computational Database for 3D and 2D materials to accelerate discoveryComputational Database for 3D and 2D materials to accelerate discovery
Computational Database for 3D and 2D materials to accelerate discovery
 

Recently uploaded

Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
Bhagirath Gogikar
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 

Recently uploaded (20)

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 

Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fields and Machine Learning

  • 1. JARVIS Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fields and Machine Learning By Kamal Choudhary Northwestern University, May 19, 2017 1
  • 2. Acknowledgments NIST NISTNIST/LBNL NIST NIST NIST NIST NIST NISTGMU Google Others : Richard Hennig (UF), Susan Sinnott (PSU), Tao Liang (PSU), Kiran Mathew (LBNL), Kristin Persson (LBNL) Computational resources: CTCMS, RARITAN, XSEDE, NERSC Software packages: VASP, LAMMPS, Pymatgen, ASE, Phonopy, Magpie, Matminer, Flask NISTNIST NIST NIST 2
  • 3. Outline 1. JARVIS-FF ➢ Evaluation of elastic constants, convex hull ➢ Defects, surfaces, phonons 2. JARVIS-DFT: ➢ 2D or not 2D? ➢ Properties 3. JARVIS-ML: ➢ Generalized Material-descriptors/features (challenge?) ➢ Neural-Network+classical physics based hybrid force-field 4. Conclusions 3 Email: kamal.choudhary@nist.gov
  • 4. Few basics • Materials Science is all about: Structure-Property-Performance relationship and minimization of free-energy • Computationally: Structure = lattice constants (a,b,c), angles (alpha, beta, gamma) and basis vectors ([Si,0, 0,0],[Si,0.5,0.0,0.5],…..) • To calculate property: classical physics (e.g. classical force-fields), quantum physics (e.g. density functional theory) • MGI motivated current computational databases: Materials-project (MP), AFLOW, OQMD ICSD database (with experiment al lattice constant) AFLOW OQMD PBE Materials Project MIT, LBNL (67,486 materials) Duke University (1,640,245 materials) Northwestern university (471,857 materials)+SQS Others: AIIDA, MaterialWeb, NREL-MatDB etc. 4 Email: kamal.choudhary@nist.gov
  • 5. JARVIS-FF 1A Introduction to force-fields 1B Property evaluation: elastic constants, convex hull 1C Defects, surfaces, phonons 5 Email: kamal.choudhary@nist.gov
  • 6. 1A Intro Force-fields • Coulomb potential • Lennard-Jones potential • Morse-potential • Stilinger-Weber potential • EAM and MEAM potential • Bond-order/Tersoff/Brenner • Fixed charge potentials: Coulomb-Buckingham • Other FFs: ReaxFF, COMB, AMBER, CHARMM, OPLS etc. 6      12 21 2211 , rr qkq rqrqV     One parameter to fit/optimize Repulsive and attractive terms, Two parameters to fit These potentials lack angular information hence not able to capture elastic constants well Uses electron density, for metallic systems These potentials lack charge information Uses angle but transferability problem Uses bond information, for covalent systems Berni Alder iii amF  , VF ii  , 2 2 dt rd m dr dV i i i  Email: kamal.choudhary@nist.gov
  • 7. JARVIS-FF-workflow • Force-fields obtained from NIST’s interatomic potential repository and LAMMPS-potential folder (e.g. Mishin-Ni-Al-2009.alloy) • DFT relaxed structures obtained from materials-project for corresponding system (say Ni-Al system: Al, Ni, Ni3Al, NiAl etc. ) • Convert the files from DFT format to LAMMPS format write corresponding input files from LAMMPS • HT LAMMPS calculations 7 Email: kamal.choudhary@nist.gov
  • 8. Public Webpage a) b) c) d) Old version Development version Choudhary et al. , Nature:Scientific Data 4, 160125 (2017) http://www.ctcms.nist.gov/~knc6/periodic.html http://www.ctcms.nist.gov/~knc6/JLAMMPS.html 8 Email: kamal.choudhary@nist.gov
  • 9. 1B Convex-hull plot • Comparison of DFT convex-hull plot with LAMMPS • Some points shown unstable for FF, because they are not fit to it ! Choudhary et al., Nature:Scientific Data 4, 160125 (2017) Choudhary et al., Computational Materials Science 113, 80 (2016) 9 Email: kamal.choudhary@nist.gov
  • 10. 1B Bulk modulus Choudhary et al, Nature:Scientific Data 4, 160125 (2017) • Comparison of DFT bulk modulus with LAMMPS, ~500 points in common • Some FFs are not fit for elastic properties 10 Email: kamal.choudhary@nist.gov
  • 11. 1C Vacancy formation energies • Real materials are VERY defective ! • Vacancy structures based on unique Wyckoff positions • Delete symmetrically distinct sites only 11 Email: kamal.choudhary@nist.gov
  • 13. 1C Surface energies Wulff construction: Used in predicting equilibrium shape of materials Mathew et al., Computational Materials Science, 122 183 (2016 13 Email: kamal.choudhary@nist.gov
  • 14. Summary Part-1 • New website for FF calculation data • Enable user to select FF before doing any calculations • Can be complement to DFT where computational cost is too high, such as phonons, defects, grain boundaries etc. • Genetic algorithm based evaluation, melting point, thermal expansion coefficient, thermal conductivity, Grüneisen parameter calculations on the way • Outreach: thousands of website hits in few months, JARVIS-FF listed as a post-processing tools for LAMMPS 14 Email: kamal.choudhary@nist.gov
  • 15. PART 2 JARVIS-DFT 2B 2D Materials ➢ Applications: Sub-micron electronics, Flexible and tunable electronics, photo-voltaics, energy-storage 2A Introduction to Density functional theory 15 Email: kamal.choudhary@nist.gov
  • 16. 2A Density Functional Theory • Classical Newton’s laws not applicable for electrons (very fast, very tiny); • Schrödinger equation: mathematical equation that describes the evolution over time of a physical system in which quantum effects, such as wave–particle duality, are significant (such as electrons) • Schrödinger equation of a fictitious system (the "Kohn–Sham system") of non-interacting particles (typically electrons) that generate the same density as any given system of interacting particles • Uses density (scalar) vs wavefunction (vector) quantity • Different functionals: LDA, GGA (PBE, PW91), HSE06 etc. • LDA: developed for homogenous systems (Thomas-Fermi model), such as metals • GGA: uses density gradient information on top of GGA • vdW-DF2: uses exchange from GGA, correlation from LDA, quantum-Monte-Carlo based non-local corrections, optB88 used here mainly https://en.wikipedia.org/wiki/Classical_mechanics http://www.psi-k.org/Update3.shtml http://www.physlink.com/Education/AskExperts/ae329.cfm        rrErrV m iiiEff         2 2 2  XCeeNeEff VVVTV  EH  Walter Kohn Exchange-correlation Hohenberg, Pierre; Walter Kohn (1964). "Inhomogeneous electron gas". Physical Review. 136 (3B): B864–B871   0 8 2 2 2 2      VE h m x P o s i t i o n Second derivative wrt X Schrodinger Wave-function Position Energy Potential Energy 16 Email: kamal.choudhary@nist.gov
  • 17. 2B Two-dimensional materials • Vander-Waal bonding in z-direction, covalent bonding in x, y-directions, e.g. Graphene,MoS2 DIMENSIONALITY ==PERIODICITY • Easily exfoliated, scotch-tape type, potential candidate for sub-nanometer technology, Si-replacement, flexible electronics, and other applications • For DFT calculation on 2D materials: position of atoms (r) obtained from XRD and other experiments, ICSD database and other DFT databases • DFT databases (Materials Project, AFLOW, OQMD) took structures from ICSD and used PBE functionals consistently for all structures, JARVIS-DFT took from them • Catch: PBE functionals overestimate lattice constants ( the r’s in PBE-DFT are not correct) • JARVIS-DFT: Using REST API at Materials-project got all the crystal structures with ICSD and PBE data and calculated relative error • If the error is more than 5%, we predict them to be 2D materials; at least 1356 such materials Found, recalculate with better optB88 functionals, tight DFT convergence ICSD ICSDPBE l ll   http://ammcttwtht.tumblr.com/post/101405895438/a-miracle-material-can-take-the-world-to-the 17 Email: kamal.choudhary@nist.gov
  • 18. JARVIS-DFT workflow • Written in python language • Separate calculation for mono-layer and bulk materials • Mono-layer created by adding additional vacuum (20 Angstrom) in z-direction • c-lattice constant not-optimized for mono- layer (custom compilation of VASP) • Example: 18 Email: kamal.choudhary@nist.gov
  • 19. Webpage http://www.ctcms.nist.gov/~knc6/JVASP.html • Click on elements, click search, click JARVIS-ID • Kpoint, Energy cut-off and force convergence (N/A in other DFT databases, but very important!) • Both bulk and single-layer materials available • Makes ~5 times slower, but much reliable • >1280 hits in <6months • Soon will be part of Citrine databaseRead WARNINGS! 19 Email: kamal.choudhary@nist.gov
  • 20. Exfoliation energy calculations • Exfoliation energy: • 1012 bulk, 430 Single layer, 371 common, calculations still running (thousands of processors needed) bulk bulk L L f N E N E E  1 1 Energy range (meV) Materials a) 0-40 TiNCl, SiH4, HfBrN, Mg(AlSe2)2 b) 40-60 GaSe, CrS2, ZrS3, NiO2, GaS, ZrSe3, NdTe3, US3, TiS3, PrIO, DySI, Sc2CCl2, ThIN, TiBrN, InClO, LuSBr, SrHI, BiIO, BiBrO, KMnP, TiIN, Sc2NCl2, TlSbO3, ZrCl, SmTe3, PrTe3, As2O3, Nb2CS2, RbMnAs, SiH, Bi2TeI, ScCl, TbBr, Ge(BiTe2)2, GaS c) 60-80 WSe2, WS2, MoS2, C, SnO2, PtO2, CdBr2, ReSe2, CrSe, MgCl2, CoBr2, ZrCl2, MgBr2, TcS2, FeCl2, MnCl2, MnBr2, InSe, CrBr3, VCl3, USe3, IrCl3, ScCl3, RhCl3, TaI2O, DySBr, ErSeI, ErSCl, BiClO, OsCl2O, CdCl2, BN, Nb(SCl)2, Bi2Te2S, ThBrN, HfCl4, Bi2Te2Se, MgPSe3, CdPS3, ScPS4, PPdS, TmAg(PSe3)2, ScAg(PSe3)2, ErAg(PSe3)2, ScAg(PS3)2, Nb3Cl8, Nb3TeCl7, InAg(PSe3)2, Hf3Te2, SNCl, Sr3Si2, TiCl2, HfFeCl6, GaTe, CS2, Nb(SeCl)2, CrCl3, BiI, TiBr2, GaAg(PSe3)2, CdPS3, TiS2 d) 80-100 NbS2, MoSe2, NbSe2, WTe2, MoTe2, VSe2, ZrS2, HfS2, HfSe2, MoS2, PtO2, PtS2, SnS2, SnSe2, TiO2, TiS2, TiSe2, ZrSe2, TaS2, SiTe2, TaSe2, VS2, TaSe2, MgI2, SbI3, PbI2, GeI2, SiS2, MnI2, CaI2, RhBr3, BiI3, MoBr3, RuBr3, PCl3, AuI, BPS4, IrBr3, Re(AgCl3)2, AlPS4, AlSiTe3, PPdSe, CrSiTe3, Nb3TeI7, NdI2, Al2Te3, S5N6, AlTeI7, AlSeBr7, CdI2, PSe, Ta3TeI7, TmI2, SbBr3, P4S5 e) 100-120 HfTe2, PtSe2, TiTe2, WO2, SnO, BCl3, Te2Br, Te2I, PBr3, TiI3, BiTeCl, BiTeI, TlPt2S3, AlBr3, BiSBr, CaN, Mn2Bi, HgI2, SrThBr6, P f) 120-140 BBr3, AlI3, TlTe3Pt2, SbSBr, TlPd2Se3, P2Se5 g) 140-160 PdS2, Te2Pt, BI3, Ta(ICl)2 h) 160-180 PdSe2, NiTe2, NbI5 i) 180-200 ZrS, PI3, BaBrCl j) 200-220 Te2Pd, Te2Ir, BiSe2 k) 220-240 SbSeI, BiSI l) 240-260 Bi2Te3 m) 260-300 VS2 n) 300-340 CaSn, KAuSe o) 340-360 KAuS, RbAuS, RbAuSe p) 360-440 Sc2C q) 440-500 GaN, TiSe2 r) 500-560 Sr2H3, Ca2H3 s) 560-640 AlN t) 640-660 TiTe2 u) 660-680 CrSe2 v) 680-700 ZrTe2 w) 700-720 CoAs2 x) 720-960 Ti2O Choudhary et al., (Submitted) 20 Email: kamal.choudhary@nist.gov
  • 21. Classification of database • 2D materials are not just AB2 • More than 2H (𝑃ത6𝑚2) and 1T (𝑃ത3𝑚1) prototype • Venn diagram • Majority of 2D materials are binary Choudhary et al., (Submitted)21 Email: kamal.choudhary@nist.gov
  • 22. Computational X-Ray diffraction • Experimental data from Irina Kalish (MoTe2-2H) • Computational XRD implemented in pymatgen • Excellent agreement of optB88 and experiments • PBE gives erroneous peaks • Single-layer XRD also available http://faculty.gvsu.edu/majumdak/public_html/OnlineMaterials/XRay.pdf http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html • Computational X-ray diffraction: Read WARNINGS! Choudhary et al., (Submitted) 22 Email: kamal.choudhary@nist.gov
  • 23. Computational band-structure • Density of states and Band-structures: Read WARNINGS! Brillouin zone for hexagonal system • optB88 bandgaps • Few LDA, PBE and HSE06 bandgaps • DOS can be used to approximately calculate magnetic property such as Orbital magnetic moment 23 Email: kamal.choudhary@nist.gov
  • 24. Elastic constants, Γ-point phononsDFT Phonon mode 1x1x1 cell (cm-1 ) DFT 1x1x1 Representation Experimental modes Experimental Representation DFT Phonon modes for 2x2x2 cell DFT 2x2x2x Representation -0.13 Bu I -0.58 Bu I -0.06 Au I -0.04 Bu I -0.04 Bu I 0.06 Au I 7.36 Bu I 6.08 Bu I 25.80 Au I 24.65 Au I 31.04 Bu I 26.09 Bu I 76.66 Ag R 74.09 Ag R 84.86 Ag R 80.56 Ag R 81.54 Ag R 88.03 Bg R 87.63 Bg R 90.32 Bg R 89.60 Bg R 103.28 Bg R 96.54 Bg R 102.36 Bg R 104.17 Bg R 108.32 Bg R 102.95 Bg R 107.55 Au I 106.61 Au I 108.54 Ag R 107.12 Ag R 109.91 Au I 108.66 Au R 112.03 Ag R 112.8 Ag R 111.10 Ag R 114.06 Bu I 115.46 Bu I 122.27 Bu I 121.19 Bu I 124.29 Ag R 121.90 Ag R 126.27 Ag R 129.2 Ag R 123.58 Ag R 129.64 Bu I 126.25 Bu I 134.19 Bu I 130.53 Bu I 151.35 Ag R 150.19 Ag R 156.27 Ag R 163.32 Ag R 153.05 Ag R 175.28 Au I 176.42 Au I 175.94 Au I 176.93 Au I 184.24 Bg R 181.76 Bg R 186.30 Bg R 191.64 Bg R 185.04 Bg R 190.81 Bu I 189.22 Bu I 190.93 Bu I 189.61 Bu I 236.52 Ag R 234.90 Ag R 239.60 Ag R 248.45 Ag R 239.42 Ag R 252.88 Ag R 258.61 Ag R 250.04 Ag R 253.04 Ag R 263.34 Ag R 252.26 Ag R 264.26 Bu I 264.26 Bu I 265.13 Bu I 264.73 Bu I Read WARNINGS! • Experimental data from Ryan Beams, NIST • <9% error, Beams et al., ACS Nano, 10 (10), 9626 (2016) 24 Email: kamal.choudhary@nist.gov
  • 25. Thermoelectric properties Read WARNINGS! • BoltzTrap code in pymatgen • Constant relaxation time approximation • Only electronic contribution to thermal conductivity • Perturbation in Fermi-distribution • Doping dependent properties for: Hall tensor, thermal conductivity, electronic conductivity tensor, Seebeck tensor (UNDER CONSTRUCTION) http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000017259/Lukas_Hammerschmidt.Thesis.pdf 25 Email: kamal.choudhary@nist.gov
  • 26. Providing References to other databases 26 Email: kamal.choudhary@nist.gov
  • 27. Summary Part-2 • New publicly available database specially dedicated to 2D materials (both bulk and single layer ) • Simple criteria to identify 2D materials, Nanowires and Quantum dots? • 2D-2L, piezoelectric properties, defects and interface properties on the way • Largest dataset for optical materials, easy screening of materials, characterizing nature of optical transitions • Many-body effects (GW,BSE), Nonlinear optical properties on the way • JARVIS-DFT data will be available in Citrine database soon • We welcome your experimental data for validation ! 27 Email: kamal.choudhary@nist.gov
  • 28. JARVIS-ML • 3A Introduction • 3B Implementation using current methods • 3C New hybrid ML + FF 28 Email: kamal.choudhary@nist.gov
  • 29. 3A Intro Machine Learning • Similarly, for materials == linear combination of features • Very simple examples for feature selection: X: input data, say NaCl: [mean of atomic radii of constituents, electronegativity, atomic mass,….] Y: target data: [heat of formation, bulk modulus, bandgap,……] Machine-Learning packages : Scikit-learn (Google), Tensor-flow (Google), Theano (Université de Montréal ,Canada) Train a machine learning model with Neural network, linear regression, random-forest etc. For new material say (KCl), convet in the format of X, then query the model • Learning == Dimensionality reduction • No one knows the Potential Energy Surface (PES) : Need of ML 29 Email: kamal.choudhary@nist.gov
  • 30. 3B Example using JARVIS-DFT data • Bandgap, refractive index elastic constant for example • Currently running on my computer, testing and debugging may take several months 30 Email: kamal.choudhary@nist.gov
  • 31. 3C Artificial Neural network + FF • Present trend: Thousands of DFT calculation, structure-property(energy) relationship, parametrize force- fields, limited to what we train—wrong extrapolation features! (E-V curve) • Attempt to make new force-field: Machine-learning+FF-contribution (LJ, EAM, COMB and so on), Machine learning for interpolation, Physics for extrapolation • ~500 DFT calculations for training database *Notes Yuri Mishin 31 Email: kamal.choudhary@nist.gov
  • 33. Conclusions and Future work • New publicly available databases! • Simply Google “JARVIS-DFT”, “JARVIS-FF” or browse http://www.ctcms.nist.gov/~knc6/JARVIS.html • Identification and characterization of new/existing materials using classical and quantum methods • Flexible python framework to accommodate other models as well: CALPHAD, FEM, PF; golden time for Multi-scale modelling • Need of your Experimental data for validation! • Soon JARVIS will be available on smart-phones with voice-recognition apps! • JARVIS-Wiki for documentation, and Hands-on tutorials will be available soon THANKS FOR YOUR ATTENTION ! JARVIS for YOU !33 Email: kamal.choudhary@nist.gov