SlideShare a Scribd company logo
1 of 8
仮想仕事の原理
最小ポテンシャルエネルギーの原理
1. 仮想変位の特徴を説明できる
目標
2. 仮想仕事の原理を説明できる
3. 最小ポテンシャルエネルギーの原理を説明できる
1/8
“微小”な仮想変位 δu の特徴
δu
P(b)
P
uℓ
E:ヤング率 A:断面積
(a)
Q. どのくらい“微小”?
A. 荷重条件が変化しない
P =一定
2/8
仮想変位による仕事
δu
P(b)
P
uℓ
E:ヤング率 A:断面積
(a)
δW
荷重条件が変化しない
P =一定
= Pδu
δW
3/8
棒の弾性ひずみエネルギー
P
uℓ
E:ヤング率 A:断面積
(a)
P uU
2
1
=
K u
2
1
=
2
=
2
1 uAE
ℓ
u
K=
ℓ
AE
棒のばね定数(一定)
P=AE
ℓ
u
ε
σ
uでPを表現
U
4/8
仮想変位 による
弾性ひずみエネルギー増分
δu
P(b)
P
uℓ
E:ヤング率 A:断面積
(a)
δU
U K u
2
1
=
2
U’= K
2
1 2
( )u δu+
δU U’= − U
K
2
1
( )2u δu+δu=
~− Kuδu u >> δu∵
= P δu P=Ku∵
5/8
δu
仮想仕事の原理
δu
P(b)
P
uℓ
E:ヤング率
(a)
A:断面積
仮想変位による外部仕事
δW = Pδu
仮想変位による内部エネルギー増分
δU = Pδu
δU = δW 仮想仕事の原理
仮想変位による
外部仕事と内部エネルギー増分は等しい
6/8
最小ポテンシャルエネルギーの原理
δU δW = 0−
δ = 0( )W−U
Π
ポテンシャルエネルギー
仮想仕事の原理
が極値(極小値)
弾性体が釣合い状態
Π
δΠ= 0
釣合い
δ Π = 0
u
Π
Π がuだけの関数の場合
δU δW=
7/8
まとめ:仮想仕事の原理
最小ポテンシャルエネルギーの原理
1. 仮想変位の特徴
3. 最小ポテンシャルエネルギーの原理
2. 仮想仕事の原理
仮想変位は加えても荷重条件が変化しない
δU δW= 仮想変位による
内部エネルギー増分と外部仕事は等しい
8/8
δ = 0( )W−U
Π
ポテンシャルエネルギー
釣り合い状態で
ポテンシャルエネルギーは極小

More Related Content

More from Kazuhiro Suga

【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)Kazuhiro Suga
 
【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)Kazuhiro Suga
 
【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)Kazuhiro Suga
 
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)Kazuhiro Suga
 
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)Kazuhiro Suga
 
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)Kazuhiro Suga
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)Kazuhiro Suga
 
【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)Kazuhiro Suga
 
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)Kazuhiro Suga
 
【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)Kazuhiro Suga
 
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)Kazuhiro Suga
 
【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)Kazuhiro Suga
 
【材料力学】ひずみ (I-03-2 2020)
【材料力学】ひずみ  (I-03-2 2020)【材料力学】ひずみ  (I-03-2 2020)
【材料力学】ひずみ (I-03-2 2020)Kazuhiro Suga
 
【材料力学】内力の決定 (I-02-2 2020)
【材料力学】内力の決定 (I-02-2 2020)【材料力学】内力の決定 (I-02-2 2020)
【材料力学】内力の決定 (I-02-2 2020)Kazuhiro Suga
 
【材料力学】内力 (I-02-1 2020)
【材料力学】内力 (I-02-1 2020)【材料力学】内力 (I-02-1 2020)
【材料力学】内力 (I-02-1 2020)Kazuhiro Suga
 
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)【材料力学】支点支持と反力・反モーメント (I-01-2 2020)
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)Kazuhiro Suga
 
【材料力学】内力 (I-04 2019)
【材料力学】内力 (I-04 2019)【材料力学】内力 (I-04 2019)
【材料力学】内力 (I-04 2019)Kazuhiro Suga
 
【材料力学】静的釣合い方程式 (I-03 2019)
【材料力学】静的釣合い方程式 (I-03 2019)【材料力学】静的釣合い方程式 (I-03 2019)
【材料力学】静的釣合い方程式 (I-03 2019)Kazuhiro Suga
 
【材料力学】支点の反力と反モーメント (I-02 2019)
【材料力学】支点の反力と反モーメント (I-02 2019)【材料力学】支点の反力と反モーメント (I-02 2019)
【材料力学】支点の反力と反モーメント (I-02 2019)Kazuhiro Suga
 
【材料力学】力とモーメント (I-01 2019)
【材料力学】力とモーメント (I-01 2019)【材料力学】力とモーメント (I-01 2019)
【材料力学】力とモーメント (I-01 2019)Kazuhiro Suga
 

More from Kazuhiro Suga (20)

【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)
 
【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)
 
【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)
 
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
 
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
 
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)
 
【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)
 
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
 
【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)
 
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
 
【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)
 
【材料力学】ひずみ (I-03-2 2020)
【材料力学】ひずみ  (I-03-2 2020)【材料力学】ひずみ  (I-03-2 2020)
【材料力学】ひずみ (I-03-2 2020)
 
【材料力学】内力の決定 (I-02-2 2020)
【材料力学】内力の決定 (I-02-2 2020)【材料力学】内力の決定 (I-02-2 2020)
【材料力学】内力の決定 (I-02-2 2020)
 
【材料力学】内力 (I-02-1 2020)
【材料力学】内力 (I-02-1 2020)【材料力学】内力 (I-02-1 2020)
【材料力学】内力 (I-02-1 2020)
 
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)【材料力学】支点支持と反力・反モーメント (I-01-2 2020)
【材料力学】支点支持と反力・反モーメント (I-01-2 2020)
 
【材料力学】内力 (I-04 2019)
【材料力学】内力 (I-04 2019)【材料力学】内力 (I-04 2019)
【材料力学】内力 (I-04 2019)
 
【材料力学】静的釣合い方程式 (I-03 2019)
【材料力学】静的釣合い方程式 (I-03 2019)【材料力学】静的釣合い方程式 (I-03 2019)
【材料力学】静的釣合い方程式 (I-03 2019)
 
【材料力学】支点の反力と反モーメント (I-02 2019)
【材料力学】支点の反力と反モーメント (I-02 2019)【材料力学】支点の反力と反モーメント (I-02 2019)
【材料力学】支点の反力と反モーメント (I-02 2019)
 
【材料力学】力とモーメント (I-01 2019)
【材料力学】力とモーメント (I-01 2019)【材料力学】力とモーメント (I-01 2019)
【材料力学】力とモーメント (I-01 2019)
 

【材料力学】仮想仕事の原理,最小ポテンシャルエネルギーの原理 (II-06-1 2020)

Editor's Notes

  1. 不静定はりの問題を解くのが簡単になる
  2. 微小変化(関数という点が違う) 全体の微小変化は,それぞれの微小変化の差 関数の変化量=変分