SlideShare a Scribd company logo
1 of 26
Concurrent Surrogate Model Selection (COSMOS) 
based on 
Predictive Estimation of Model Fidelity 
Souma Chowdhury#, Ali Mehmani*, and Achille Messac# 
* Syracuse University, Department of Mechanical and Aerospace Engineering 
# Mississippi State University, Bagley College of Engineering 
The ASME International Design Engineering Technical Conferences (IDETC) 
August 17 – 20, 2014, Buffalo, NY
Surrogate Modeling 
Surrogate models are commonly used for providing a tractable and inexpensive 
approximation of the actual system behavior, as an alternative 
 To expensive computational simulations (e.g., CFD), or 
 To the lack of a physical model in the case of experiment-derived data (e.g., testing 
of new metallic alloys). 
풘풊 흍( 풙 − 풙풊 ) 
2 
Model Type Kriging RBF SVR . . . 
Linear Exponential Gaussian Cubic Multiquadric . . . 
Kernel/Basis function 
Correlation parameter Shape parameter . . . 
Hyper-Parameter value 
풇 풙 = 
풏 
풊=ퟏ 
흍 풓 = (풓ퟐ + 풄ퟐ) ퟏ/ퟐ 
풓= 풙 − 풙풊 
풄풍풐풘풆풓 < 풄 < 풄풖풑풑풆풓
Outline 
• Background and Literature 
• Research Objectives 
• COSMOS Framework 
• Predictive Estimation of Model Fidelity (PEMF) 
• Numerical Experiments: Results 
• Concluding Remarks 
3
Surrogate Model Selection 
4 
 Intuitive model selection (experience-based selection) 
Model selection based on an understanding of the data characteristics 
and/or the application constraints. 
• Development of general guidelines likely not practical due to problem diversity. 
• A few candidate surrogates are generally considered. 
• In MDO problems, characteristics of disciplinary phenomena may not be evident. 
 Automated model selection 
Model selection based on the quantitative decision-making 
techniques. Automated selection can be performed at these levels:
Automated Model or Kernel Selection 
5 
 Error measures are used to select the model type and basis functions* 
퐹∗ = argmin 
퐹 ∈푭 
휺( 푭) 
best surrogate model 
surrogate model error 
set of candidate surrogates 
 Popular error measures used for model selection include: (i) split sample, 
(ii) cross-validation, (iii) bootstrapping, (iv) Schwarz’s Bayesian information 
criterion (BIC), and (v) Akaike’s information criterion (AIC) 
Method Model Type Selection Kernel Type Selection 
Holena et al., 2011  
Jin et al., 2001  
Gano et al., 2006  
Chen et al., 2004  
Viana et al., 2009  
Hyper-parameter Optimization 
To mitigate the possibility of constructing a suboptimal surrogate model for a 
given Kernel function, one must perform hyper-parameter optimization. 
• Martin et al. (AIAAJ, 2005) used MLE and cross-validation methods to find the optimum 
6 
hyper-parameter value for the Gaussian correlation function in Kriging. 
• Mongillo et al. (SIAM, 2011) used MLE and leave-one-out cross-validation methods to select 
an optimal shape parameter in a Gaussian RBF. 
• Gorissen et al. (JMLR, 2009) used the leave-one-out cross-validation and AIC error measures 
in the SUMO Toolbox to select the hyper parameter value(s) through a genetic algorithm. 
Shape parameter, σ 
RMSE 
X 
F 
Branin-Hoo function: 
RBF Multiquadric 
model with different 
HP values
Research Objectives 
 The original PEMF-based surrogate model selection method performed 
selection at all three levels based on the median and maximum error. 
 Models with similar number of kernel choices and kernels with a single 
hyper-parameter was considered. 
 The objectives of this research is to advance the PEMF-based COSMOS: 
1. By introducing additional selection criteria: (i) the variance of the surrogate error and 
(ii) the predicted error at a greater number of sample points. 
2. By modifying the optimization formulation to allow competition among surrogates with 
differing numbers of candidate kernels, and kernels with differing numbers of HPs. 
3. By testing the COSMOS framework with a comprehensive set of model types and 
constitutive kernel types − 16 surrogate-kernel combinations with 0 to 2 HPs. 
PEMF: Predictive Estimation of Model Fidelity (Mehmani et al., AIAA Scitech 2014) 7
COSMOS Framework 
8 
Pareto Filter 
Generally, any two 
selection criteria, based on 
user-preference, could be 
considered simultaneously
COSMOS: MATLAB-based GUI 
COSMOS MATLAB-based GUI: Courtesy of Ali Mehmani 9
COSMOS: Optimization Formulation 
 Separate MINLPs are run in parallel for 
each HP class (defined by #HPs involved) 
 All hyper-parameters (CHP) are scaled to the 
range 0 to 1. 
 The candidate model-kernel combinations 
are integer-coded. 
 A single integer variable (TSK) now identifies 
the model-kernel type. 
 NSGA-II is used to solve the MINLP 
problems. 10 
Hyper-Parameter 
Values 
Candidate 
Model-Kernel 
Combinations 
Branin Hoo 
Function
Surrogate Model Candidates 
11
Predictive Estimation of Model Fidelity (PEMF) 
The PEMF method is derived from the hypothesis that the accuracy of 
approximation models is related to the amount of data resources 
leveraged to train the model. 
 PEMF can be perceived as a novel sequential implementation of k-fold 
12 
cross-validation, with carefully constructed error measures. 
 The PEMF method analyzes the variation of the model error distribution 
with increasing number of training points. 
 The PEMF method is a model independent approach for surrogate error 
quantification, and does not require any additional test points. 
 The PEMF method has been shown to be 1-2 orders of magnitude more 
accurate in error quantification compared to leave-one-out cross validation. 
Mehmani et al., AIAA SDM 2013, AIAA Scitech 2014, and Aviation, SMO 2014
PEMF: Approach 
13 
Median Error Maximum Error 
Using Lognormal distribution at every iteration: 
Variation of the modal value of the 
median/maximum error is represented by 
퐸 = 푎푛푏 or 퐸 = 푎푒푏푛 
Final 
Surrogate 
Final 
Surrogate
PEMF Input-Output 
14 
Error Metrics Model type 
I/O Training data 
Kernel type HP values 
All error values expressed in terms 
of relative absolute errors.
Numerical Experiments 
Problem 
Problem Settings Optimization Settings 
Dimension Sample Size Population Size Max. Generations 
Branin Hoo 2 30 20 50 
Hartman-6 6 60 40 50 
Dixon & Price 30 60 30 30 
Neumaier & Perm 20 50 30 30 
Airfoil Design 4 30 20 50 
15 
 Case 1: Minimize modal value of the median error and modal value of 
the maximum error. 
 Case 2: Minimize modal value of the median error and variance of the 
median error. 
 Case 3: Minimize modal value of the median error and the expected 
modal value of the median error at 20% more sample points.
COSMOS Results: Benchmark Problems 
16 
Med vs. Max Med vs. Std-dev Med vs. Med-extra 
0 0.05 0.1 0.15 0.2 
0.4 
0.35 
0.3 
0.25 
0.2 
0.15 
0.1 
0.05 
0 
Mode of Median Error, E 
mo 
med 
max 
mo 
Mode of Maximum Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0 0.05 0.1 0.15 0.2 
0.2 
0.18 
0.16 
0.14 
0.12 
0.1 
0.08 
0.06 
0.04 
0.02 
0 
Mode of Median Error, E 
mo 
med 
med, 
mo 
Mode of Median Error at 20% more samples, E 
HP-0 
HP-1 
HP-2 
Pareto 
1.4 
1.2 
1 
0.8 
0.6 
0.4 
0.2 
0 
0.02 0.04 0.06 0.08 0.1 0.12 
Mode of Median Error, E 
mo 
med 
med 
 
Standard Deviation of Median Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
Branin Hoo (2D) 
2.4 
2 
1.6 
1.2 
0.8 
0.4 
0.2 0.4 0.6 0.8 1 1.2 
Mode of Median Error, E 
mo 
med 
max 
mo 
Mode of Maximum Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
40 
35 
30 
25 
20 
15 
10 
5 
0 
Hartman-6 (6 D) 
0.2 0.4 0.6 0.8 1 1.2 
Mode of Median Error, E 
mo 
med 
med 
 
Standard Deviation of Median Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.2 0.4 0.6 0.8 1 1.2 
Mode of Median Error, E 
mo 
med 
med, 
mo 
Mode of Median Error at 20% more samples, E 
HP-0 
HP-1 
HP-2 
Pareto 
Med vs. Max Med vs. Std-dev Med vs. Med-extra
COSMOS Results: Benchmark Problems 
mo 
0.35 0.4 0.45 0.5 
0.11 
0.105 
0.1 
0.095 
0.09 
0.085 
0.08 
0.075 
0.07 
0.065 
0.06 
0.5 
0.45 
0.4 
0.35 
0.3 
0.25 
0.2 
0.15 
0.1 
mo 
Mode of Median Error, E 
med 
med, 
med, 
mo 
mo 
Mode of Median Error at 20% more samples, E 
HP-0 
HP-1 
HP-2 
Pareto 
mo 
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
0.35 
0.34 
0.33 
0.32 
0.31 
0.3 
0.29 
0.28 
0.27 
0.26 
0.25 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
mo 
Mode of Median Error, E 
med 
mo 
max 
max 
mo 
Mode of Maximum Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0.09 0.1 0.11 0.12 0.13 0.14 0.15 
Mode of Median Error, E 
med 
Mode of Median Error at 20% more samples, E 
HP-0 
HP-1 
HP-2 
Pareto 
Dixon & Price (30D) 
0.35 
0.3 
0.25 
0.2 
0.15 
0.1 
0.05 
0 
0.09 0.1 0.11 0.12 0.13 0.14 0.15 
Mode of Median Error, E 
mo 
med 
med 
 
Standard Deviation of Median Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0.09 0.1 0.11 0.12 0.13 0.14 0.15 
Mode of Median Error, E 
med 
Mode of Maximum Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
17 
Med vs. Max Med vs. Std-dev Med vs. Med-extra 
Neumaier Perm (20D) 
Med vs. Max Med vs. Std-dev Med vs. Med-extra
COSMOS Results: Airfoil Problem 
18 
Med vs. Max Med vs. Std-dev Med vs. Med-extra 
0 0.005 0.01 0.015 0.02 
0.035 
0.03 
0.025 
0.02 
0.015 
0.01 
0.005 
0 
Mode of Median Error, E 
mo 
med 
max 
mo 
Mode of Maximum Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0.02 
0.018 
0.016 
0.014 
0.012 
0.01 
0.008 
0.006 
0.004 
0.002 
med, 
mo 
퐶퐿 
퐶퐷 
= 푓 푥1, 푥2, 푥3, 훼 
mo 
High-fidelity samples generated 
by a Fluent CFD simulation 
0 0.005 0.01 0.015 0.02 
0.02 
0.018 
0.016 
0.014 
0.012 
0.01 
0.008 
0.006 
0.004 
Mode of Median Error, E 
mo 
med 
med 
 
Standard Deviation of Median Error, E 
HP-0 
HP-1 
HP-2 
Pareto 
0 0.005 0.01 0.015 0.02 0.025 
0 
Mode of Median Error, E 
med 
Mode of Median Error at 20% more samples, E 
HP-0 
HP-1 
HP-2 
Pareto
COSMOS Results: Summary 
 Widely different sets of surrogates models were selected as the 
optimum set in the five different problems. 
 A diverse set of surrogate-kernel combinations are often observed 
to provide important trade-offs. 
19 
The Best Trade-off Models
Concluding Remarks 
 A new framework, COSMOS, was developed to select surrogate models 
based on criteria driven by user preference (e.g., median or max error). 
 COSMOS can identify optimal model-kernel combinations from a large 
pool of candidates, by using 
1. The model-independent error measures given by PEMF, and 
2. A novel MINLP formulation. 
 On applying COSMOS to a suite of benchmark test problems, we found: 
1. Same surrogate-kernel combinations can yield a noticeable spread of best trade-offs 
(at different HP values); 
2. Diverse surrogate models often constitute the set of best trade-off models. 
 These initial tests readily exhibit the need for such frameworks for 
automated selection of globally competitive surrogates. 
 Future research directions: Application to more complex practical 
problems, and a smarter apriori sorting of the model-kernel candidates. 
20
Questions 
and 
Comments 
21 
Thank you
COSMOS: MATLAB-based GUI 
22 
For those interested to contribute models or test problems, 
or interested to try out COSMOS, 
please contact chowdhury@bagley.msstate.edu
Surrogate-Kernel Combinations 
23
24 
Median of RAEs 
Predictive Estimation of Model Fidelity 
(PEMF) 
Intermediate Actual model 
surrogate model 
ε = 풎풆풅 | 
풇풊 − 풇풊 
풇풊 
| , 
푋 = 푋푖푛 + 푋표푢푡 
푋푡 
퐢 = ퟏ, … , #{푿푻푬} 
푇푅 = 푋표푢푡 + {훽푘 } 
A chi-square, 흌 ퟐ,goodness-of-fit criterion 
푋푡 
푇퐸 = X − {푋푡 
푇푅 } 
kth subset of 
inside-region 
sample points 
Inside and outside sets 
Momed 
It. 2 
It. 1 
t1 t2 t3 t4 
Number of Training Points 
휒 2 = 
푚 
푖=1 
(표푖 − 푡푖 )^2 
푡푖 
It. 4 
Predicted 
Median Error 
Mean Error 
No. of Training points 
Mode of Median Error 
No. of Training points 
Branin-Hoo Function (RBF) 
It. 3 
퐹 푛푡 = 푎0(푛푡 )−푎1 
OR 
퐹 푛푡 = 푎0 푒−푎1(푛푡)  
Model Based Systems 
Design 
Integrative Modeling and 
Design of Wind Farms 
Energy-Sustainable Smart 
Buildings 
Reconfigurable Unmanned 
Aerial Vehicles (UAV) 
We randomly divide the set of sample points into intermediate sets of 
1.Training points and 
2.Test points
Comparison 
25
Comparing Computational Time 
26 
One step method requires around 1/7th the time in 
searching for optimal models.

More Related Content

Viewers also liked

Mockup Usability Test for Golden Rule Rentals Website
Mockup Usability Test for Golden Rule Rentals WebsiteMockup Usability Test for Golden Rule Rentals Website
Mockup Usability Test for Golden Rule Rentals WebsiteBrian Baker
 
2013 Cannes lions Winners review
2013 Cannes lions Winners review 2013 Cannes lions Winners review
2013 Cannes lions Winners review Minyoung Jeong
 
Klonopin milligrams
Klonopin milligramsKlonopin milligrams
Klonopin milligramsBdeen Rud
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Masahiro Kanazaki
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価Masahiro Kanazaki
 
Best Buy Exclusive Brands
Best Buy Exclusive BrandsBest Buy Exclusive Brands
Best Buy Exclusive BrandsBrent Ostrowski
 
Energiatehokas lämmönsiirto teollisuudessa
Energiatehokas lämmönsiirto teollisuudessaEnergiatehokas lämmönsiirto teollisuudessa
Energiatehokas lämmönsiirto teollisuudessaMotiva
 
The Happy Prince (Oscar Wilde)
The Happy Prince (Oscar Wilde)The Happy Prince (Oscar Wilde)
The Happy Prince (Oscar Wilde)Cachi Chien
 
Instalación de Sistemas Operativos Windows (información preliminar)
Instalación de Sistemas Operativos Windows (información preliminar)Instalación de Sistemas Operativos Windows (información preliminar)
Instalación de Sistemas Operativos Windows (información preliminar)Germán Robles Tandazo
 
Habilitación Urbana - Taller VII
Habilitación Urbana - Taller VIIHabilitación Urbana - Taller VII
Habilitación Urbana - Taller VIILucía Chavez
 
Outbound Call Centers: 5 Key Features You Should Know
Outbound Call Centers: 5 Key Features You Should Know  Outbound Call Centers: 5 Key Features You Should Know
Outbound Call Centers: 5 Key Features You Should Know Vipul Srivastav
 
How to do things with 'BigKinds'
How to do things with 'BigKinds'How to do things with 'BigKinds'
How to do things with 'BigKinds'Daemin Park
 

Viewers also liked (18)

Holm Sports logo black
Holm Sports logo blackHolm Sports logo black
Holm Sports logo black
 
Mockup Usability Test for Golden Rule Rentals Website
Mockup Usability Test for Golden Rule Rentals WebsiteMockup Usability Test for Golden Rule Rentals Website
Mockup Usability Test for Golden Rule Rentals Website
 
2013 Cannes lions Winners review
2013 Cannes lions Winners review 2013 Cannes lions Winners review
2013 Cannes lions Winners review
 
Klonopin milligrams
Klonopin milligramsKlonopin milligrams
Klonopin milligrams
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
 
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価遺伝的アルゴリズムによる多数回燃焼を行うハイブリッドロケットの性能評価
遺伝的アルゴリズムによる多数回燃焼を行う ハイブリッドロケットの性能評価
 
Best Buy Exclusive Brands
Best Buy Exclusive BrandsBest Buy Exclusive Brands
Best Buy Exclusive Brands
 
CarnaUol 2017
CarnaUol 2017CarnaUol 2017
CarnaUol 2017
 
Energiatehokas lämmönsiirto teollisuudessa
Energiatehokas lämmönsiirto teollisuudessaEnergiatehokas lämmönsiirto teollisuudessa
Energiatehokas lämmönsiirto teollisuudessa
 
Crisis hipertensivas
Crisis hipertensivasCrisis hipertensivas
Crisis hipertensivas
 
The Happy Prince (Oscar Wilde)
The Happy Prince (Oscar Wilde)The Happy Prince (Oscar Wilde)
The Happy Prince (Oscar Wilde)
 
Instalación de Sistemas Operativos Windows (información preliminar)
Instalación de Sistemas Operativos Windows (información preliminar)Instalación de Sistemas Operativos Windows (información preliminar)
Instalación de Sistemas Operativos Windows (información preliminar)
 
Habilitación Urbana - Taller VII
Habilitación Urbana - Taller VIIHabilitación Urbana - Taller VII
Habilitación Urbana - Taller VII
 
Outbound Call Centers: 5 Key Features You Should Know
Outbound Call Centers: 5 Key Features You Should Know  Outbound Call Centers: 5 Key Features You Should Know
Outbound Call Centers: 5 Key Features You Should Know
 
Crisis hipertensivas
Crisis hipertensivasCrisis hipertensivas
Crisis hipertensivas
 
2015 CHICAGO CONFERENCE PRESENTATION Final
2015 CHICAGO CONFERENCE PRESENTATION Final2015 CHICAGO CONFERENCE PRESENTATION Final
2015 CHICAGO CONFERENCE PRESENTATION Final
 
Ambiente windows
Ambiente windowsAmbiente windows
Ambiente windows
 
How to do things with 'BigKinds'
How to do things with 'BigKinds'How to do things with 'BigKinds'
How to do things with 'BigKinds'
 

Similar to COSMOS_IDETC_2014_Souma

COSMOS-ASME-IDETC-2014
COSMOS-ASME-IDETC-2014COSMOS-ASME-IDETC-2014
COSMOS-ASME-IDETC-2014OptiModel
 
COSMOS1_Scitech_2014_Ali
COSMOS1_Scitech_2014_AliCOSMOS1_Scitech_2014_Ali
COSMOS1_Scitech_2014_AliMDO_Lab
 
AIAA-SciTech-ModelSelection-2014-Mehmani
AIAA-SciTech-ModelSelection-2014-MehmaniAIAA-SciTech-ModelSelection-2014-Mehmani
AIAA-SciTech-ModelSelection-2014-MehmaniOptiModel
 
DSUS_MAO_2012_Jie
DSUS_MAO_2012_JieDSUS_MAO_2012_Jie
DSUS_MAO_2012_JieMDO_Lab
 
AIAA-SDM-PEMF-2013
AIAA-SDM-PEMF-2013AIAA-SDM-PEMF-2013
AIAA-SDM-PEMF-2013OptiModel
 
Modified monte carlo technique for confidence limits of system reliability us...
Modified monte carlo technique for confidence limits of system reliability us...Modified monte carlo technique for confidence limits of system reliability us...
Modified monte carlo technique for confidence limits of system reliability us...DineshRaj Goud
 
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...Amir Ziai
 
PPSN 2004 - 3rd session
PPSN 2004 - 3rd sessionPPSN 2004 - 3rd session
PPSN 2004 - 3rd sessionJuan J. Merelo
 
PEMF2_SDM_2012_Ali
PEMF2_SDM_2012_AliPEMF2_SDM_2012_Ali
PEMF2_SDM_2012_AliMDO_Lab
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...Databricks
 
AIAA-MAO-DSUS-2012
AIAA-MAO-DSUS-2012AIAA-MAO-DSUS-2012
AIAA-MAO-DSUS-2012OptiModel
 
A tale of experiments on bug prediction
A tale of experiments on bug predictionA tale of experiments on bug prediction
A tale of experiments on bug predictionMartin Pinzger
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_JieMDO_Lab
 
A Tale of Experiments on Bug Prediction
A Tale of Experiments on Bug PredictionA Tale of Experiments on Bug Prediction
A Tale of Experiments on Bug PredictionMartin Pinzger
 
Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...André Gonçalves
 
AIAA-SDM-SequentialSampling-2012
AIAA-SDM-SequentialSampling-2012AIAA-SDM-SequentialSampling-2012
AIAA-SDM-SequentialSampling-2012OptiModel
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_AliMDO_Lab
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...IEEEBEBTECHSTUDENTPROJECTS
 
ASS_SDM2012_Ali
ASS_SDM2012_AliASS_SDM2012_Ali
ASS_SDM2012_AliMDO_Lab
 

Similar to COSMOS_IDETC_2014_Souma (20)

COSMOS-ASME-IDETC-2014
COSMOS-ASME-IDETC-2014COSMOS-ASME-IDETC-2014
COSMOS-ASME-IDETC-2014
 
COSMOS1_Scitech_2014_Ali
COSMOS1_Scitech_2014_AliCOSMOS1_Scitech_2014_Ali
COSMOS1_Scitech_2014_Ali
 
AIAA-SciTech-ModelSelection-2014-Mehmani
AIAA-SciTech-ModelSelection-2014-MehmaniAIAA-SciTech-ModelSelection-2014-Mehmani
AIAA-SciTech-ModelSelection-2014-Mehmani
 
DSUS_MAO_2012_Jie
DSUS_MAO_2012_JieDSUS_MAO_2012_Jie
DSUS_MAO_2012_Jie
 
AIAA-SDM-PEMF-2013
AIAA-SDM-PEMF-2013AIAA-SDM-PEMF-2013
AIAA-SDM-PEMF-2013
 
Modified monte carlo technique for confidence limits of system reliability us...
Modified monte carlo technique for confidence limits of system reliability us...Modified monte carlo technique for confidence limits of system reliability us...
Modified monte carlo technique for confidence limits of system reliability us...
 
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...
On the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable...
 
PPSN 2004 - 3rd session
PPSN 2004 - 3rd sessionPPSN 2004 - 3rd session
PPSN 2004 - 3rd session
 
PEMF2_SDM_2012_Ali
PEMF2_SDM_2012_AliPEMF2_SDM_2012_Ali
PEMF2_SDM_2012_Ali
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
 
AIAA-MAO-DSUS-2012
AIAA-MAO-DSUS-2012AIAA-MAO-DSUS-2012
AIAA-MAO-DSUS-2012
 
A tale of experiments on bug prediction
A tale of experiments on bug predictionA tale of experiments on bug prediction
A tale of experiments on bug prediction
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_Jie
 
A Tale of Experiments on Bug Prediction
A Tale of Experiments on Bug PredictionA Tale of Experiments on Bug Prediction
A Tale of Experiments on Bug Prediction
 
Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...Online learning in estimation of distribution algorithms for dynamic environm...
Online learning in estimation of distribution algorithms for dynamic environm...
 
AIAA-SDM-SequentialSampling-2012
AIAA-SDM-SequentialSampling-2012AIAA-SDM-SequentialSampling-2012
AIAA-SDM-SequentialSampling-2012
 
AMS_Aviation_2014_Ali
AMS_Aviation_2014_AliAMS_Aviation_2014_Ali
AMS_Aviation_2014_Ali
 
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Chroma intra prediction based on i...
 
ASS_SDM2012_Ali
ASS_SDM2012_AliASS_SDM2012_Ali
ASS_SDM2012_Ali
 

More from MDO_Lab

ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliMDO_Lab
 
MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMDO_Lab
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangMDO_Lab
 
MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMDO_Lab
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMDO_Lab
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangMDO_Lab
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangMDO_Lab
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_SoumaMDO_Lab
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_SouamMDO_Lab
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_SoumaMDO_Lab
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_JieMDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaMDO_Lab
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieMDO_Lab
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacMDO_Lab
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_SoumaMDO_Lab
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_JieMDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaMDO_Lab
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_JieMDO_Lab
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_JieMDO_Lab
 

More from MDO_Lab (20)

ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_Ali
 
MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_Weiyang
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_Weiyang
 
MOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_WeiyangMOMDPSO_IDETC_2014_Weiyang
MOMDPSO_IDETC_2014_Weiyang
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_Weiyang
 
WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_Weiyang
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_Weiyang
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_Souma
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_Souma
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_Jie
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_Messac
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_Souma
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_Jie
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_Jie
 

Recently uploaded

Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 

Recently uploaded (20)

Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 

COSMOS_IDETC_2014_Souma

  • 1. Concurrent Surrogate Model Selection (COSMOS) based on Predictive Estimation of Model Fidelity Souma Chowdhury#, Ali Mehmani*, and Achille Messac# * Syracuse University, Department of Mechanical and Aerospace Engineering # Mississippi State University, Bagley College of Engineering The ASME International Design Engineering Technical Conferences (IDETC) August 17 – 20, 2014, Buffalo, NY
  • 2. Surrogate Modeling Surrogate models are commonly used for providing a tractable and inexpensive approximation of the actual system behavior, as an alternative  To expensive computational simulations (e.g., CFD), or  To the lack of a physical model in the case of experiment-derived data (e.g., testing of new metallic alloys). 풘풊 흍( 풙 − 풙풊 ) 2 Model Type Kriging RBF SVR . . . Linear Exponential Gaussian Cubic Multiquadric . . . Kernel/Basis function Correlation parameter Shape parameter . . . Hyper-Parameter value 풇 풙 = 풏 풊=ퟏ 흍 풓 = (풓ퟐ + 풄ퟐ) ퟏ/ퟐ 풓= 풙 − 풙풊 풄풍풐풘풆풓 < 풄 < 풄풖풑풑풆풓
  • 3. Outline • Background and Literature • Research Objectives • COSMOS Framework • Predictive Estimation of Model Fidelity (PEMF) • Numerical Experiments: Results • Concluding Remarks 3
  • 4. Surrogate Model Selection 4  Intuitive model selection (experience-based selection) Model selection based on an understanding of the data characteristics and/or the application constraints. • Development of general guidelines likely not practical due to problem diversity. • A few candidate surrogates are generally considered. • In MDO problems, characteristics of disciplinary phenomena may not be evident.  Automated model selection Model selection based on the quantitative decision-making techniques. Automated selection can be performed at these levels:
  • 5. Automated Model or Kernel Selection 5  Error measures are used to select the model type and basis functions* 퐹∗ = argmin 퐹 ∈푭 휺( 푭) best surrogate model surrogate model error set of candidate surrogates  Popular error measures used for model selection include: (i) split sample, (ii) cross-validation, (iii) bootstrapping, (iv) Schwarz’s Bayesian information criterion (BIC), and (v) Akaike’s information criterion (AIC) Method Model Type Selection Kernel Type Selection Holena et al., 2011  Jin et al., 2001  Gano et al., 2006  Chen et al., 2004  Viana et al., 2009  
  • 6. Hyper-parameter Optimization To mitigate the possibility of constructing a suboptimal surrogate model for a given Kernel function, one must perform hyper-parameter optimization. • Martin et al. (AIAAJ, 2005) used MLE and cross-validation methods to find the optimum 6 hyper-parameter value for the Gaussian correlation function in Kriging. • Mongillo et al. (SIAM, 2011) used MLE and leave-one-out cross-validation methods to select an optimal shape parameter in a Gaussian RBF. • Gorissen et al. (JMLR, 2009) used the leave-one-out cross-validation and AIC error measures in the SUMO Toolbox to select the hyper parameter value(s) through a genetic algorithm. Shape parameter, σ RMSE X F Branin-Hoo function: RBF Multiquadric model with different HP values
  • 7. Research Objectives  The original PEMF-based surrogate model selection method performed selection at all three levels based on the median and maximum error.  Models with similar number of kernel choices and kernels with a single hyper-parameter was considered.  The objectives of this research is to advance the PEMF-based COSMOS: 1. By introducing additional selection criteria: (i) the variance of the surrogate error and (ii) the predicted error at a greater number of sample points. 2. By modifying the optimization formulation to allow competition among surrogates with differing numbers of candidate kernels, and kernels with differing numbers of HPs. 3. By testing the COSMOS framework with a comprehensive set of model types and constitutive kernel types − 16 surrogate-kernel combinations with 0 to 2 HPs. PEMF: Predictive Estimation of Model Fidelity (Mehmani et al., AIAA Scitech 2014) 7
  • 8. COSMOS Framework 8 Pareto Filter Generally, any two selection criteria, based on user-preference, could be considered simultaneously
  • 9. COSMOS: MATLAB-based GUI COSMOS MATLAB-based GUI: Courtesy of Ali Mehmani 9
  • 10. COSMOS: Optimization Formulation  Separate MINLPs are run in parallel for each HP class (defined by #HPs involved)  All hyper-parameters (CHP) are scaled to the range 0 to 1.  The candidate model-kernel combinations are integer-coded.  A single integer variable (TSK) now identifies the model-kernel type.  NSGA-II is used to solve the MINLP problems. 10 Hyper-Parameter Values Candidate Model-Kernel Combinations Branin Hoo Function
  • 12. Predictive Estimation of Model Fidelity (PEMF) The PEMF method is derived from the hypothesis that the accuracy of approximation models is related to the amount of data resources leveraged to train the model.  PEMF can be perceived as a novel sequential implementation of k-fold 12 cross-validation, with carefully constructed error measures.  The PEMF method analyzes the variation of the model error distribution with increasing number of training points.  The PEMF method is a model independent approach for surrogate error quantification, and does not require any additional test points.  The PEMF method has been shown to be 1-2 orders of magnitude more accurate in error quantification compared to leave-one-out cross validation. Mehmani et al., AIAA SDM 2013, AIAA Scitech 2014, and Aviation, SMO 2014
  • 13. PEMF: Approach 13 Median Error Maximum Error Using Lognormal distribution at every iteration: Variation of the modal value of the median/maximum error is represented by 퐸 = 푎푛푏 or 퐸 = 푎푒푏푛 Final Surrogate Final Surrogate
  • 14. PEMF Input-Output 14 Error Metrics Model type I/O Training data Kernel type HP values All error values expressed in terms of relative absolute errors.
  • 15. Numerical Experiments Problem Problem Settings Optimization Settings Dimension Sample Size Population Size Max. Generations Branin Hoo 2 30 20 50 Hartman-6 6 60 40 50 Dixon & Price 30 60 30 30 Neumaier & Perm 20 50 30 30 Airfoil Design 4 30 20 50 15  Case 1: Minimize modal value of the median error and modal value of the maximum error.  Case 2: Minimize modal value of the median error and variance of the median error.  Case 3: Minimize modal value of the median error and the expected modal value of the median error at 20% more sample points.
  • 16. COSMOS Results: Benchmark Problems 16 Med vs. Max Med vs. Std-dev Med vs. Med-extra 0 0.05 0.1 0.15 0.2 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Mode of Median Error, E mo med max mo Mode of Maximum Error, E HP-0 HP-1 HP-2 Pareto 0 0.05 0.1 0.15 0.2 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 Mode of Median Error, E mo med med, mo Mode of Median Error at 20% more samples, E HP-0 HP-1 HP-2 Pareto 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 Mode of Median Error, E mo med med  Standard Deviation of Median Error, E HP-0 HP-1 HP-2 Pareto Branin Hoo (2D) 2.4 2 1.6 1.2 0.8 0.4 0.2 0.4 0.6 0.8 1 1.2 Mode of Median Error, E mo med max mo Mode of Maximum Error, E HP-0 HP-1 HP-2 Pareto 40 35 30 25 20 15 10 5 0 Hartman-6 (6 D) 0.2 0.4 0.6 0.8 1 1.2 Mode of Median Error, E mo med med  Standard Deviation of Median Error, E HP-0 HP-1 HP-2 Pareto 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.2 0.4 0.6 0.8 1 1.2 Mode of Median Error, E mo med med, mo Mode of Median Error at 20% more samples, E HP-0 HP-1 HP-2 Pareto Med vs. Max Med vs. Std-dev Med vs. Med-extra
  • 17. COSMOS Results: Benchmark Problems mo 0.35 0.4 0.45 0.5 0.11 0.105 0.1 0.095 0.09 0.085 0.08 0.075 0.07 0.065 0.06 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 mo Mode of Median Error, E med med, med, mo mo Mode of Median Error at 20% more samples, E HP-0 HP-1 HP-2 Pareto mo 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.35 0.34 0.33 0.32 0.31 0.3 0.29 0.28 0.27 0.26 0.25 3.5 3 2.5 2 1.5 1 0.5 0 mo Mode of Median Error, E med mo max max mo Mode of Maximum Error, E HP-0 HP-1 HP-2 Pareto 0.09 0.1 0.11 0.12 0.13 0.14 0.15 Mode of Median Error, E med Mode of Median Error at 20% more samples, E HP-0 HP-1 HP-2 Pareto Dixon & Price (30D) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0.09 0.1 0.11 0.12 0.13 0.14 0.15 Mode of Median Error, E mo med med  Standard Deviation of Median Error, E HP-0 HP-1 HP-2 Pareto 0.09 0.1 0.11 0.12 0.13 0.14 0.15 Mode of Median Error, E med Mode of Maximum Error, E HP-0 HP-1 HP-2 Pareto 17 Med vs. Max Med vs. Std-dev Med vs. Med-extra Neumaier Perm (20D) Med vs. Max Med vs. Std-dev Med vs. Med-extra
  • 18. COSMOS Results: Airfoil Problem 18 Med vs. Max Med vs. Std-dev Med vs. Med-extra 0 0.005 0.01 0.015 0.02 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 Mode of Median Error, E mo med max mo Mode of Maximum Error, E HP-0 HP-1 HP-2 Pareto 0.02 0.018 0.016 0.014 0.012 0.01 0.008 0.006 0.004 0.002 med, mo 퐶퐿 퐶퐷 = 푓 푥1, 푥2, 푥3, 훼 mo High-fidelity samples generated by a Fluent CFD simulation 0 0.005 0.01 0.015 0.02 0.02 0.018 0.016 0.014 0.012 0.01 0.008 0.006 0.004 Mode of Median Error, E mo med med  Standard Deviation of Median Error, E HP-0 HP-1 HP-2 Pareto 0 0.005 0.01 0.015 0.02 0.025 0 Mode of Median Error, E med Mode of Median Error at 20% more samples, E HP-0 HP-1 HP-2 Pareto
  • 19. COSMOS Results: Summary  Widely different sets of surrogates models were selected as the optimum set in the five different problems.  A diverse set of surrogate-kernel combinations are often observed to provide important trade-offs. 19 The Best Trade-off Models
  • 20. Concluding Remarks  A new framework, COSMOS, was developed to select surrogate models based on criteria driven by user preference (e.g., median or max error).  COSMOS can identify optimal model-kernel combinations from a large pool of candidates, by using 1. The model-independent error measures given by PEMF, and 2. A novel MINLP formulation.  On applying COSMOS to a suite of benchmark test problems, we found: 1. Same surrogate-kernel combinations can yield a noticeable spread of best trade-offs (at different HP values); 2. Diverse surrogate models often constitute the set of best trade-off models.  These initial tests readily exhibit the need for such frameworks for automated selection of globally competitive surrogates.  Future research directions: Application to more complex practical problems, and a smarter apriori sorting of the model-kernel candidates. 20
  • 21. Questions and Comments 21 Thank you
  • 22. COSMOS: MATLAB-based GUI 22 For those interested to contribute models or test problems, or interested to try out COSMOS, please contact chowdhury@bagley.msstate.edu
  • 24. 24 Median of RAEs Predictive Estimation of Model Fidelity (PEMF) Intermediate Actual model surrogate model ε = 풎풆풅 | 풇풊 − 풇풊 풇풊 | , 푋 = 푋푖푛 + 푋표푢푡 푋푡 퐢 = ퟏ, … , #{푿푻푬} 푇푅 = 푋표푢푡 + {훽푘 } A chi-square, 흌 ퟐ,goodness-of-fit criterion 푋푡 푇퐸 = X − {푋푡 푇푅 } kth subset of inside-region sample points Inside and outside sets Momed It. 2 It. 1 t1 t2 t3 t4 Number of Training Points 휒 2 = 푚 푖=1 (표푖 − 푡푖 )^2 푡푖 It. 4 Predicted Median Error Mean Error No. of Training points Mode of Median Error No. of Training points Branin-Hoo Function (RBF) It. 3 퐹 푛푡 = 푎0(푛푡 )−푎1 OR 퐹 푛푡 = 푎0 푒−푎1(푛푡)  Model Based Systems Design Integrative Modeling and Design of Wind Farms Energy-Sustainable Smart Buildings Reconfigurable Unmanned Aerial Vehicles (UAV) We randomly divide the set of sample points into intermediate sets of 1.Training points and 2.Test points
  • 26. Comparing Computational Time 26 One step method requires around 1/7th the time in searching for optimal models.