Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
An artificial Neural Network (ANN) is an efficient approach for solving a variety of tasks using teaching methods and sample data on the principal of training. With proper training, ANN are capable of generalizing and recognizing similarity among different input patterns.The main problem in using ANN is parameter setting, because there is no definite and explicit method to select optimal parameters of the ANN. There are a number pf parameters that must be decided upon like number of layers, number of neurons per layer, number of training iteration, number of samples etc...