SlideShare a Scribd company logo
1 of 46
Download to read offline
Unsupervised Collaborative Learning of
Keyframe Detection and Visual Odometry
Towards Monocular Deep SLAM [Sheng & Xu+, ICCV’19]
東京大学 相澤研究室
M2 金子 真也
1
本論文
• Unsupervised Collaborative Learning of Keyframe Detection
and Visual Odometry Towards Monocular Deep SLAM
– 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang
– 所属: Beihang University, Oxford, SenseTime
– 採択会議: ICCV2019
2
本論文
• Unsupervised Collaborative Learning of Keyframe Detection
and Visual Odometry Towards Monocular Deep SLAM
– 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang
– 所属: Beihang University, Oxford, SenseTime
– 採択会議: ICCV2019
– Monocular Deep SLAMを実現したいという強い気持ちの論文
– わかりみが深い
3
Introduction
• Visual SLAM
– 3D reconstruction + Camera pose estimation
– 両者の同時最適化 (Bundle Adjustment)
Direct Sparse Odometry [Engel+, TPAMI’18]
4
Introduction
• Deep Learning for Visual SLAM (Deep SLAM)
End-to-end Deep SLAMDL helps SLAM
SfMLearner [Zhou+, CVPR’17]
CNN-SLAM [Tateno+, CVPR’17]
CodeSLAM [Tateno+, CVPR’18]
DeepTAM [Zhou+, ECCV’18]
This figure is from Tombari’s presentation slide @ ICCVW.
5
Introduction
• Deep Learning for Visual SLAM (Deep SLAM)
End-to-end Deep SLAMDL helps SLAM
CNN-SLAM [Tateno+, CVPR’17]
CodeSLAM [Tateno+, CVPR’18]
DeepTAM [Zhou+, ECCV’18]
SfMLearner [Zhou+, CVPR’17]
本論文の目標は,
この領域での最高のDeep SLAMを作ること
This figure is from Tombari’s presentation slide @ ICCVW.
6
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Training
• Photometric errorを最小化するように学習
7
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Inference
• 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
8
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Inference
• 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
より従来のVSLAMに近い
Deep SLAMを実現するためには???
9
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
10
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
𝒖𝒖𝑖𝑖,𝑗𝑗
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Bundle
𝑍𝑍𝑗𝑗+1
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝒖𝒖𝑖𝑖,𝑗𝑗+1
画像 𝑍𝑍𝑗𝑗
3D位置 𝐗𝐗𝑖𝑖
11
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
最適化
画像 𝑍𝑍𝑗𝑗
𝒖𝒖𝑖𝑖,𝑗𝑗
Bundle
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1
3D位置 𝐗𝐗𝑖𝑖
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
12
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
最適化
画像 𝑍𝑍𝑗𝑗
𝒖𝒖𝑖𝑖,𝑗𝑗
Bundle
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1
3D位置 𝐗𝐗𝑖𝑖
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
Keyframe
13
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
Keyframe
[1] ORB-SLAM2 for Monocular, Stereo and RGB-D Cameras [Mur-Artal+, ToR17]
14
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
15
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
16
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
→ 職人技のような挿入条件の設定が必要
17
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
→ 職人技のような挿入条件の設定が必要
– この選択をCNNで実現し, SfMLearnerに組み込めないか?
18
Proposed method
• SfMLearner with KF selection
– KF選択を行いながら, 三次元復元とカメラ姿勢推定を行うような
Deep SLAMの実現
19
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
KF selection network
Depth + Camera pose network
(Visual Odometry)
Depth + Camera pose network
(Visual Odometry)
20
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
KF selection network
- 2枚の画像間のsimilarity
scoreを回帰
- このscoreに応じてKFの
選択を行う
21
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
Depth + Camera pose network
(Visual Odometry) KF selection network
22
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Nearest Keyframe
2nd nearest Keyframe
23
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
Target 𝐈𝐈𝑡𝑡
𝐃𝐃𝑡𝑡
Reference 𝐈𝐈𝑟𝑟
𝐃𝐃𝑟𝑟
Warped ref 𝐈𝐈𝑡𝑡←𝑟𝑟
𝐃𝐃𝑡𝑡
𝐃𝐃𝑟𝑟
Photometric error Cycle Consistency
t
r
Target 𝐈𝐈𝑡𝑡Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
Warped2
tgt 𝐈𝐈𝑡𝑡←𝑟𝑟←𝑡𝑡
Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
24
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
s
t
p
0.1
n
大 小
25
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛>
s
t
p
0.1
n
大 小
大 小0.8
26
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛>
s
t
p
0.1
n
大 小
大 小0.8
27
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
KFはどのように選ばれるのか?
28
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
29
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {𝓘𝓘𝒔𝒔, 𝐈𝐈𝒑𝒑, 𝐈𝐈𝒏𝒏}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model
KF pool 𝒫𝒫 𝐾𝐾
Dataset
30
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model Loss
Train
31
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model Loss
Train
32
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
33
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
34
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
35
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
36
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
𝐈𝐈𝑛𝑛𝐈𝐈𝑝𝑝
Model
ℐ𝑠𝑠
𝐈𝐈𝑡𝑡
Scores
37
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
38
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐼𝐼𝑝𝑝, 𝐼𝐼𝑡𝑡) > th:
Insert tgt frame 𝐼𝐼𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
この操作を繰り返すことで
KF poolの最適化を行う
39
Experimental results
• KITTI dataset
– Monocular Depth Estimation
KF selectionによって学習データを調整することで, 学習が安定し
推定精度も高くなる
40
Experimental results
• KITTI dataset
– Monocular Depth Estimation
KF selectionによって学習データを調整することで, 学習が安定し
推定精度も高くなる
41
Experimental results
• KITTI dataset
– Absolute Trajectory Error (ATE)
KF selectionがdata augmentationの効果を持ち, 結果としてカメラ
姿勢の推定精度が向上
42
Experimental results
• KITTI dataset
– Average Rotation Errors
とはいえカメラの回転の推定精度はORB-SLAM[Mur-Artal, TOR15]には
勝てていない状況
43
Experimental results
• KITTI dataset
– Keyframe selection
• カメラが並進する場所では, 均一になるように選択
• カメラが回転する場所では, 変化が激しいのでより刻んだ選択
44
Experimental results
• KITTI dataset
– Ablation study
Depth推定
カメラ軌跡推定
45
Conclusion
• SfMLearner with KF selection
– VSLAMで最も重要なKF selectionを, SfMLearnerの枠組みに追加
– UnsupervisedでKF selectionを学習する手法を提案
– 従来手法よりも高精度な奥行き推定, カメラ姿勢推定を達成.
• 感想
– 従来人手の緻密な設計が必要だったKF selectionを, unsupervisedに
CNNで学習し実現した点が新しく非常に面白い
– KF selectionだけでなく, Bundle Adjustment等の最適化要素も追加
できるとDeep SLAMの実現により近付きそう

More Related Content

What's hot

SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII
 
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII
 
SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)Masaya Kaneko
 
関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会nonane
 
Direct Sparse Odometryの解説
Direct Sparse Odometryの解説Direct Sparse Odometryの解説
Direct Sparse Odometryの解説Masaya Kaneko
 
Cartographer を用いた 3D SLAM
Cartographer を用いた 3D SLAMCartographer を用いた 3D SLAM
Cartographer を用いた 3D SLAMYoshitaka HARA
 
SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介miyanegi
 
SSII2020 [O3-01] Extreme 3D センシング
SSII2020 [O3-01]  Extreme 3D センシングSSII2020 [O3-01]  Extreme 3D センシング
SSII2020 [O3-01] Extreme 3D センシングSSII
 
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装についてMobileRoboticsResear
 
CNN-SLAMざっくり
CNN-SLAMざっくりCNN-SLAMざっくり
CNN-SLAMざっくりEndoYuuki
 
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Masaya Kaneko
 
確率ロボティクス第11回
確率ロボティクス第11回確率ロボティクス第11回
確率ロボティクス第11回Ryuichi Ueda
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類Yoshitaka HARA
 
Open3DでSLAM入門 PyCon Kyushu 2018
Open3DでSLAM入門 PyCon Kyushu 2018Open3DでSLAM入門 PyCon Kyushu 2018
Open3DでSLAM入門 PyCon Kyushu 2018Satoshi Fujimoto
 
ロボティクスにおける SLAM 手法と実用化例
ロボティクスにおける SLAM 手法と実用化例ロボティクスにおける SLAM 手法と実用化例
ロボティクスにおける SLAM 手法と実用化例Yoshitaka HARA
 
LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料Fujimoto Keisuke
 
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介Ryohei Ueda
 

What's hot (20)

SLAM勉強会(PTAM)
SLAM勉強会(PTAM)SLAM勉強会(PTAM)
SLAM勉強会(PTAM)
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
 
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
 
SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)SLAMチュートリアル大会資料(ORB-SLAM)
SLAMチュートリアル大会資料(ORB-SLAM)
 
Visual slam
Visual slamVisual slam
Visual slam
 
関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会
 
Direct Sparse Odometryの解説
Direct Sparse Odometryの解説Direct Sparse Odometryの解説
Direct Sparse Odometryの解説
 
Cartographer を用いた 3D SLAM
Cartographer を用いた 3D SLAMCartographer を用いた 3D SLAM
Cartographer を用いた 3D SLAM
 
SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介
 
SSII2020 [O3-01] Extreme 3D センシング
SSII2020 [O3-01]  Extreme 3D センシングSSII2020 [O3-01]  Extreme 3D センシング
SSII2020 [O3-01] Extreme 3D センシング
 
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について
【RSJ2021】LiDAR SLAMにおける高信頼なループ閉合の実装について
 
CNN-SLAMざっくり
CNN-SLAMざっくりCNN-SLAMざっくり
CNN-SLAMざっくり
 
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
Visual SLAM: Why Bundle Adjust?の解説(第4回3D勉強会@関東)
 
確率ロボティクス第11回
確率ロボティクス第11回確率ロボティクス第11回
確率ロボティクス第11回
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類
 
Open3DでSLAM入門 PyCon Kyushu 2018
Open3DでSLAM入門 PyCon Kyushu 2018Open3DでSLAM入門 PyCon Kyushu 2018
Open3DでSLAM入門 PyCon Kyushu 2018
 
ロボティクスにおける SLAM 手法と実用化例
ロボティクスにおける SLAM 手法と実用化例ロボティクスにおける SLAM 手法と実用化例
ロボティクスにおける SLAM 手法と実用化例
 
LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料
 
Structure from Motion
Structure from MotionStructure from Motion
Structure from Motion
 
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
 

Similar to Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説

Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Dongmin Choi
 
Explaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersExplaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersVasileiosMezaris
 
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorPR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorJinwon Lee
 
Realtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN ModelsRealtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN Modelsnithinsai2992
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM RecommendersYONG ZHENG
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsScott Clark
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsSigOpt
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataWeCloudData
 
Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Charles Martin
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D... Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...Databricks
 
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Joo-Haeng Lee
 
Decision Forests and discriminant analysis
Decision Forests and discriminant analysisDecision Forests and discriminant analysis
Decision Forests and discriminant analysispotaters
 
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Ansys
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecastingDevon Barrow
 
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From ScratchPR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From ScratchSunghoon Joo
 
Willump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceWillump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceDatabricks
 
Object Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningObject Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningJui-Hsin (Larry) Lai
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionNU_I_TODALAB
 

Similar to Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説 (20)

Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]
 
Explaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersExplaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiers
 
Temporal Segment Network
Temporal Segment NetworkTemporal Segment Network
Temporal Segment Network
 
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorPR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
 
Realtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN ModelsRealtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN Models
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
 
autoTVM
autoTVMautoTVM
autoTVM
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
 
Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D... Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
 
Decision Forests and discriminant analysis
Decision Forests and discriminant analysisDecision Forests and discriminant analysis
Decision Forests and discriminant analysis
 
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecasting
 
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From ScratchPR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
 
Willump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceWillump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML Inference
 
Object Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningObject Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online Learning
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-Attention
 

More from Masaya Kaneko

GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説Masaya Kaneko
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])Masaya Kaneko
 
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Masaya Kaneko
 
論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)Masaya Kaneko
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between CapsulesMasaya Kaneko
 
論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)Masaya Kaneko
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)Masaya Kaneko
 

More from Masaya Kaneko (7)

GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
 
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
 
論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsules
 
論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)
 

Recently uploaded

The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 

Recently uploaded (20)

The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 

Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説

  • 1. Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM [Sheng & Xu+, ICCV’19] 東京大学 相澤研究室 M2 金子 真也
  • 2. 1 本論文 • Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM – 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang – 所属: Beihang University, Oxford, SenseTime – 採択会議: ICCV2019
  • 3. 2 本論文 • Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM – 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang – 所属: Beihang University, Oxford, SenseTime – 採択会議: ICCV2019 – Monocular Deep SLAMを実現したいという強い気持ちの論文 – わかりみが深い
  • 4. 3 Introduction • Visual SLAM – 3D reconstruction + Camera pose estimation – 両者の同時最適化 (Bundle Adjustment) Direct Sparse Odometry [Engel+, TPAMI’18]
  • 5. 4 Introduction • Deep Learning for Visual SLAM (Deep SLAM) End-to-end Deep SLAMDL helps SLAM SfMLearner [Zhou+, CVPR’17] CNN-SLAM [Tateno+, CVPR’17] CodeSLAM [Tateno+, CVPR’18] DeepTAM [Zhou+, ECCV’18] This figure is from Tombari’s presentation slide @ ICCVW.
  • 6. 5 Introduction • Deep Learning for Visual SLAM (Deep SLAM) End-to-end Deep SLAMDL helps SLAM CNN-SLAM [Tateno+, CVPR’17] CodeSLAM [Tateno+, CVPR’18] DeepTAM [Zhou+, ECCV’18] SfMLearner [Zhou+, CVPR’17] 本論文の目標は, この領域での最高のDeep SLAMを作ること This figure is from Tombari’s presentation slide @ ICCVW.
  • 7. 6 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Training • Photometric errorを最小化するように学習
  • 8. 7 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Inference • 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
  • 9. 8 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Inference • 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰 より従来のVSLAMに近い Deep SLAMを実現するためには???
  • 10. 9 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA)
  • 11. 10 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 𝒖𝒖𝑖𝑖,𝑗𝑗 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Bundle 𝑍𝑍𝑗𝑗+1 [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝒖𝒖𝑖𝑖,𝑗𝑗+1 画像 𝑍𝑍𝑗𝑗 3D位置 𝐗𝐗𝑖𝑖
  • 12. 11 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 最適化 画像 𝑍𝑍𝑗𝑗 𝒖𝒖𝑖𝑖,𝑗𝑗 Bundle [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1 3D位置 𝐗𝐗𝑖𝑖 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
  • 13. 12 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 最適化 画像 𝑍𝑍𝑗𝑗 𝒖𝒖𝑖𝑖,𝑗𝑗 Bundle [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1 3D位置 𝐗𝐗𝑖𝑖 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Keyframe
  • 14. 13 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ Keyframe [1] ORB-SLAM2 for Monocular, Stereo and RGB-D Cameras [Mur-Artal+, ToR17]
  • 15. 14 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける
  • 16. 15 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要
  • 17. 16 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要 → 職人技のような挿入条件の設定が必要
  • 18. 17 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要 → 職人技のような挿入条件の設定が必要 – この選択をCNNで実現し, SfMLearnerに組み込めないか?
  • 19. 18 Proposed method • SfMLearner with KF selection – KF選択を行いながら, 三次元復元とカメラ姿勢推定を行うような Deep SLAMの実現
  • 20. 19 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! KF selection network Depth + Camera pose network (Visual Odometry)
  • 21. Depth + Camera pose network (Visual Odometry) 20 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! KF selection network - 2枚の画像間のsimilarity scoreを回帰 - このscoreに応じてKFの 選択を行う
  • 22. 21 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! Depth + Camera pose network (Visual Odometry) KF selection network
  • 23. 22 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Nearest Keyframe 2nd nearest Keyframe
  • 24. 23 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term Target 𝐈𝐈𝑡𝑡 𝐃𝐃𝑡𝑡 Reference 𝐈𝐈𝑟𝑟 𝐃𝐃𝑟𝑟 Warped ref 𝐈𝐈𝑡𝑡←𝑟𝑟 𝐃𝐃𝑡𝑡 𝐃𝐃𝑟𝑟 Photometric error Cycle Consistency t r Target 𝐈𝐈𝑡𝑡Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡 Warped2 tgt 𝐈𝐈𝑡𝑡←𝑟𝑟←𝑡𝑡 Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
  • 25. 24 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> s t p 0.1 n 大 小
  • 26. 25 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛> s t p 0.1 n 大 小 大 小0.8
  • 27. 26 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛> s t p 0.1 n 大 小 大 小0.8
  • 28. 27 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss KFはどのように選ばれるのか?
  • 29. 28 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model
  • 30. 29 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {𝓘𝓘𝒔𝒔, 𝐈𝐈𝒑𝒑, 𝐈𝐈𝒏𝒏} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model KF pool 𝒫𝒫 𝐾𝐾 Dataset
  • 31. 30 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model Loss Train
  • 32. 31 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model Loss Train
  • 33. 32 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 34. 33 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 35. 34 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 36. 35 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 37. 36 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset 𝐈𝐈𝑛𝑛𝐈𝐈𝑝𝑝 Model ℐ𝑠𝑠 𝐈𝐈𝑡𝑡 Scores
  • 38. 37 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model
  • 39. 38 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐼𝐼𝑝𝑝, 𝐼𝐼𝑡𝑡) > th: Insert tgt frame 𝐼𝐼𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model この操作を繰り返すことで KF poolの最適化を行う
  • 40. 39 Experimental results • KITTI dataset – Monocular Depth Estimation KF selectionによって学習データを調整することで, 学習が安定し 推定精度も高くなる
  • 41. 40 Experimental results • KITTI dataset – Monocular Depth Estimation KF selectionによって学習データを調整することで, 学習が安定し 推定精度も高くなる
  • 42. 41 Experimental results • KITTI dataset – Absolute Trajectory Error (ATE) KF selectionがdata augmentationの効果を持ち, 結果としてカメラ 姿勢の推定精度が向上
  • 43. 42 Experimental results • KITTI dataset – Average Rotation Errors とはいえカメラの回転の推定精度はORB-SLAM[Mur-Artal, TOR15]には 勝てていない状況
  • 44. 43 Experimental results • KITTI dataset – Keyframe selection • カメラが並進する場所では, 均一になるように選択 • カメラが回転する場所では, 変化が激しいのでより刻んだ選択
  • 45. 44 Experimental results • KITTI dataset – Ablation study Depth推定 カメラ軌跡推定
  • 46. 45 Conclusion • SfMLearner with KF selection – VSLAMで最も重要なKF selectionを, SfMLearnerの枠組みに追加 – UnsupervisedでKF selectionを学習する手法を提案 – 従来手法よりも高精度な奥行き推定, カメラ姿勢推定を達成. • 感想 – 従来人手の緻密な設計が必要だったKF selectionを, unsupervisedに CNNで学習し実現した点が新しく非常に面白い – KF selectionだけでなく, Bundle Adjustment等の最適化要素も追加 できるとDeep SLAMの実現により近付きそう