SlideShare a Scribd company logo
1 of 28
Download to read offline
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
1
Cofferdams and Braced Cuts
1-Cofferdams
Cofferdams are temporary enclosures that keep away earth and water from the
construction area.
Figure (1) cofferdam
َٔ‫اُؼ‬ ‫ٓٞهغ‬ ٖ‫ػ‬ ‫اُزشثخ‬ ٝ‫أ‬ ٙ‫أُيب‬ ‫دجض‬ ‫ٜٓ٘ب‬ ‫اُـشع‬ ‫ٓإهزخ‬ ‫ٓ٘شئبد‬ ٠ٛ ‫أُذيطخ‬ ‫اُغذٝد‬,ٌَ‫ش‬(1)
1-2Classification of Cofferdams
٠‫ًبألر‬ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫رظ٘يق‬ ٌٖٔ‫ي‬:
‫أوال‬:‫االوشاء‬ ً‫ف‬ ‫انمستخذمح‬ ‫انمادج‬ ‫حيج‬ ‫مه‬
٠‫األر‬ َٔ‫ٝرش‬:
‫أ‬-‫اُزشاثيخ‬ ‫اُغذٝد‬
‫ة‬-‫اُذجش‬ ‫ًغش‬ ‫عذٝد‬
‫ط‬-َٓ‫اُش‬ ‫أًيبط‬ ‫عذٝد‬
‫د‬-‫اُخشجيخ‬ ‫اُغذٝد‬
‫ٛـ‬-‫أُؼذٗيخ‬ ‫اُغذٝد‬
ٝ-‫اُخشعبٗيخ‬ ‫اُغذٝد‬
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
2
‫ًا‬‫ا‬‫حاوي‬:‫واالوشاء‬ ‫انتصميم‬ ‫طريقح‬ ‫حسة‬
٠‫األر‬ َٔ‫ٝرش‬:
‫أ‬-َٓ‫اُش‬ ‫أًيبط‬ ٝ‫أ‬ ‫ادجبس‬ ‫ًغش‬ ٖٓ ‫ٝأٌُٞٗخ‬ ‫اُزشاثيخ‬ َٔ‫ٝرش‬ ‫اُزضبهِيخ‬ ‫اُغذٝد‬
‫ة‬-‫ٓ٘لشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬(‫خشجيخ‬-‫ٓؼذٗيخ‬-‫خشعبٗيخ‬)
‫ط‬-‫ٓضدٝجخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬
‫د‬-‫ٓؼذٗيخ‬ ‫خاليب‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬(‫اُخِٞيخ‬ ‫اُغذٝد‬)‫اُغبثوخ‬ ‫األٗٞاع‬ ٖٓ ‫ٗٞع‬ ًَ ‫ششح‬ ْ‫ٝعيز‬
َ‫ثبُزلظي‬.
‫ًا‬‫ا‬‫حانخ‬:‫انمىقع‬ ‫وىعيح‬ ‫حسة‬
‫أ‬-ٍٞ‫اُغي‬ ٖٓ ‫ُِذٔبيخ‬ ‫اٗشبؤٛب‬ ْ‫يز‬ ٠‫اُز‬ ‫اُغذٝد‬ َ‫ٓض‬ ‫رُي‬ ٝ‫اُجش‬ ٠ِ‫ػ‬ ‫أُوبٓخ‬ ‫اُغذٝد‬.
‫ة‬-ٝ‫أ‬ ‫اُو٘بؽش‬ ‫ث٘بء‬ ‫ػ٘ذ‬ ‫ٓإهزخ‬ ‫ٓ٘شئبد‬ ٌٕٞ‫ر‬ ً‫ب‬‫ؿبُج‬ ٠‫ٝاُز‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ٝ‫أ‬ ‫اُجذش‬ ٠‫ك‬ ‫أُوبٓخ‬ ‫اُغذٝد‬
ٟ‫اٌُجبس‬.
1-3Thecommon types of cofferdams
Following are some of the common types of cofferdams
(1) Earth fill cofferdam
(2) Rock fill cofferdam
(3) Single wall cofferdam
(4) Double wall cofferdam.
(5) Cellular cofferdam
1-3-1 The Earth cofferdams ‫اُزشاثيخ‬ ‫أُذيطخ‬ ‫اُغذٝد‬
‫ٝاُجذبسٝاُجذيشاد‬ ‫اُٜبدئخ‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ‫دبُخ‬ ٠‫ك‬ ّ‫ُالعزخذا‬ ‫ٓالئٔخ‬ ‫أًضش‬ ‫اُزشاثيخ‬ ‫اُغذٝد‬ ‫رؼزجش‬
‫ٓبئيخ‬ ‫ريبساد‬ ٝ‫أ‬ ‫آٞاط‬ ‫رٞجذ‬ ‫ٝال‬ ‫طـيش‬ ٙ‫أُيب‬ ‫ٝاسرلبع‬ ‫ػؼيلخ‬ ٙ‫أُيب‬ ‫عشػبد‬ ٌٕٞ‫ر‬ ‫ديش‬ ‫اُشاًذح‬
‫اُٞاهؼخ‬ ‫ٝاالعزبريٌيخ‬ ‫اُذي٘بٓيٌيخ‬ ‫اُؼـٞؽ‬ ‫صيبدح‬ ‫دبُخ‬ ٠‫ك‬ ‫ٝاالٜٗيبس‬ ‫ُِ٘ذش‬ ‫ػشػخ‬ ‫اُغذٝد‬ ٙ‫ٛز‬ ٌٕٞ‫ٝر‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫ػِيٜب‬(2.)
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
3
Figure (2) Earth cofferdam
1-3-1-1 Materials used in Earth Cofferdams ‫االٗشبء‬ ٠‫ك‬ ‫أُغزخذٓخ‬ ‫أُٞاد‬
٠ُ‫ئ‬ ‫ٌٓٞٗبرٜب‬ ‫ٝكن‬ ‫اُزشاثيخ‬ ‫اُغذٝد‬ ْ‫ٝر٘وغ‬:
‫أ‬-‫ٓزجبٗغخ‬ ‫رشثخ‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬
‫ؽجوخ‬ ‫رؼبف‬ ‫ًٝزُي‬ َ‫أُي‬ ‫ُذٔبيخ‬ ‫ؽجوخ‬ ‫اُغطخ‬ ٠ِ‫ػ‬ ‫ٝيٞػغ‬ ‫ثبُٞهغ‬ ‫أُزٞاكشح‬ ‫اُزشثخ‬ ّ‫اعزخذا‬ ْ‫يز‬ ‫ديش‬
‫اُزغشة‬ ٖٓ ٚ‫ُذٔبيز‬ ‫اُغذ‬ ‫خِق‬ ‫طشف‬.
‫ة‬-٠‫دز‬ ‫اُوِت‬ ٖٓ ‫اُ٘لبريخ‬ ‫ٓزذسجخ‬ ‫ؽجوبد‬ ‫ػذح‬ ٖٓ ٌٕٞ‫ٝيز‬ ‫اُزشثخ‬ ٖٓ ‫ٗٞػيبد‬ ‫ػذح‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬
‫ٗلبريخ‬ َ‫أه‬ ‫اُوِت‬ ٌٕٞ‫ي‬ ‫ثذيش‬ ‫اُخبسط‬
‫ط‬-‫طٔبء‬ ‫هِٞة‬ ‫راد‬ ‫عذٝد‬
َ‫داخ‬ ٠ِ‫ػ‬ ‫ٝيضجذ‬ ‫اُخشت‬ ٝ‫أ‬ ٕ‫أُؼذ‬ ٝ‫أ‬ ‫اُخشعبٗخ‬ ٖٓ ٌٕٞ‫ي‬ ‫هذ‬ ‫اُوِت‬ ٠‫ك‬ ْ‫أط‬ ‫جضء‬ ‫ُِغذ‬ ‫يؼبف‬ ‫ديش‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫اُغذ‬ ‫ػِيٜب‬ ّ‫أُوب‬ ‫اُظخشيخ‬ ‫اُطجوخ‬(3.)
Figure (3) Earth cofferdam with sheet pile core
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
4
1-3-1-2 Design of Earth cofferdams
٠ُ‫ًبُزب‬ ٠‫اُزشاث‬ ‫اُغذ‬ ْ‫رظٔي‬ ْ‫يز‬:
1-‫نهسذ‬ ‫األونيح‬ ‫األتعاد‬ ‫تحذيذ‬
‫ُِغذ‬ ٕ‫اُالصٓب‬ ٕ‫ٝاألٓب‬ ‫اُغالٓخ‬ ‫ُذسجخ‬ ‫األثؼبد‬ ٙ‫ٛز‬ ‫رذوين‬ ٖٓ ‫اُزأًذ‬ ْ‫يز‬ ْ‫ص‬ ‫ُِغذ‬ ‫األُٝيخ‬ ‫األثؼبد‬ ‫رذذد‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ‫ًٝٔب‬(4)٠ُ‫ًبُزب‬:
1-‫ثبالسرلبع‬ ‫يؼشف‬ ٠‫ًبك‬ ‫ثبسرلبع‬ ٚٓ‫أٓب‬ ٙ‫أُيب‬ ‫ٓ٘غٞة‬ ٖٓ ٠ِ‫أػ‬ ٚ‫هٔز‬ ٌٕٞ‫ر‬ ‫ثذيش‬ ‫اُغذ‬ ‫اسرلبع‬ ‫يذذد‬
ٍٝ‫اُجذ‬ ٖٓ ٙ‫روذيش‬ ٌٖٔ‫ٝي‬ ‫ُِغذ‬ ‫اُذش‬(1. )
Figure (4) Dimensions of Earth Cofferdam
2-ْ‫سه‬ ٍٝ‫اُجذ‬ ٖٓ ‫اُغذ‬ ‫ُؼشع‬ ‫هئخ‬ َ‫أه‬ ‫رإخز‬(1)‫يإخز‬ ‫ُِٔشٝس‬ ‫ًطشين‬ ‫اُغذ‬ ‫هٔخ‬ ّ‫اعزخذا‬ ‫دبُخ‬ ٠‫ٝك‬
ٖ‫ػ‬ َ‫اليو‬ ‫ثٔب‬ ‫اُغذ‬ ‫ػشع‬6ْ‫سه‬ ٍٝ‫ثبُجذ‬ ‫ٝاسد‬ ٞٛ‫ُٔب‬ ‫ؽجوب‬ ‫ُِغذ‬ ‫اُجبٗجيخ‬ ٍٞ‫أُي‬ ‫رذذيذ‬ ْ‫يز‬ ‫ٓزشًٔب‬(2)
Table (1) Dimensions of Earth Cofferdam
The dam height H(m) Free height Hf (m) The top width A (m)
4.5> 1.2-1.5 1.85
4.5-7.5 1.5-1.8 1.85
7.5-15 1.85 2.5
15-22.5 2.1 3.0
22.5< 2.1 3.0
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
5
Table (2) Slopes of Earth Cofferdams
‫انمؤخرج‬ ‫ميم‬ ‫انمقذمح‬ ‫ميم‬ ‫انمىاد‬ ‫وىع‬
1:2 1:2.5 ‫اُزذسط‬ ‫جيذح‬ ‫ٓزجبٗغخ‬ ‫رشثخ‬
1:2.5 1:3 ‫ٓزجبٗظ‬ ٠ٔ‫ؽ‬
1:2 1:2.5 ٖٓ َ‫أه‬ ‫السرلبع‬ ‫ٓزجبٗغخ‬ ‫ؽي٘يخ‬ ‫ؽٔييخ‬15‫ٓزش‬
1:1.25 1:3 ٖٓ ‫أًضش‬ ‫السرلبع‬ ‫ٓزجبٗغخ‬ ‫ؽي٘يخ‬ ‫ؽٔييخ‬15‫ٓزش‬
1:2.5 1:3 ٖ‫ؽي‬ ‫هِت‬ ‫ٝجٞد‬ ‫ٓغ‬ ‫صُؾ‬ َٓ‫س‬ ٝ‫أ‬ َٓ‫س‬
1:2 1:2.5 ٠ٗ‫خشعب‬ ‫هِت‬ ‫ٝجٞد‬ ‫ٓغ‬ ‫صُؾ‬ َٓ‫س‬ ٝ‫أ‬ َٓ‫س‬
2-‫انهيذرونيكيح‬ ‫انسالمح‬ ‫اختثاراخ‬
‫ُِغذ‬ ٠‫اُخِل‬ ‫اُغطخ‬ ّ‫هذ‬ ‫ٝػ٘ذ‬ ٠‫ٝاُخِل‬ ٠ٓ‫األٓب‬ ‫اُغطخ‬ ٖٓ ٌَُ ‫ٝرُي‬ ‫ُِ٘ذش‬ ‫اُغذ‬ ‫ٓوبٝٓخ‬ ٖٓ ‫اُزأًذ‬ ‫يجت‬
‫اُغذ‬ ّ‫أٓب‬ ٖٓ ٙ‫أُيب‬ ‫ؽلخ‬ ‫ًٝزُي‬.
3-ً‫اسفه‬ ‫أو‬ ‫انسذ‬ ‫جسم‬ ‫خالل‬ ‫انتسرب‬ ً‫ف‬ ‫انتحكم‬
ّ‫ثبعزخذا‬ ‫اُزغشة‬ ‫اٗوبص‬ ٠ِ‫ػ‬ َٔ‫اُؼ‬ ْ‫يز‬ ْ‫ص‬ ‫اُزغشة‬ ‫ُذغبة‬ ‫أُؼشٝكخ‬ ‫ثبُطشم‬ ‫اُزغشة‬ ‫دغبة‬ ْ‫يز‬ ‫ديش‬
‫ُِغذ‬ ٠ٓ‫األٓب‬ ‫اُغطخ‬ ٠ِ‫ػ‬ ‫ؽٔييخ‬ ٝ‫أ‬ ‫اعلِزيخ‬ ٝ‫أ‬ ‫ثالعزيٌيخ‬ ‫ٓٞاد‬ ٖٓ ‫ؽجوخ‬ ‫ثٞػغ‬ ٝ‫أ‬ ‫ُِغذ‬ ْ‫اط‬ ‫جضء‬.
4-‫نهسذ‬ ً‫االوشائ‬ ‫انخثاخ‬
٠‫األر‬ ‫ُِغذ‬ ٠‫االٗشبئ‬ ‫اُضجبد‬ َٔ‫ٝيش‬:
‫أ‬-‫نهسذ‬ ً‫االجمان‬ ‫انخثاخ‬
ٚ‫رذز‬ ‫روغ‬ ٠‫اُز‬ ‫اُطجوخ‬ ‫ٜٗبيخ‬ ٟٞ‫ٓغز‬ ٖٓ ً‫ا‬‫اثزذاء‬ ٠‫اكو‬ ٟٞ‫ٓغز‬ ‫اػؼق‬ ٠ِ‫ػ‬ ِٚٓ‫ثٌب‬ ‫اُغذ‬ ‫دساعخ‬ ْ‫يز‬ ‫ديش‬
‫ادزٌبى‬ ٖ‫ػ‬ ‫اُ٘بشئخ‬ ‫أُوبٝٓخ‬ ٟٞ‫ٝه‬ ٙ‫ٝأُيب‬ ‫اُزشثخ‬ ٖٓ ‫اُ٘بشئخ‬ ‫اُذكغ‬ ٟٞ‫ه‬ ‫ٛٔب‬ ٕ‫هٞرب‬ ‫اُغذ‬ ٠ِ‫ػ‬ ‫يإصش‬ ‫ديش‬
‫االٗضالم‬ ‫عطخ‬ ‫ٓغ‬ ‫ُِغطخ‬ ‫أٌُٞٗخ‬ ‫أُٞاد‬ ‫ٝاُزظبم‬.
Fd=Pwl+Pel+Pw2-Pe2 ‫اُذكغ‬ ٟٞ‫ه‬
FR= S.C+W tan ϕ ‫أُوبٝٓخ‬ ٟٞ‫ه‬
Where:
Pwl,Pel, Pw2 and Pe2 ٠ُ‫اُزٞا‬ ٠ِ‫ػ‬ ‫اُغذ‬ ‫ٝخِق‬ ّ‫أٓب‬ ‫ٝأُبء‬ ‫اُزشثخ‬ ‫ػـؾ‬
S ‫ُِغذ‬ ٠ِ‫اُغل‬ ٠ٌُِ‫ا‬ ‫اُؼشع‬
C ‫االٗضالم‬ ٙ‫ػ٘ذ‬ ‫يذذس‬ ٟ‫اُز‬ ٟٞ‫أُغز‬ ‫ػ٘ذ‬ ‫اُزشثخ‬ ‫رٔبعي‬
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
6
W ٕ‫ٝص‬‫االٗضالم‬ ٟٞ‫ٓغز‬ ٠ِ‫أػ‬ ‫اُزشثخ‬
ϕ ‫االٗضالم‬ ٟٞ‫ٓغز‬ ‫ػ٘ذ‬ ‫ُِزشثخ‬ ٠ِ‫اُذاخ‬ ‫االدزٌبى‬ ‫صاٝيخ‬
ٕ‫ُالرضا‬ ‫أُغججخ‬ ٟٞ‫اُو‬ ‫هغٔخ‬ َ‫ُذبط‬ ً‫ب‬‫ٓغبٝي‬ ٌٕٞ‫ي‬ ٕ‫األٓب‬ َٓ‫ٓؼب‬ ٕ‫كا‬ ‫رُي‬ ٠ِ‫ٝػ‬(‫أُوبٝٓخ‬ ٟٞ‫ه‬)٠ِ‫ػ‬
‫ُالٜٗيبس‬ ‫أُغججخ‬ ٟٞ‫اُو‬(‫اُذكغ‬ ٟٞ‫ه‬).
F.o.s= FR/ Fd
‫ب‬-‫انعازنح‬ ‫انطثقح‬ ‫اتسان‬
‫ًٔب‬ ‫اُطجوخ‬ ٙ‫ٛز‬ ‫اٗضالم‬ ٍ‫ادزٔب‬ ‫دساعخ‬ ‫كيجت‬ ‫ُِغذ‬ ٠ٓ‫االٓب‬ ٚ‫اُٞج‬ ٠ِ‫أػ‬ ‫عٔيٌخ‬ ‫ػبصُخ‬ ‫ؽجوخ‬ ‫ر٘ليز‬ ‫دبُخ‬ ٠‫ك‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ(5)٠ُ‫ًبُزب‬ ‫ٝرُي‬:
Fd=(W1+W2+W3) sin α ‫اُذكغ‬ ٟٞ‫ه‬
FR= C. b+(W1+W2+W3) cos α . tan ϕ ‫أُوبٝٓخ‬ ٟٞ‫ه‬
Where:
W1 ‫اُغذ‬ ٠ِ‫أػ‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬
W2 ‫اُغذ‬ َ‫أعل‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬
W3 ‫اُغذ‬ ‫هذٓخ‬ َ‫أعل‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬
C ‫اُغذ‬ ٚ‫ٝٝج‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ٖ‫ثي‬ ‫االُزظبم‬ ‫اجٜبد‬
ϕ ‫اُغذ‬ ٚ‫ٝٝج‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ٖ‫ثي‬ ‫االدزٌبى‬ ‫صاٝيخ‬
b ‫اُغذ‬ ٚ‫ٝج‬ ٍٞ‫ؽ‬
α ‫صاٝيخ‬‫ُِغذ‬ ٠ٓ‫األٓب‬ ٚ‫اُٞج‬ َ‫ٓي‬
Figure (5) Equilibrium of insulating layer
‫د‬-‫انسذ‬ ً‫نىج‬ ً‫انسطح‬ ‫االوسالق‬
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
7
ٍٞ‫أُي‬ ٕ‫ارضا‬ ‫ثذساعخ‬ ‫اُخبطخ‬ ‫ثبُطشم‬ ٚ‫دساعز‬ ٌٖٔ‫ي‬ ٟ‫ٝاُز‬
‫د‬–‫انماء‬ ‫سطح‬ ً‫ف‬ ‫مفاجئ‬ ‫اوخفاض‬ ‫حذوث‬ ‫عىذ‬ ‫نهسذ‬ ً‫االمام‬ ً‫انىج‬ ‫اتسان‬
‫ي‬-‫انسذ‬ ‫مه‬ ً‫انخهف‬ ‫انجسء‬ ‫اتسان‬
1-3-2 Rock fill cofferdams ‫اُذجبسح‬ ‫ًغش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬
‫جبٗجيخ‬ ٍٞ‫ثٔي‬ ٠٘‫رج‬ ٕ‫أ‬ ٌٖٔ‫ي‬ ‫اُذبُخ‬ ٙ‫ٛز‬ ٠‫ٝك‬ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫ث٘بء‬ ٠‫ك‬ ‫االدجبس‬ ‫ًغش‬ ّ‫اعزخذا‬ ٌٖٔ‫ي‬
٠ُ‫ئ‬ َ‫ط‬ ‫دبدح‬1:1.25ٍ‫اُؼٞاص‬ ّ‫ثبعزخذا‬ ‫اُ٘لبريخ‬ َ‫روِي‬ ‫ٓشاػبح‬ ‫ٓغ‬ ‫أُغبدخ‬ ٖٓ ً‫ا‬‫ًضيش‬ ‫يٞكش‬ ‫ٓٔب‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫أُ٘بعجخ‬(6.)
Figure (6) Rock fill cofferdam
1-3-3 Single sheet piles cofferdams ‫ٓلشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬
‫شبئؼخ‬ ٠ٛٝ ‫اُظِت‬ ٝ‫أ‬ ‫اُخشعبٗخ‬ ٝ‫أ‬ ‫اُخشت‬ ٖٓ ٌٕٞ‫ر‬ ‫ٓلشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬
ْ‫ص‬ ‫االٗشبء‬ ‫ٓ٘طوخ‬ ٍٞ‫د‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ‫دم‬ ْ‫يز‬ ‫ديش‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ٠ِ‫ػ‬ ٟ‫اٌُجبس‬ ‫اٗشبء‬ ٠‫ك‬ ّ‫االعزخذا‬
‫جبكخ‬ ‫ثيئخ‬ ٠‫ك‬ َٔ‫ُِؼ‬ ‫اُغذ‬ َ‫داخ‬ ٖٓ ٙ‫أُيب‬ ‫رلشيؾ‬,‫اُغزبئشيخ‬ ‫اُذٞائؾ‬ ٖٓ ٖ‫صٝجي‬ ٖٓ ‫اُغذ‬ ‫ي٘لز‬ ‫ديش‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫أكويخ‬ ‫ٝدػبٓبد‬ ‫رضجيذ‬ ‫ثأُٞاح‬ ‫ثيٜ٘ٔب‬ ‫أُغبكبد‬ ‫ٝيذلظ‬(7).‫االعزـ٘بء‬ ٌٖٔ‫ي‬ ‫ًٔب‬
‫اُخِليخ‬ ‫اُزشثخ‬ ٠‫ك‬ ‫اُذبئؾ‬ ‫رضجيذ‬ ٝ ‫األكويخ‬ ‫اُذػبٓبد‬ ٖ‫ػ‬(ٌَ‫ش‬ ‫اٗظش‬8.)
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
8
Figure (7) Single sheet piles cofferdams
Figure (8) Single sheet pile cofferdam
‫اُغذ‬ ‫ٝخبسط‬ َ‫داخ‬ ٙ‫أُيب‬ ‫ػـؾ‬ َٔ‫رش‬ ٠‫ٝاُز‬ ‫ػِيٜب‬ ‫أُإصشح‬ ٟٞ‫اُو‬ ّٝ‫ُزوب‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ْ‫رظٔي‬ ْ‫ٝيز‬
ٌَ‫ثبُش‬ ‫ٝساد‬ ٞٛ ‫ُٔب‬ ً‫ب‬‫ؽجو‬ ٚ‫دغبث‬ ٌٖٔ‫ي‬ ١‫ٝاُز‬ ‫اُغذ‬ ‫خبسط‬ ‫اُزشثخ‬ ‫ٝػـؾ‬(9)‫ٓشرٌضح‬ ‫اٜٗب‬ ‫ثبػزجبس‬ ‫ٝرُي‬
‫اُطشين‬ ّ‫ثبعزخذا‬ ‫االسرٌبص‬ ‫ٗوبؽ‬ ‫ػ٘ذ‬ َ‫اُلؼ‬ ‫سدٝد‬ ‫ٝرذغت‬ ‫األكويخ‬ ‫اُشثؾ‬ ‫اُٞاح‬ ٠ِ‫ػ‬ ً‫ب‬‫ثغيط‬ ‫اسرٌبصا‬
‫أُؼزبدح‬ ‫االٗشبئيخ‬.
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
9
Figure (7-9) Distribution of Earth pressure on Cofferdams
1-3-4 Double sheet piles cofferdams ‫ٓضدٝجخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬
‫ال‬ ‫كوذ‬ ‫دجضٛب‬ ‫أُطِٞة‬ ‫أٝاُزشثخ‬ ٙ‫أُيب‬ ‫ٓ٘غٞة‬ ‫السرلبع‬ ‫ٗزيجخ‬ ‫ػبُيخ‬ ‫اُخبسجيخ‬ ‫اُؼـٞؽ‬ ٌٕٞ‫ر‬ ‫ػ٘ذٓب‬
‫اُغزبئش‬ ٖٓ ٖ‫ٓزٞاصيي‬ ٖ‫طلي‬ ‫ر٘ليز‬ ْ‫يز‬ ‫ػ٘ذٛب‬ ‫اُؼـٞؽ‬ ٙ‫ٛز‬ ‫ُٔوبٝٓخ‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫ٝادذ‬ ‫طق‬ ٠‫يٌل‬
‫اُخشعبٗخ‬ ٝ‫أ‬ ‫اُذجبسح‬ ‫ًغش‬ ٝ‫أ‬ ‫ثبألرشثخ‬ ‫ثيٜ٘ٔب‬ ‫اُلشاؽ‬ ‫َٓء‬ ْ‫يز‬ ْ‫ص‬ ‫ٓؼذٗيخ‬ ٕ‫ثوؼجب‬ ً‫ب‬‫ٓؼ‬ ْٜ‫رضجيز‬ ْ‫يز‬ ‫اُِٞديخ‬
ٍ‫ثبالشٌب‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫اُؼبديخ‬(10)ٝ(11.)
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
10
Figure (10) Double sheet pile cofferdam
Figure (11) Double sheet piles cofferdams
1-3-5 Cellular cofferdams ‫انمتالصقح‬ ‫انخهىيح‬ ‫انسذود‬
A cellular cofferdam is constructed by driving sheet piles of special shapes to
form a series of cells as shown in figure (12). The cells are interconnected to
form a watertight wall. These are filled with soils to provide stability against
the lateral forces.
‫اُغبثوخ‬ ‫اُغذٝد‬ ‫أٗٞاع‬ ٖٓ ‫ٝٗٞع‬ ٟ‫أ‬ ‫يظِخ‬ ُْٝ َ‫ا‬‫جذ‬ ‫ًجيش‬ ٌَ‫ثش‬ ‫عذ‬ ٠ِ‫ػ‬ ‫اُخبسجيخ‬ ‫اُؼـٞؽ‬ ‫صادد‬ ‫ئرا‬
ٌٕٞ‫يز‬ ٚٗ‫أ‬ ‫ديش‬ ‫االعزبريٌيخ‬ ‫اُ٘بديخ‬ ٖٓ ‫أُضدٝط‬ ٟ‫اُغزبئش‬ ‫اُغذ‬ ٚ‫يشج‬ ٞٛٝ ِٟٞ‫اُخ‬ ‫اُغذٝد‬ ّ‫اعزخذا‬ ْ‫كيز‬
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
11
‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫أُزالطوخ‬ ‫اُخاليب‬ ٖٓ ‫ٓجٔٞػخ‬ ٖٓ.‫أٝأُٞاح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖ‫ػ‬ ‫ػجبسح‬ ِٟٞ‫اُخ‬ ‫ٝاُغذ‬
‫ٓ٘بعت‬ ّ‫ثشد‬ ‫ِٓئٜب‬ ْ‫يز‬ ْ‫ص‬ ‫اُغذ‬ ‫ٌٓٞٗخ‬ ‫ثيٜ٘ب‬ ‫كئب‬ َ‫رزذاخ‬ ‫ٓزجبٝسح‬ ‫خاليب‬ ٌٕٞ‫ُز‬ ‫دهٜب‬ ْ‫يز‬ ‫خبطخ‬ ٍ‫أشٌب‬ ‫راد‬
‫أُطِٞة‬ ٕ‫االرضا‬ ‫ُزذوين‬.
Figure (7-12) Cellular cofferdams
1-3-1 -1Types of Cellular Cofferdams
There are two types of cellular cofferdams, namely diaphragm type cellular
cofferdam and circular type cellular cofferdam.
a)Diaphragm Type cellular cofferdam ‫اُـشبئيخ‬ ‫اُغذٝد‬
‫ٓؼب‬ ‫يشثطٜب‬ ‫ُِغذ‬ ‫ٝاُخبسجيخ‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٠‫ك‬ ‫دائشيخ‬ ‫ٓ٘ذ٘يبد‬ ٖ‫ػ‬ ‫ػجبسح‬ ‫اُـشبئيخ‬ ‫اُخِٞيخ‬ ‫اُغذٝد‬
‫خبطخ‬ ‫هطغ‬ ‫ثٞاعطخ‬ ‫اُذائشيخ‬ ‫ثبُٔ٘ذ٘يبد‬ ‫رشرجؾ‬ ‫ٓغزوئخ‬ ‫ؿشبئيخ‬ ‫دٞائؾ‬,‫ثذجيجبد‬ ‫اُخاليب‬ ‫ِٓئ‬ ْ‫يز‬ ْ‫ص‬
ٚ‫ػِي‬ ‫أُإصشح‬ ‫األكويخ‬ ٟٞ‫اُو‬ َٔ‫رذ‬ ٠ِ‫ػ‬ ٚ‫هذسر‬ ٠ُ‫ٝثبُزب‬ ‫اُغذ‬ ٕ‫ٝص‬ ‫ُضيبدح‬ ‫ٝرُي‬ ٖ‫خش‬ ّ‫سد‬.‫يجت‬ ‫ًٔب‬
‫اُزشثخ‬ ‫ػـؾ‬ َ‫ثلؼ‬ ‫اكويخ‬ ٟٞ‫ه‬ ‫ُزُٞذ‬ ‫رج٘جب‬ ٟ‫ٓزٞاص‬ ٌَ‫ثش‬ ّ‫ثبُشد‬ ‫أُزجبٝسح‬ ‫اُخاليب‬ ‫ِٓئ‬ ْ‫يز‬ ٕ‫أ‬ ‫ٓشاػبح‬
ٖٓ ‫اُ٘ٞع‬ ‫ٛزا‬ ‫ٝئزبص‬ ٠‫اُـشبئ‬ ‫اُذبئؾ‬ ٖٓ ‫ٝادذح‬ ‫ٗبديخ‬ ٖٓ ّ‫اُشد‬ ‫ُٞجٞد‬ ‫ٗزيجخ‬ ٠‫اُـشبئ‬ ‫اُجذاس‬ ٠ِ‫ػ‬
٠‫اُـشبئ‬ ‫اُذبئؾ‬ ٍٞ‫ؽ‬ ‫ثضيبدح‬ ٕ‫االرضا‬ ٠ِ‫ػ‬ ٚ‫هذسر‬ ‫صيبدح‬ ‫ثآٌبٗيخ‬ ‫اُغذٝد‬.
This type of cellular cofferdam consists of circular arcs at the inner and outer
sides, which are connected by straight diaphragm walls as shown in figure
(13). The connection between the curved parts and diaphragms are made by
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
12
means of specially fabricated Y- elements. The cofferdam is made from
interconnected steel sheet piles. The cells are filled with coarse-grained soils,
which increase the weight of the cofferdam and its stability. The leakage of
the cofferdam is also reduced. To avoid rupture of the diaphragm due to
unequal pressures on the two sides, it is essential to fill all the cells at
approximately the same rate. The advantage of the diaphragm type is that the
effective width of the cofferdam may be increased easily by lengthening the
diaphragm.
Figure (13) Diaphragm cellular cofferdams
b) Circular Type cellular cofferdam ‫اُذائشيخ‬ ‫اُغذٝد‬
‫ثخاليب‬ ‫ٓؼب‬ ‫ٓشرجطخ‬ ْ‫اُذج‬ ‫ًجيشح‬ ‫اُذائشيخ‬ ‫اُخاليب‬ ٖٓ ‫ٓجٔٞػخ‬ ٖ‫ػ‬ ‫ػجبسح‬ ‫اُـشبئيخ‬ ‫اُذائشيخ‬ ‫اُغذٝد‬
‫اطـش‬ ‫دائشيخ‬.ٍ‫األدٔب‬ ‫يٞصع‬ ٟ‫اُز‬ ٟ‫اُذائش‬ ‫ُشٌِٜب‬ ‫ٗزيجخ‬ ‫ثزارٜب‬ ‫ٓغزوِخ‬ ‫اُخاليب‬ ٖٓ ‫خِيخ‬ ًَ ‫ٝرؼزجش‬
‫ثزارٜب‬ ‫ٓغزوِخ‬ ‫ػِٔيخ‬ ‫خِيخ‬ ًَ ّ‫سد‬ ‫ػِٔيخ‬ َ‫يجؼ‬ ‫ٓٔب‬ ‫اُوششيخ‬ ‫أُ٘شئبد‬ ٠ِ‫ػ‬ ٍ‫األدٔب‬ ‫رٞصيغ‬ ٚ‫يشبث‬ ٌَ‫ثش‬
ٟ‫األخش‬ ِٞ‫ر‬ ‫ٝادذح‬ ‫اُخاليب‬ ّ‫سد‬ ٌٖٔ‫ي‬ ‫ثذيش‬.ٍ‫األدٔب‬ َٔ‫رذ‬ ٠ِ‫ػ‬ ‫اُؼبُيخ‬ ‫ثوذسرٜب‬ ‫رٔزبص‬ ‫اُذائشيخ‬ ‫ٝاُخاليب‬
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
13
‫أًجش‬ ‫ُؼذد‬ ‫الدزيبجٜب‬ً‫ا‬‫ٗظش‬ ‫رٌِلخ‬ ‫ٜٓ٘ب‬ ‫أًضش‬ ‫ٌُٜٝ٘ب‬ ‫اُـشبئيخ‬ ‫اُخاليب‬ ٖٓ ‫أًجش‬ ٌَ‫ثش‬ ‫ػِيٜب‬ ‫اُٞاهؼخ‬ ‫األكويخ‬
‫أُؼذاد‬ ‫ديش‬ ٖٓ ‫ٝاُزشًيت‬ ‫اُذم‬ ٠‫ك‬ ‫ػبُيخ‬ ‫آٌبٗيبد‬ ٠ُ‫ئ‬ ‫ادزيبجٜب‬ ٠ُ‫ئ‬ ‫ثبإلػبكخ‬ ‫اُذائشيخ‬ ‫اُوطغ‬ ٖٓ
‫أُذسثخ‬ ‫أُبٛشح‬ ‫ٝاُؼٔبُخ‬.
It consists of a set of large diameter circular cells interconnected by arcs of
smaller diameter. This is shown in Figure (14). The walls of the connecting
cells are perpendicular to main circular cell of large diameter. The segmental
arcs are joined by special T-pile to the main cell. The circular type of cellular
cofferdam is self sustaining, independent of the adjacent circular cells. Each
cell can be filled independently. The stability of such cells is much larger as
compared with the diaphragm type. The circular type is more expensive as
compared to the diaphragm type, because these require more sheet piles and
skilled technology for setting and driving the pile. As the diameter of the
circular cell is limited by interlock tension, their ability to resist large lateral
pressures due to high head is restricted.
Figure (14) Circular cellular cofferdams
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
14
Problem (1)
State the types of cofferdams, indicating the circumstances under which each
is most suitable.
Solution
a)Following are some of the common types of cofferdams
(1) Earth fill cofferdam
(2) Rock fill cofferdam
(3) Single wall cofferdam
(4) Double wall cofferdam.
(5) Cellular cofferdam.
b) Circumstances:
(1) Earth fill cofferdam:- The use of this variety is limited in the vicinity
where the impervious earth is available and the water depth is shallow with
low velocity of flow. This type is not used where there is danger of
overtopping of water.
(2)Rock fill cofferdam:- These are constructed by placing rock along stream.
They can be used for depths of water up to about 3 m and are suitable even in
swift waters. These are economical in places where rock is available in plenty.
(3)Single wall cofferdam:- This type of cofferdam is suitable when available
working space is limited and area enclosed is small. It can be used up to a
depth of water equal to 25 m.
(4) Double wall cofferdam:- Double wall cofferdams are provided to enclose a
larger area. This type is useful where scour problems and space limitations are
prevalent.
(5) Cellular cofferdam:- These are suitable for dewatering large areas. These
can withstand overtopping of water. These types of cofferdams are used in
case of bridges with long spans.
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
15
1-3-1 -2Design of cellular cofferdams
‫ًا‬‫ال‬‫أو‬-‫االتتذائيح‬ ‫االتعاد‬
٠ُ‫ًبُزب‬ ٚ‫اسرلبػ‬ ٖٓ ‫ٗغجخ‬ ‫اُغذ‬ ‫ػشع‬ ٕ‫أ‬ ‫ٗلزشع‬ ‫أُضدٝجخ‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫ُِغذ‬ ‫ثبُ٘غجخ‬:
B=0.85H
‫اُزبُيخ‬ ‫اُؼالهخ‬ ‫أُزٞعؾ‬ ٚ‫ػشػ‬ ‫يذون‬ ‫ٝثذيش‬ ٌِٚ‫ُش‬ َ‫ب‬‫ٝكو‬ ٚ‫هطبػ‬ ‫اثؼبد‬ ‫رذذد‬ ‫اُخاليب‬ ٝ‫ر‬ ‫ُِغذ‬ ‫ثبُ٘غجخ‬:
B=A/2L
Where:
A ‫اُخاليب‬ ٖٓ ‫أُزٌشس‬ ‫اُجضء‬ ‫ٓغبدخ‬
2L ‫أُزٌشس‬ ‫اُجضء‬ ‫ٛزا‬ ٍٞ‫ؽ‬
‫األريخ‬ ‫اُؼالهخ‬ ٖٓ ِٟٞ‫اُخ‬ ‫اُغذ‬ ‫اثؼبد‬ ٠ِ‫ػ‬ ٍٞ‫اُذظ‬ ٌٖٔ‫ي‬ ‫ًٔب‬:
B= 0.78 D to 0.875 D
Where:
D=1.2H ‫اُخِيخ‬ ‫هطش‬
H ِٟٞ‫اُخ‬ ‫اُغذ‬ ‫اسرلبع‬
L ‫أُذٞس‬ ٠ُ‫ئ‬ ‫أُذٞس‬ ٖٓ ‫اُخاليب‬ ٖ‫ثي‬ ‫أُغبكخ‬
‫َا‬‫ا‬‫حاوي‬:‫انمؤحرج‬ ‫انقىي‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫أُإصشح‬ ٟٞ‫اُو‬ ٖٓ ٕ‫ٗٞػب‬ ‫ٛ٘بى‬(15)‫ٛٔب‬:
‫أ‬-‫اُخبسجيخ‬ ٟٞ‫اُو‬:‫األٓٞاط‬ ‫ٝػـؾ‬ ٙ‫ٝأُيب‬ ‫ُِزشثخ‬ ٠‫اُجبٗج‬ ‫ٝاُؼـؾ‬ ‫اُغذ‬ ٕ‫ٝص‬ َٔ‫ٝرش‬.
‫ة‬-‫داخِيخ‬ ٟٞ‫ه‬:‫اُغذ‬ َ‫داخ‬ ‫اُزغشة‬ ٟٞ‫ه‬ َٔ‫ٝرش‬
٠ُ‫ًبُزب‬ ‫اُخِيخ‬ َ‫داخ‬ ٙ‫ُِٔيب‬ ‫اُذش‬ ‫اُغطخ‬ َ‫ٓي‬ ٌٕٞ‫ي‬ ‫ديش‬:
‫اُزظشف‬ ‫دش‬ ٖ‫خش‬ ّ‫سد‬(1٠‫اكو‬:1٠‫سأع‬)
٠‫ؽٔي‬ ٖ‫خش‬ ّ‫سد‬(2٠‫أكو‬:1٠‫سأع‬)
‫اُذيجبد‬ ْ‫ٗبػ‬ ّ‫سد‬(3٠‫اكو‬:1٠‫سأع‬).
‫َا‬‫ا‬‫حانخ‬:‫نهسذ‬ ‫انسالمح‬ ‫اختثاراخ‬
٠‫األر‬ َٔ‫رش‬ ٠‫ٝاُز‬ ُٚ ‫اُغالٓخ‬ ‫اخزجبساد‬ ٠‫ك‬ ‫ًبكيخ‬ ٕ‫أٓب‬ ‫ٓؼبٓالد‬ ‫اُغذ‬ ‫يذون‬ ٕ‫أ‬ ‫يجت‬:
‫أ‬-‫االوسالق‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬
Check against sliding can be calculated as follow:
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
16
Where:
W=B {(H-H1) γT+H1 γsub} ٕ‫ٝص‬‫اُخِيخ‬ َ‫داخ‬ ‫اُزشثخ‬
Pw= 0.5γw H2
‫أُبئيخ‬ ‫أُغذخ‬ ‫ٗبديخ‬ ٖٓ ٙ‫أُيب‬ ‫ػـؾ‬ ‫ٓذظِخ‬
PA=0.5γsub Ka H2² ٍ‫اُلؼب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬
Pp= Ppˋ+Pw1 ّٝ‫أُوب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬+‫ُِغذ‬ ٠ِ‫اُذاخ‬ ٚ‫اُٞج‬ ‫ٗبديخ‬ ٖٓ ٙ‫أُيب‬
Ppˋ=0.5γsub Kp H4² ‫اُغذ‬ ٚ‫ُٞج‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٖٓ ّٝ‫أُوب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬
Pw1= 0.5γw H3
2
‫ُِغذ‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٖٓ ٙ‫أُيب‬ ‫ػـؾ‬ ‫ٓذظِخ‬
λ =0.5 for smooth rock, ‫اُغذ‬ ‫ػِيٜب‬ ‫أُشرٌض‬ ‫اُزشثخ‬ ٝ ‫اُغذ‬ َ‫داخ‬ ‫اُزشثخ‬ ٖ‫ثي‬ ‫االدزٌبى‬ َٓ‫ٓؼب‬
λ = tan ϕ for other soil
Figure (15) Forces affected on cellular cofferdams
‫ب‬-‫االوقالب‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬
Check against overturning can be calculated by taking a moment about point
A, as follow:
Where:
MR =Resistance moment
50.125.1
W.
=.S. 
 pAW pPP
F

50.33=.S. 
O
R
M
M
F
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
17
MO= Overturning Moment
‫د‬-‫األساش‬ ‫ترتح‬ ً‫ف‬ ‫االوهيار‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬
Factor of safety can be calculated as follow:
Where:
qult ٠‫ششيط‬ ‫ألعبط‬ ٠‫االهظ‬ َ‫اُزذٔي‬ ‫جٜذ‬
٠ٛٝ ٟ‫األخش‬ ‫االخزجبساد‬ ٖٓ ‫ٓجٔٞػخ‬ ‫رٞجذ‬ ‫ًٔب‬:
‫د‬-‫اُغذ‬ ‫ٓذٞس‬ ‫ػ٘ذ‬ ٠‫اُشأع‬ ‫ثبُوض‬ ‫االٜٗيبس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬
ٙ-‫االعبط‬ ‫ٝرشثخ‬ ّ‫اُشد‬ ٖ‫ثي‬ ٠‫دجيج‬ ٍ‫اٗلظب‬ ‫دذٝس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬
ٝ-٠ِ‫اُذاخ‬ ّ‫اُشد‬ ٠ِ‫ػ‬ ‫اُخبسجيخ‬ ‫ُِغزبئش‬ ‫اٗضالم‬ ‫دذٝس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬
‫ص‬-٠ِ‫اُذاخ‬ ‫اُ٘ذش‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬
Problem (2)
Design the cofferdam shown in the figure below:
332
.
= 3
1
4
1R
HP
H
P
BW
M wp 
33
P=
2
wo
H
P
H
M a
50.20.2
/6/
=.
2
b.c 
 BMBW
q
F
O
ult
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
18
Solution
B=0.85 H = 0.85x20=17m
Where the fill is fine particles, so the inclination of saturation line =3:1
H3=20-17/3=14.34 m
H1=20-8.5/3=17.16m
ka=(1-sin35°)/(1+sin35°) = 0.27
kp=3.69
PA=0.5γsub Ka H2² = 0.5x10x0.27x8²= 86.4kN, ya=8/3=2.67m
Pw= 0.5γw H2
= 0.5x10x20²=2000 kN, y1= 20/3=6.67m
Ppˋ=0.5γsub Kp H4² = 0.5x10x3.69x5²=461.25kN, yp=5/3=1. 67m
Pw1= 0.5γw H3
2
=0.5 x10 x 14.34²= 1028.178kN, y2=4.78m
Pp= Ppˋ+Pw1 = 461.25+1028.178=1489.428kN
W=B {(H-H1) γT+H1 γsub}=17{ (20-17.16)x18+17.16x 8}=3202.8kN
Check against sliding
W=3202.8kN
λ = tan ϕ=tan35°=0.7
50.125.1
W.
=.S. 
 pAW pPP
F

safe
x
F 50.125.175.3
42.14894.862000
7.08.3202
=.S. 

‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
19
Check against overturning:
Check against overturning can be calculated by taking a moment about point
A.
=3202.8x8.5+461.25x1.67+1028.178x4.78 =32908.77 kN.m
= 2000x6.67+86.4x2.67=13570.68kN.m
F.S.=32908.77/13570.68=2.42<3 unsafe
Take B=20m, B/2 =10 m
W=B {(H-H1) γT+H1 γsub}=20{ (20-17.16)x18+17.16x 8}=3768kN
MR=3768x10+461.25x1.67+1028.178x4.78 =43364.97 kN.m
F.S.=43364.97/13570.68=3.2 safe
ٖٓ ٕ‫األٓب‬ َٓ‫ٓؼب‬ ‫هئخ‬ ٖ‫ػ‬ ‫ثبُزؼٞيغ‬ ‫ػٌغيخ‬ ‫ثطشيوخ‬ َ‫اُذ‬ ٌُٖٔٔ‫ا‬ ٖٓ3:3.5‫أُؼبدُخ‬ ٠‫ك‬ ‫اُزؼٞيغ‬ ْ‫ص‬
‫اُغذ‬ ‫ػشع‬ ‫هئخ‬ ٠ِ‫ػ‬ ٍٞ‫ُِذظ‬.
W=B {(H-H1) γT+H1 γsub}=B{ (20-17.16)x18+17.16x 8}=188.4B
W.B/2= (188.4B).B/2=94.2B²
MR= 94.2B²+5684.97
3.25= 94.2B²+5684.97/13570.68
B=20.34 m ≈20.5m
50.33=.S. 
O
R
M
M
F
332
.
= 3
1
4
1R
HP
H
P
BW
M wp 
33
P=
2
wo
H
P
H
M a
25.3=.S. 
O
R
M
M
F
78.4178.102867.125.461
2
.
=R xx
BW
M 
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
20
Check on soil stresses under the cofferdam
MT=MR-Mo=94.2x20.5²+5684.97-13570.68=31701.84 kN.m
W=188.4B=188.4x20.5=3862.2kN
xˋ=MT/W =31701.84/3862.2=8.2 m
xˋ: ‫اُغذ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٟٞ‫ُِو‬ ‫أُذظِخ‬ ‫رأصيش‬ ‫ٗوطخ‬
e=B/2- xˋ=20.5/2-8.2=1.75m
e : ‫اُغذ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٟٞ‫ُِو‬ ‫أُذظِخ‬ ‫رأصيش‬ ‫ٝٗوطخ‬ ‫اُغذ‬ ‫ٓشًض‬ ٖ‫ثي‬ ‫أُغبكخ‬ ٠ٛ
F1,2 : ‫اُغذ‬ َ‫أعل‬ ‫االجٜبداد‬
F1=3862.2/20.5 (1+ (6x1.75)/20.5)=284.9 kN/m²
F2=3862.2/20.5(1-(6x1.75)/20.5)=91.9 kN/m²>0.0 ok
)
6
1(=1,2
B
e
B
W
F 
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
21
2-Braced Cuts
َ‫ٓض‬ ‫اُزذزيخ‬ ‫اُج٘يخ‬ ‫ٝخطٞؽ‬ ‫اُجذسٝٓبد‬ ‫اٗشبء‬ ٍ‫اػٔب‬ ّٝ‫ُض‬ ‫اُذلش‬ ٍ‫ثأػٔب‬ ّ‫اُويب‬ ٠‫اُٜ٘ذع‬ َٔ‫اُؼ‬ ٠‫يغزذػ‬
‫ُِٔٞاطلبد‬ ً‫ب‬‫ٝكو‬ ٍ‫األػٔب‬ ّ‫الرٔب‬ ‫اُذلش‬ ‫ٛزا‬ ‫جٞاٗت‬ ‫ع٘ذ‬ ّ‫يغزِض‬ ‫ٓٔب‬ ٠‫ٝاُظذ‬ ‫ٝاُظشف‬ ‫ٝاٌُٜشثبء‬ ٙ‫أُيب‬
‫اُخشجيخ‬ ‫األُٞاح‬ ّ‫ثبعزخذا‬ ‫اُذلش‬ ‫جٞاٗت‬ ْ‫رذػي‬ ْ‫يز‬ ‫ديش‬ ْ‫أُذػ‬ ٝ‫أ‬ ‫أُغ٘ٞد‬ ‫ثبُذلش‬ ‫يؼشف‬ ‫ثٔب‬ ‫أُطِٞثخ‬
‫ٓخزِلخ‬ ‫ألعبُيت‬ ً‫ب‬‫ٝكو‬ ‫أُؼذٗيخ‬ ‫اُغزبئش‬ ٝ‫أ‬.
2-1Using of Braced Cuts
Braced cut is used for different purposes.
1-It is used to resist the lateral pressure. ‫اُجبٗجيخ‬ ‫اُؼـٞؽ‬ ‫ٓوبٝٓخ‬
2-It provides safety to the construction work ‫اإلٗشبء‬ ‫أص٘بء‬ ٍ‫األػٔب‬ ٖ‫رأٓي‬.
3-It enables deep excavation. ‫اُؼٔين‬ ‫اُذلش‬ ٍ‫ثأػٔب‬ ّ‫اُويب‬ ٖٓ ٖ‫اُزٌٔي‬
2-3 Types of Braced Cuts
1-Vertical Timber sheeting ‫سأعيخ‬ ‫خشجيخ‬ ‫عزبئش‬
2- Steel Sheet Piles ‫ٓؼذٗيخ‬ ‫ُٞديخ‬ ‫عزبئش‬
3-Soldier Beams ْ‫اُزذدػي‬ ‫ًٔشاد‬
4- Tie Backs ‫اُخِليخ‬ ‫األسثطخ‬
2-3-1 Vertical Timber Sheeting
ٖٓ ‫ثغٔي‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ٖٓ ‫عزبسح‬ ‫رشًيت‬ ْ‫يز‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ٠‫ك‬8٠ُ‫ئ‬10ٍٞ‫د‬ ‫ر٘ليزٛب‬ ْ‫يز‬ ٠‫ٝاُز‬ ْ‫ع‬
٠‫اُظذ‬ ‫اُظشف‬ ‫خ٘بدم‬ ‫ع٘ذ‬ ٍ‫ًأػٔب‬ ‫اُظـيشح‬ ‫أُششٝػبد‬ ٠‫ك‬ ّ‫االعزخذا‬ ‫شبئؼخ‬ ٠ٛٝ َٔ‫اُؼ‬ ‫ٓٞهغ‬
٠ُ‫ئ‬ َ‫رظ‬ ‫ألػٔبم‬ ‫ٝاُـبص‬ ٙ‫ٝأُيب‬2.5‫ٓزش‬.ٍٞ‫د‬ ‫رِزق‬ ‫خشجيخ‬ ْ‫ثوٞائ‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ْ‫رذػي‬ ْ‫يز‬ ‫ًٔب‬
‫ٝرُي‬ ‫ٓبئِخ‬ ٝ‫أ‬ ً‫ب‬ٓ‫رٔب‬ ‫أكويخ‬ ٌٕٞ‫ر‬ ٠‫ٝاُز‬ ‫ػٞاسع‬ ٝ‫أ‬ ‫دػبٓبد‬ ٠ُ‫ئ‬ َٔ‫اُذ‬ َ‫ر٘و‬ ٠‫ٝاُز‬ ‫اُخشجيخ‬ ‫األُٞاح‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬(16.)
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
22
Figure (16) Vertical Timber sheeting
2-3-2 Steel Sheet Piles
ٍٞ‫اُٞط‬ ‫ٝثؼذ‬ ‫اُز٘ليز‬ ‫ٓٞهغ‬ ٍٞ‫د‬ ‫اُزشثخ‬ ٠‫ك‬ ً‫ب‬‫ٓؼ‬ ‫ٓؼشوخ‬ ‫ٓؼذٗيخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ‫دم‬ ْ‫يز‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ٠‫ك‬
ٖٓ ٌٕٞ‫ر‬ ٠‫ٝاُز‬ ‫اُذػبٓبد‬ ٝ ‫اُظِت‬ ٖٓ ‫أُظ٘ٞػخ‬ ‫األكويخ‬ ‫اُؼٞاسع‬ ‫رضجيذ‬ ْ‫يز‬ ‫اُذلش‬ ٠‫ك‬ ٖ‫ٓؼي‬ ‫ُؼٔن‬
ٍ‫ثبألشٌب‬ ‫ٓٞػخ‬ ٞٛ‫ًٔب‬ ‫ٝرُي‬ ‫أُطِٞة‬ ‫ُِؼٔن‬ ٍٞ‫اُٞط‬ ٠‫دز‬ ‫ٝرُي‬ ْ‫ُِزذػي‬ ‫اُخشت‬ ٝ‫أ‬ ‫اُظِت‬(17)
ٝ(18. )
Figure (17) Steel sheet piles
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
23
Figure (18) Steel sheet piles
Design of Steel sheet pile
• The sheet pile can be calculated as continuous beam resting on the wales, so
the sheet pile can be designed/m
• The Wales must be designed as continues beam resting on the struts, so the
reaction on the Wales can be calculated
• With the reaction in the struts, the struts can be designed as compression
member. The moment in the strut due to its own weight and buckling must be
taken into consideration.
2-3-3 Soldier Beam
٠ِ‫ػ‬ ‫االٗشبء‬ ‫ٓٞهغ‬ ٍٞ‫د‬ ‫دهٜب‬ ْ‫يز‬ ‫ارش‬ ‫دشف‬ ٌَ‫ش‬ ٠ِ‫ػ‬ ‫دذيذيخ‬ ‫خٞاصين‬ ٖ‫ػ‬ ‫ػجبسح‬ ْ‫اُزذػي‬ ‫ًٔشاد‬
ٖٓ ‫ٓغبكبد‬1.5:2.5ٖ‫ثي‬ ‫اُزجٜيض‬ ‫عبثوخ‬ ‫ثالؽبد‬ ٝ‫أ‬ ‫خشجيخ‬ ‫اُٞاح‬ ‫ٝػغ‬ ْ‫يز‬ ‫اُذلش‬ ّ‫روذ‬ ‫ٝٓغ‬ ‫ٓزش‬
ٌَ‫ثبُش‬ ‫ًٔب‬ ‫أكويخ‬ ‫ٝدػبٓبد‬ ‫ػٞاسع‬ ‫رشًيت‬ ْ‫يز‬ ْ‫ص‬ ‫اُذذيذيخ‬ ‫اُخٞاصين‬(19).ٌٕٞ‫ي‬ ‫اُذبُخ‬ ٙ‫ٛز‬ ٠‫ٝك‬
َ‫ب‬‫ثغيط‬ ‫رشرٌضاسرٌبصا‬ ٠‫ٝاُز‬ ‫اُزجٜيض‬ ‫عبثوخ‬ ‫اُجالؽبد‬ ٝ‫أ‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ٠ِ‫ػ‬ ‫ٓجبششح‬ ‫ٓإصش‬ ‫اُزشثخ‬ ‫ػـؾ‬
‫ثغيطخ‬ ‫ًٔشاد‬ ‫أٜٗب‬ ٠ِ‫ػ‬ ٠‫األكو‬ ٙ‫االرجب‬ ٠‫ك‬ ‫رظٔئٜب‬ ْ‫يز‬ ٠ُ‫ٝثبُزب‬ ‫اُذذيذيخ‬ ْ‫اُزذػي‬ ‫ًٔشاد‬ ٠ِ‫ػ‬
‫االسرٌبص‬.‫عبثوخ‬ ‫اُجالؽبد‬ َ‫كؼ‬ ‫سد‬ َٔ‫رذ‬ ‫سأعيخ‬ ‫ًٔشاد‬ ‫أٜٗب‬ ٠ِ‫ػ‬ ‫رظٔئٜب‬ ْ‫يز‬ ْ‫اُزذػي‬ ‫ًٔشاد‬ ‫ثي٘ٔب‬
‫أٜٗب‬ ٠ِ‫ػ‬ ‫رظٔئٜب‬ ْ‫يز‬ ٠‫اُز‬ ‫اُذػبٓبد‬ ٠ُ‫ئ‬ َٔ‫اُذ‬ َ‫ر٘و‬ ٠‫ٝاُز‬ ‫األكويخ‬ ‫اُؼٞاسع‬ ٠ِ‫ػ‬ ‫ٝرشرٌض‬ ‫اُزجٜيض‬
٠‫اُزار‬ ‫ٝصٜٗب‬ ٖ‫ػ‬ ‫اُ٘بشئ‬ ‫االٗذ٘بء‬ ّ‫ػض‬ ٠ُ‫ئ‬ ‫ثبالػبكخ‬ ‫األكويخ‬ ‫اُؼٞاسع‬ َ‫كؼ‬ ‫سد‬ ‫رأخز‬ ‫ػـؾ‬ ‫ػ٘بطش‬
‫االٗجؼبط‬ ‫ٝهئخ‬.
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
24
Figure (19) Soldier Beam
2-3-4 Tie Backs
‫األكويخ‬ ‫اُؼٞاسع‬ ّ‫اعزخذا‬ ‫يظجخ‬ ‫ثذيش‬ ‫ًجيش‬ ٌَ‫اُذلشثش‬ ‫ػشع‬ ‫يضيذ‬ ‫ػ٘ذٓب‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ّ‫رغزخذ‬
‫دلش‬ ْ‫يز‬ ‫ديش‬ ‫اُغبٗذ‬ ‫اُذبئؾ‬ ْ‫ُزذػي‬ ٠‫خِل‬ ‫ثشثبؽ‬ ‫اعزجذاُٜب‬ ْ‫يز‬ ‫ديش‬ ً‫ب‬‫اهزظبدي‬ ‫ٌِٝٓق‬ ‫طؼت‬ ‫ٝاُذػبٓبد‬
ٞٛ‫ًٔب‬ ‫ٝرُي‬ ‫اُذلشح‬ َ‫داخ‬ ‫خشعبٗخ‬ ‫ٝطت‬ ‫رغِيخ‬ ‫دذيذ‬ ٍ‫ادخب‬ ْ‫يز‬ ْ‫ص‬ ‫اُغبٗذ‬ ‫اُذبئؾ‬ ‫خِق‬ ‫ٓبئِخ‬ ‫دلشح‬
ٌَ‫ثبُش‬ ‫ٓٞػخ‬(20.)
Figure (20) Tie Back
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
25
2-4 Lateral Earth Pressure Distribution on Braced Cuts
‫اُزوِيذيخ‬ ‫اُطشم‬ ٍ‫خال‬ ٖٓ ٚ٘‫رؼيي‬ ٌٖٔ‫ي‬ ٟ‫ٝاُز‬ ‫اُزشثخ‬ ‫ػـؾ‬ ٞٛ ‫اُغ٘ذ‬ ‫دبئؾ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٍ‫األدٔب‬
ٌَ‫ثبُش‬ ‫أُٞػذخ‬ ‫اُزوشيجيخ‬ ْ‫اُوي‬ ٍ‫خال‬ ٖٓ ٝ‫أ‬ ‫أُؼشٝكخ‬(21)ٍ‫خال‬ ٖٓ ‫ػِيٜب‬ ٍٞ‫اُذظ‬ ْ‫ر‬ ٠‫ٝاُز‬
‫ٝدوِيخ‬ ‫ٓؼِٔيخ‬ ‫رجبسة‬.
Figure (21) Lateral Earth Pressure on Braced Cuts
Problem (3)
A long trench is excavated in medium dense sand for the foundation of a
multistory building. The sides of the trench are supported with sheet pile walls
fixed in place by struts and Wales as shown in the Figure below. The soil
properties are: γ= 18.5 kN/m3
, c = 0 and ϕ = 38°
Determine:
(a) The pressure distribution on the walls with respect to depth.
(b) Strut loads. The struts are placed horizontally at distances L = 4 m center
to center.
(c) The maximum bending moment for determining the pile wall section.
(d) The maximum bending moments for determining the section of the wales.
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
26
Solution
(a) The pressure distribution on the walls
Ka = tan2
(45 - ϕ/2)
Pa = 0.65 γ H Ka = 0.65 x 18.5 x 8 tan2
(45 - 38/2) = 23 kN/m2
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
27
(b) Strut loads
The reactions at the ends of struts A, B and C are represented by RA, RB and Rc
respectively.
For reaction RA , take moments about B.
RA x3 - 4x23x (4/2) = 0
RA = 61.33 kN
RB1 = 23 x 4-61.33 = 30.67 kN
Due to the symmetry of the load distribution,
RB1 = RB2 = 30.67 kN, and RA = Rc = 61.33 kN.
Now the strut loads are (for L - 4 m)
Strut A, PA = 61.33 x 4 - 245 kN
Strut B, PB = (RBl + RB2 ) x 4 = 61.34 x 4 ≈ 245 kN
Strut C, Pc = 245 kN.
(c) Moment of the pile wall section
To determine moments at different points it is necessary to draw a diagram
showing the shear force distribution as shown in the figure below
MA = 0.5 x 1 x 23 = 1 1.5 kN. m
Mc = 0.5 x 1 x 23 = 1 1.5 kN. m
Mm =1.33x30.67-(23x1.33²/2)= 20.4 kN. m
‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬
28
Mn = 1.33x30.67-(23x1.33²/2)= 20.4 kN. m
The maximum moment = 20.4 kN.m
A suitable section of sheet pile can be determined
(d) Maximum moment for Wales
The bending moment equation for Wales is
Mmax=RL2
/8
Where:
R = maximum strut load = 245 kN
L = spacing of struts = 4 m
Mmax= 245x42
/8=490 kN.m
A suitable section for the Wales can be determined
2-4Check to avoid heave
Braced cuts in clay become unstable as a result of heaving of the bottom of the
excavation. The bottom of a cut in sand is generally stable. When the water
table is encountered, the bottom of the cut is stable as long as the water level
inside the cut (excavation) is higher than the ground water table. In case
dewatering is needed the factor of safety, against up lift should be checked.
‫اُذلش‬ ‫هبع‬ ٠‫ك‬ ‫اٗزلبر‬ ‫ُذذٝس‬ ‫ٗزيجخ‬ ‫ٓغزوش‬ ‫ؿيش‬ ‫يظجخ‬ ٕ‫أ‬ ٌُٖٔٔ‫ا‬ ٖٓ ‫اُطي٘يخ‬ ‫اُزشثخ‬ ٠‫ك‬ ‫أُغ٘ٞد‬ ‫اُذلش‬
‫أُطِٞة‬ ٕ‫األٓب‬ ‫ُزذوين‬ ‫رأًيذيخ‬ ‫دغبثبد‬ َٔ‫ثؼ‬ ّ‫اُويب‬ ٠‫يغزذػ‬ ‫ٓٔب‬ ‫جٞكيخ‬ ٙ‫ٓيب‬ ‫ٝجٞد‬ ‫دبُخ‬ ٠‫ك‬ ‫ٝرُي‬(‫ًٔب‬
‫اُجٞكيخ‬ ٙ‫أُيب‬ ‫رخليغ‬ ‫ٓذبػشح‬ ٠‫ك‬ ٚ‫ششد‬ ‫عجن‬).

More Related Content

Recently uploaded

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Recently uploaded (20)

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 

Featured

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Cofferdams and braced cuts

  • 1. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 1 Cofferdams and Braced Cuts 1-Cofferdams Cofferdams are temporary enclosures that keep away earth and water from the construction area. Figure (1) cofferdam َٔ‫اُؼ‬ ‫ٓٞهغ‬ ٖ‫ػ‬ ‫اُزشثخ‬ ٝ‫أ‬ ٙ‫أُيب‬ ‫دجض‬ ‫ٜٓ٘ب‬ ‫اُـشع‬ ‫ٓإهزخ‬ ‫ٓ٘شئبد‬ ٠ٛ ‫أُذيطخ‬ ‫اُغذٝد‬,ٌَ‫ش‬(1) 1-2Classification of Cofferdams ٠‫ًبألر‬ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫رظ٘يق‬ ٌٖٔ‫ي‬: ‫أوال‬:‫االوشاء‬ ً‫ف‬ ‫انمستخذمح‬ ‫انمادج‬ ‫حيج‬ ‫مه‬ ٠‫األر‬ َٔ‫ٝرش‬: ‫أ‬-‫اُزشاثيخ‬ ‫اُغذٝد‬ ‫ة‬-‫اُذجش‬ ‫ًغش‬ ‫عذٝد‬ ‫ط‬-َٓ‫اُش‬ ‫أًيبط‬ ‫عذٝد‬ ‫د‬-‫اُخشجيخ‬ ‫اُغذٝد‬ ‫ٛـ‬-‫أُؼذٗيخ‬ ‫اُغذٝد‬ ٝ-‫اُخشعبٗيخ‬ ‫اُغذٝد‬
  • 2. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 2 ‫ًا‬‫ا‬‫حاوي‬:‫واالوشاء‬ ‫انتصميم‬ ‫طريقح‬ ‫حسة‬ ٠‫األر‬ َٔ‫ٝرش‬: ‫أ‬-َٓ‫اُش‬ ‫أًيبط‬ ٝ‫أ‬ ‫ادجبس‬ ‫ًغش‬ ٖٓ ‫ٝأٌُٞٗخ‬ ‫اُزشاثيخ‬ َٔ‫ٝرش‬ ‫اُزضبهِيخ‬ ‫اُغذٝد‬ ‫ة‬-‫ٓ٘لشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬(‫خشجيخ‬-‫ٓؼذٗيخ‬-‫خشعبٗيخ‬) ‫ط‬-‫ٓضدٝجخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬ ‫د‬-‫ٓؼذٗيخ‬ ‫خاليب‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬(‫اُخِٞيخ‬ ‫اُغذٝد‬)‫اُغبثوخ‬ ‫األٗٞاع‬ ٖٓ ‫ٗٞع‬ ًَ ‫ششح‬ ْ‫ٝعيز‬ َ‫ثبُزلظي‬. ‫ًا‬‫ا‬‫حانخ‬:‫انمىقع‬ ‫وىعيح‬ ‫حسة‬ ‫أ‬-ٍٞ‫اُغي‬ ٖٓ ‫ُِذٔبيخ‬ ‫اٗشبؤٛب‬ ْ‫يز‬ ٠‫اُز‬ ‫اُغذٝد‬ َ‫ٓض‬ ‫رُي‬ ٝ‫اُجش‬ ٠ِ‫ػ‬ ‫أُوبٓخ‬ ‫اُغذٝد‬. ‫ة‬-ٝ‫أ‬ ‫اُو٘بؽش‬ ‫ث٘بء‬ ‫ػ٘ذ‬ ‫ٓإهزخ‬ ‫ٓ٘شئبد‬ ٌٕٞ‫ر‬ ً‫ب‬‫ؿبُج‬ ٠‫ٝاُز‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ٝ‫أ‬ ‫اُجذش‬ ٠‫ك‬ ‫أُوبٓخ‬ ‫اُغذٝد‬ ٟ‫اٌُجبس‬. 1-3Thecommon types of cofferdams Following are some of the common types of cofferdams (1) Earth fill cofferdam (2) Rock fill cofferdam (3) Single wall cofferdam (4) Double wall cofferdam. (5) Cellular cofferdam 1-3-1 The Earth cofferdams ‫اُزشاثيخ‬ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫ٝاُجذبسٝاُجذيشاد‬ ‫اُٜبدئخ‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ‫دبُخ‬ ٠‫ك‬ ّ‫ُالعزخذا‬ ‫ٓالئٔخ‬ ‫أًضش‬ ‫اُزشاثيخ‬ ‫اُغذٝد‬ ‫رؼزجش‬ ‫ٓبئيخ‬ ‫ريبساد‬ ٝ‫أ‬ ‫آٞاط‬ ‫رٞجذ‬ ‫ٝال‬ ‫طـيش‬ ٙ‫أُيب‬ ‫ٝاسرلبع‬ ‫ػؼيلخ‬ ٙ‫أُيب‬ ‫عشػبد‬ ٌٕٞ‫ر‬ ‫ديش‬ ‫اُشاًذح‬ ‫اُٞاهؼخ‬ ‫ٝاالعزبريٌيخ‬ ‫اُذي٘بٓيٌيخ‬ ‫اُؼـٞؽ‬ ‫صيبدح‬ ‫دبُخ‬ ٠‫ك‬ ‫ٝاالٜٗيبس‬ ‫ُِ٘ذش‬ ‫ػشػخ‬ ‫اُغذٝد‬ ٙ‫ٛز‬ ٌٕٞ‫ٝر‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫ػِيٜب‬(2.)
  • 3. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 3 Figure (2) Earth cofferdam 1-3-1-1 Materials used in Earth Cofferdams ‫االٗشبء‬ ٠‫ك‬ ‫أُغزخذٓخ‬ ‫أُٞاد‬ ٠ُ‫ئ‬ ‫ٌٓٞٗبرٜب‬ ‫ٝكن‬ ‫اُزشاثيخ‬ ‫اُغذٝد‬ ْ‫ٝر٘وغ‬: ‫أ‬-‫ٓزجبٗغخ‬ ‫رشثخ‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬ ‫ؽجوخ‬ ‫رؼبف‬ ‫ًٝزُي‬ َ‫أُي‬ ‫ُذٔبيخ‬ ‫ؽجوخ‬ ‫اُغطخ‬ ٠ِ‫ػ‬ ‫ٝيٞػغ‬ ‫ثبُٞهغ‬ ‫أُزٞاكشح‬ ‫اُزشثخ‬ ّ‫اعزخذا‬ ْ‫يز‬ ‫ديش‬ ‫اُزغشة‬ ٖٓ ٚ‫ُذٔبيز‬ ‫اُغذ‬ ‫خِق‬ ‫طشف‬. ‫ة‬-٠‫دز‬ ‫اُوِت‬ ٖٓ ‫اُ٘لبريخ‬ ‫ٓزذسجخ‬ ‫ؽجوبد‬ ‫ػذح‬ ٖٓ ٌٕٞ‫ٝيز‬ ‫اُزشثخ‬ ٖٓ ‫ٗٞػيبد‬ ‫ػذح‬ ٖٓ ‫أٌُٞٗخ‬ ‫اُغذٝد‬ ‫ٗلبريخ‬ َ‫أه‬ ‫اُوِت‬ ٌٕٞ‫ي‬ ‫ثذيش‬ ‫اُخبسط‬ ‫ط‬-‫طٔبء‬ ‫هِٞة‬ ‫راد‬ ‫عذٝد‬ َ‫داخ‬ ٠ِ‫ػ‬ ‫ٝيضجذ‬ ‫اُخشت‬ ٝ‫أ‬ ٕ‫أُؼذ‬ ٝ‫أ‬ ‫اُخشعبٗخ‬ ٖٓ ٌٕٞ‫ي‬ ‫هذ‬ ‫اُوِت‬ ٠‫ك‬ ْ‫أط‬ ‫جضء‬ ‫ُِغذ‬ ‫يؼبف‬ ‫ديش‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫اُغذ‬ ‫ػِيٜب‬ ّ‫أُوب‬ ‫اُظخشيخ‬ ‫اُطجوخ‬(3.) Figure (3) Earth cofferdam with sheet pile core
  • 4. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 4 1-3-1-2 Design of Earth cofferdams ٠ُ‫ًبُزب‬ ٠‫اُزشاث‬ ‫اُغذ‬ ْ‫رظٔي‬ ْ‫يز‬: 1-‫نهسذ‬ ‫األونيح‬ ‫األتعاد‬ ‫تحذيذ‬ ‫ُِغذ‬ ٕ‫اُالصٓب‬ ٕ‫ٝاألٓب‬ ‫اُغالٓخ‬ ‫ُذسجخ‬ ‫األثؼبد‬ ٙ‫ٛز‬ ‫رذوين‬ ٖٓ ‫اُزأًذ‬ ْ‫يز‬ ْ‫ص‬ ‫ُِغذ‬ ‫األُٝيخ‬ ‫األثؼبد‬ ‫رذذد‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ‫ًٝٔب‬(4)٠ُ‫ًبُزب‬: 1-‫ثبالسرلبع‬ ‫يؼشف‬ ٠‫ًبك‬ ‫ثبسرلبع‬ ٚٓ‫أٓب‬ ٙ‫أُيب‬ ‫ٓ٘غٞة‬ ٖٓ ٠ِ‫أػ‬ ٚ‫هٔز‬ ٌٕٞ‫ر‬ ‫ثذيش‬ ‫اُغذ‬ ‫اسرلبع‬ ‫يذذد‬ ٍٝ‫اُجذ‬ ٖٓ ٙ‫روذيش‬ ٌٖٔ‫ٝي‬ ‫ُِغذ‬ ‫اُذش‬(1. ) Figure (4) Dimensions of Earth Cofferdam 2-ْ‫سه‬ ٍٝ‫اُجذ‬ ٖٓ ‫اُغذ‬ ‫ُؼشع‬ ‫هئخ‬ َ‫أه‬ ‫رإخز‬(1)‫يإخز‬ ‫ُِٔشٝس‬ ‫ًطشين‬ ‫اُغذ‬ ‫هٔخ‬ ّ‫اعزخذا‬ ‫دبُخ‬ ٠‫ٝك‬ ٖ‫ػ‬ َ‫اليو‬ ‫ثٔب‬ ‫اُغذ‬ ‫ػشع‬6ْ‫سه‬ ٍٝ‫ثبُجذ‬ ‫ٝاسد‬ ٞٛ‫ُٔب‬ ‫ؽجوب‬ ‫ُِغذ‬ ‫اُجبٗجيخ‬ ٍٞ‫أُي‬ ‫رذذيذ‬ ْ‫يز‬ ‫ٓزشًٔب‬(2) Table (1) Dimensions of Earth Cofferdam The dam height H(m) Free height Hf (m) The top width A (m) 4.5> 1.2-1.5 1.85 4.5-7.5 1.5-1.8 1.85 7.5-15 1.85 2.5 15-22.5 2.1 3.0 22.5< 2.1 3.0
  • 5. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 5 Table (2) Slopes of Earth Cofferdams ‫انمؤخرج‬ ‫ميم‬ ‫انمقذمح‬ ‫ميم‬ ‫انمىاد‬ ‫وىع‬ 1:2 1:2.5 ‫اُزذسط‬ ‫جيذح‬ ‫ٓزجبٗغخ‬ ‫رشثخ‬ 1:2.5 1:3 ‫ٓزجبٗظ‬ ٠ٔ‫ؽ‬ 1:2 1:2.5 ٖٓ َ‫أه‬ ‫السرلبع‬ ‫ٓزجبٗغخ‬ ‫ؽي٘يخ‬ ‫ؽٔييخ‬15‫ٓزش‬ 1:1.25 1:3 ٖٓ ‫أًضش‬ ‫السرلبع‬ ‫ٓزجبٗغخ‬ ‫ؽي٘يخ‬ ‫ؽٔييخ‬15‫ٓزش‬ 1:2.5 1:3 ٖ‫ؽي‬ ‫هِت‬ ‫ٝجٞد‬ ‫ٓغ‬ ‫صُؾ‬ َٓ‫س‬ ٝ‫أ‬ َٓ‫س‬ 1:2 1:2.5 ٠ٗ‫خشعب‬ ‫هِت‬ ‫ٝجٞد‬ ‫ٓغ‬ ‫صُؾ‬ َٓ‫س‬ ٝ‫أ‬ َٓ‫س‬ 2-‫انهيذرونيكيح‬ ‫انسالمح‬ ‫اختثاراخ‬ ‫ُِغذ‬ ٠‫اُخِل‬ ‫اُغطخ‬ ّ‫هذ‬ ‫ٝػ٘ذ‬ ٠‫ٝاُخِل‬ ٠ٓ‫األٓب‬ ‫اُغطخ‬ ٖٓ ٌَُ ‫ٝرُي‬ ‫ُِ٘ذش‬ ‫اُغذ‬ ‫ٓوبٝٓخ‬ ٖٓ ‫اُزأًذ‬ ‫يجت‬ ‫اُغذ‬ ّ‫أٓب‬ ٖٓ ٙ‫أُيب‬ ‫ؽلخ‬ ‫ًٝزُي‬. 3-ً‫اسفه‬ ‫أو‬ ‫انسذ‬ ‫جسم‬ ‫خالل‬ ‫انتسرب‬ ً‫ف‬ ‫انتحكم‬ ّ‫ثبعزخذا‬ ‫اُزغشة‬ ‫اٗوبص‬ ٠ِ‫ػ‬ َٔ‫اُؼ‬ ْ‫يز‬ ْ‫ص‬ ‫اُزغشة‬ ‫ُذغبة‬ ‫أُؼشٝكخ‬ ‫ثبُطشم‬ ‫اُزغشة‬ ‫دغبة‬ ْ‫يز‬ ‫ديش‬ ‫ُِغذ‬ ٠ٓ‫األٓب‬ ‫اُغطخ‬ ٠ِ‫ػ‬ ‫ؽٔييخ‬ ٝ‫أ‬ ‫اعلِزيخ‬ ٝ‫أ‬ ‫ثالعزيٌيخ‬ ‫ٓٞاد‬ ٖٓ ‫ؽجوخ‬ ‫ثٞػغ‬ ٝ‫أ‬ ‫ُِغذ‬ ْ‫اط‬ ‫جضء‬. 4-‫نهسذ‬ ً‫االوشائ‬ ‫انخثاخ‬ ٠‫األر‬ ‫ُِغذ‬ ٠‫االٗشبئ‬ ‫اُضجبد‬ َٔ‫ٝيش‬: ‫أ‬-‫نهسذ‬ ً‫االجمان‬ ‫انخثاخ‬ ٚ‫رذز‬ ‫روغ‬ ٠‫اُز‬ ‫اُطجوخ‬ ‫ٜٗبيخ‬ ٟٞ‫ٓغز‬ ٖٓ ً‫ا‬‫اثزذاء‬ ٠‫اكو‬ ٟٞ‫ٓغز‬ ‫اػؼق‬ ٠ِ‫ػ‬ ِٚٓ‫ثٌب‬ ‫اُغذ‬ ‫دساعخ‬ ْ‫يز‬ ‫ديش‬ ‫ادزٌبى‬ ٖ‫ػ‬ ‫اُ٘بشئخ‬ ‫أُوبٝٓخ‬ ٟٞ‫ٝه‬ ٙ‫ٝأُيب‬ ‫اُزشثخ‬ ٖٓ ‫اُ٘بشئخ‬ ‫اُذكغ‬ ٟٞ‫ه‬ ‫ٛٔب‬ ٕ‫هٞرب‬ ‫اُغذ‬ ٠ِ‫ػ‬ ‫يإصش‬ ‫ديش‬ ‫االٗضالم‬ ‫عطخ‬ ‫ٓغ‬ ‫ُِغطخ‬ ‫أٌُٞٗخ‬ ‫أُٞاد‬ ‫ٝاُزظبم‬. Fd=Pwl+Pel+Pw2-Pe2 ‫اُذكغ‬ ٟٞ‫ه‬ FR= S.C+W tan ϕ ‫أُوبٝٓخ‬ ٟٞ‫ه‬ Where: Pwl,Pel, Pw2 and Pe2 ٠ُ‫اُزٞا‬ ٠ِ‫ػ‬ ‫اُغذ‬ ‫ٝخِق‬ ّ‫أٓب‬ ‫ٝأُبء‬ ‫اُزشثخ‬ ‫ػـؾ‬ S ‫ُِغذ‬ ٠ِ‫اُغل‬ ٠ٌُِ‫ا‬ ‫اُؼشع‬ C ‫االٗضالم‬ ٙ‫ػ٘ذ‬ ‫يذذس‬ ٟ‫اُز‬ ٟٞ‫أُغز‬ ‫ػ٘ذ‬ ‫اُزشثخ‬ ‫رٔبعي‬
  • 6. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 6 W ٕ‫ٝص‬‫االٗضالم‬ ٟٞ‫ٓغز‬ ٠ِ‫أػ‬ ‫اُزشثخ‬ ϕ ‫االٗضالم‬ ٟٞ‫ٓغز‬ ‫ػ٘ذ‬ ‫ُِزشثخ‬ ٠ِ‫اُذاخ‬ ‫االدزٌبى‬ ‫صاٝيخ‬ ٕ‫ُالرضا‬ ‫أُغججخ‬ ٟٞ‫اُو‬ ‫هغٔخ‬ َ‫ُذبط‬ ً‫ب‬‫ٓغبٝي‬ ٌٕٞ‫ي‬ ٕ‫األٓب‬ َٓ‫ٓؼب‬ ٕ‫كا‬ ‫رُي‬ ٠ِ‫ٝػ‬(‫أُوبٝٓخ‬ ٟٞ‫ه‬)٠ِ‫ػ‬ ‫ُالٜٗيبس‬ ‫أُغججخ‬ ٟٞ‫اُو‬(‫اُذكغ‬ ٟٞ‫ه‬). F.o.s= FR/ Fd ‫ب‬-‫انعازنح‬ ‫انطثقح‬ ‫اتسان‬ ‫ًٔب‬ ‫اُطجوخ‬ ٙ‫ٛز‬ ‫اٗضالم‬ ٍ‫ادزٔب‬ ‫دساعخ‬ ‫كيجت‬ ‫ُِغذ‬ ٠ٓ‫االٓب‬ ٚ‫اُٞج‬ ٠ِ‫أػ‬ ‫عٔيٌخ‬ ‫ػبصُخ‬ ‫ؽجوخ‬ ‫ر٘ليز‬ ‫دبُخ‬ ٠‫ك‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ(5)٠ُ‫ًبُزب‬ ‫ٝرُي‬: Fd=(W1+W2+W3) sin α ‫اُذكغ‬ ٟٞ‫ه‬ FR= C. b+(W1+W2+W3) cos α . tan ϕ ‫أُوبٝٓخ‬ ٟٞ‫ه‬ Where: W1 ‫اُغذ‬ ٠ِ‫أػ‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬ W2 ‫اُغذ‬ َ‫أعل‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬ W3 ‫اُغذ‬ ‫هذٓخ‬ َ‫أعل‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ‫جضء‬ ٕ‫ٝص‬ C ‫اُغذ‬ ٚ‫ٝٝج‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ٖ‫ثي‬ ‫االُزظبم‬ ‫اجٜبد‬ ϕ ‫اُغذ‬ ٚ‫ٝٝج‬ ‫اُؼبصُخ‬ ‫اُطجوخ‬ ٖ‫ثي‬ ‫االدزٌبى‬ ‫صاٝيخ‬ b ‫اُغذ‬ ٚ‫ٝج‬ ٍٞ‫ؽ‬ α ‫صاٝيخ‬‫ُِغذ‬ ٠ٓ‫األٓب‬ ٚ‫اُٞج‬ َ‫ٓي‬ Figure (5) Equilibrium of insulating layer ‫د‬-‫انسذ‬ ً‫نىج‬ ً‫انسطح‬ ‫االوسالق‬
  • 7. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 7 ٍٞ‫أُي‬ ٕ‫ارضا‬ ‫ثذساعخ‬ ‫اُخبطخ‬ ‫ثبُطشم‬ ٚ‫دساعز‬ ٌٖٔ‫ي‬ ٟ‫ٝاُز‬ ‫د‬–‫انماء‬ ‫سطح‬ ً‫ف‬ ‫مفاجئ‬ ‫اوخفاض‬ ‫حذوث‬ ‫عىذ‬ ‫نهسذ‬ ً‫االمام‬ ً‫انىج‬ ‫اتسان‬ ‫ي‬-‫انسذ‬ ‫مه‬ ً‫انخهف‬ ‫انجسء‬ ‫اتسان‬ 1-3-2 Rock fill cofferdams ‫اُذجبسح‬ ‫ًغش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫جبٗجيخ‬ ٍٞ‫ثٔي‬ ٠٘‫رج‬ ٕ‫أ‬ ٌٖٔ‫ي‬ ‫اُذبُخ‬ ٙ‫ٛز‬ ٠‫ٝك‬ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫ث٘بء‬ ٠‫ك‬ ‫االدجبس‬ ‫ًغش‬ ّ‫اعزخذا‬ ٌٖٔ‫ي‬ ٠ُ‫ئ‬ َ‫ط‬ ‫دبدح‬1:1.25ٍ‫اُؼٞاص‬ ّ‫ثبعزخذا‬ ‫اُ٘لبريخ‬ َ‫روِي‬ ‫ٓشاػبح‬ ‫ٓغ‬ ‫أُغبدخ‬ ٖٓ ً‫ا‬‫ًضيش‬ ‫يٞكش‬ ‫ٓٔب‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫أُ٘بعجخ‬(6.) Figure (6) Rock fill cofferdam 1-3-3 Single sheet piles cofferdams ‫ٓلشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫شبئؼخ‬ ٠ٛٝ ‫اُظِت‬ ٝ‫أ‬ ‫اُخشعبٗخ‬ ٝ‫أ‬ ‫اُخشت‬ ٖٓ ٌٕٞ‫ر‬ ‫ٓلشدح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬ ْ‫ص‬ ‫االٗشبء‬ ‫ٓ٘طوخ‬ ٍٞ‫د‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ‫دم‬ ْ‫يز‬ ‫ديش‬ ‫أُبئيخ‬ ٟ‫أُجبس‬ ٠ِ‫ػ‬ ٟ‫اٌُجبس‬ ‫اٗشبء‬ ٠‫ك‬ ّ‫االعزخذا‬ ‫جبكخ‬ ‫ثيئخ‬ ٠‫ك‬ َٔ‫ُِؼ‬ ‫اُغذ‬ َ‫داخ‬ ٖٓ ٙ‫أُيب‬ ‫رلشيؾ‬,‫اُغزبئشيخ‬ ‫اُذٞائؾ‬ ٖٓ ٖ‫صٝجي‬ ٖٓ ‫اُغذ‬ ‫ي٘لز‬ ‫ديش‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫أكويخ‬ ‫ٝدػبٓبد‬ ‫رضجيذ‬ ‫ثأُٞاح‬ ‫ثيٜ٘ٔب‬ ‫أُغبكبد‬ ‫ٝيذلظ‬(7).‫االعزـ٘بء‬ ٌٖٔ‫ي‬ ‫ًٔب‬ ‫اُخِليخ‬ ‫اُزشثخ‬ ٠‫ك‬ ‫اُذبئؾ‬ ‫رضجيذ‬ ٝ ‫األكويخ‬ ‫اُذػبٓبد‬ ٖ‫ػ‬(ٌَ‫ش‬ ‫اٗظش‬8.)
  • 8. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 8 Figure (7) Single sheet piles cofferdams Figure (8) Single sheet pile cofferdam ‫اُغذ‬ ‫ٝخبسط‬ َ‫داخ‬ ٙ‫أُيب‬ ‫ػـؾ‬ َٔ‫رش‬ ٠‫ٝاُز‬ ‫ػِيٜب‬ ‫أُإصشح‬ ٟٞ‫اُو‬ ّٝ‫ُزوب‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ْ‫رظٔي‬ ْ‫ٝيز‬ ٌَ‫ثبُش‬ ‫ٝساد‬ ٞٛ ‫ُٔب‬ ً‫ب‬‫ؽجو‬ ٚ‫دغبث‬ ٌٖٔ‫ي‬ ١‫ٝاُز‬ ‫اُغذ‬ ‫خبسط‬ ‫اُزشثخ‬ ‫ٝػـؾ‬(9)‫ٓشرٌضح‬ ‫اٜٗب‬ ‫ثبػزجبس‬ ‫ٝرُي‬ ‫اُطشين‬ ّ‫ثبعزخذا‬ ‫االسرٌبص‬ ‫ٗوبؽ‬ ‫ػ٘ذ‬ َ‫اُلؼ‬ ‫سدٝد‬ ‫ٝرذغت‬ ‫األكويخ‬ ‫اُشثؾ‬ ‫اُٞاح‬ ٠ِ‫ػ‬ ً‫ب‬‫ثغيط‬ ‫اسرٌبصا‬ ‫أُؼزبدح‬ ‫االٗشبئيخ‬.
  • 9. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 9 Figure (7-9) Distribution of Earth pressure on Cofferdams 1-3-4 Double sheet piles cofferdams ‫ٓضدٝجخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖٓ ‫أُذيطخ‬ ‫اُغذٝد‬ ‫ال‬ ‫كوذ‬ ‫دجضٛب‬ ‫أُطِٞة‬ ‫أٝاُزشثخ‬ ٙ‫أُيب‬ ‫ٓ٘غٞة‬ ‫السرلبع‬ ‫ٗزيجخ‬ ‫ػبُيخ‬ ‫اُخبسجيخ‬ ‫اُؼـٞؽ‬ ٌٕٞ‫ر‬ ‫ػ٘ذٓب‬ ‫اُغزبئش‬ ٖٓ ٖ‫ٓزٞاصيي‬ ٖ‫طلي‬ ‫ر٘ليز‬ ْ‫يز‬ ‫ػ٘ذٛب‬ ‫اُؼـٞؽ‬ ٙ‫ٛز‬ ‫ُٔوبٝٓخ‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫ٝادذ‬ ‫طق‬ ٠‫يٌل‬ ‫اُخشعبٗخ‬ ٝ‫أ‬ ‫اُذجبسح‬ ‫ًغش‬ ٝ‫أ‬ ‫ثبألرشثخ‬ ‫ثيٜ٘ٔب‬ ‫اُلشاؽ‬ ‫َٓء‬ ْ‫يز‬ ْ‫ص‬ ‫ٓؼذٗيخ‬ ٕ‫ثوؼجب‬ ً‫ب‬‫ٓؼ‬ ْٜ‫رضجيز‬ ْ‫يز‬ ‫اُِٞديخ‬ ٍ‫ثبالشٌب‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫اُؼبديخ‬(10)ٝ(11.)
  • 10. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 10 Figure (10) Double sheet pile cofferdam Figure (11) Double sheet piles cofferdams 1-3-5 Cellular cofferdams ‫انمتالصقح‬ ‫انخهىيح‬ ‫انسذود‬ A cellular cofferdam is constructed by driving sheet piles of special shapes to form a series of cells as shown in figure (12). The cells are interconnected to form a watertight wall. These are filled with soils to provide stability against the lateral forces. ‫اُغبثوخ‬ ‫اُغذٝد‬ ‫أٗٞاع‬ ٖٓ ‫ٝٗٞع‬ ٟ‫أ‬ ‫يظِخ‬ ُْٝ َ‫ا‬‫جذ‬ ‫ًجيش‬ ٌَ‫ثش‬ ‫عذ‬ ٠ِ‫ػ‬ ‫اُخبسجيخ‬ ‫اُؼـٞؽ‬ ‫صادد‬ ‫ئرا‬ ٌٕٞ‫يز‬ ٚٗ‫أ‬ ‫ديش‬ ‫االعزبريٌيخ‬ ‫اُ٘بديخ‬ ٖٓ ‫أُضدٝط‬ ٟ‫اُغزبئش‬ ‫اُغذ‬ ٚ‫يشج‬ ٞٛٝ ِٟٞ‫اُخ‬ ‫اُغذٝد‬ ّ‫اعزخذا‬ ْ‫كيز‬
  • 11. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 11 ‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫أُزالطوخ‬ ‫اُخاليب‬ ٖٓ ‫ٓجٔٞػخ‬ ٖٓ.‫أٝأُٞاح‬ ‫ُٞديخ‬ ‫عزبئش‬ ٖ‫ػ‬ ‫ػجبسح‬ ِٟٞ‫اُخ‬ ‫ٝاُغذ‬ ‫ٓ٘بعت‬ ّ‫ثشد‬ ‫ِٓئٜب‬ ْ‫يز‬ ْ‫ص‬ ‫اُغذ‬ ‫ٌٓٞٗخ‬ ‫ثيٜ٘ب‬ ‫كئب‬ َ‫رزذاخ‬ ‫ٓزجبٝسح‬ ‫خاليب‬ ٌٕٞ‫ُز‬ ‫دهٜب‬ ْ‫يز‬ ‫خبطخ‬ ٍ‫أشٌب‬ ‫راد‬ ‫أُطِٞة‬ ٕ‫االرضا‬ ‫ُزذوين‬. Figure (7-12) Cellular cofferdams 1-3-1 -1Types of Cellular Cofferdams There are two types of cellular cofferdams, namely diaphragm type cellular cofferdam and circular type cellular cofferdam. a)Diaphragm Type cellular cofferdam ‫اُـشبئيخ‬ ‫اُغذٝد‬ ‫ٓؼب‬ ‫يشثطٜب‬ ‫ُِغذ‬ ‫ٝاُخبسجيخ‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٠‫ك‬ ‫دائشيخ‬ ‫ٓ٘ذ٘يبد‬ ٖ‫ػ‬ ‫ػجبسح‬ ‫اُـشبئيخ‬ ‫اُخِٞيخ‬ ‫اُغذٝد‬ ‫خبطخ‬ ‫هطغ‬ ‫ثٞاعطخ‬ ‫اُذائشيخ‬ ‫ثبُٔ٘ذ٘يبد‬ ‫رشرجؾ‬ ‫ٓغزوئخ‬ ‫ؿشبئيخ‬ ‫دٞائؾ‬,‫ثذجيجبد‬ ‫اُخاليب‬ ‫ِٓئ‬ ْ‫يز‬ ْ‫ص‬ ٚ‫ػِي‬ ‫أُإصشح‬ ‫األكويخ‬ ٟٞ‫اُو‬ َٔ‫رذ‬ ٠ِ‫ػ‬ ٚ‫هذسر‬ ٠ُ‫ٝثبُزب‬ ‫اُغذ‬ ٕ‫ٝص‬ ‫ُضيبدح‬ ‫ٝرُي‬ ٖ‫خش‬ ّ‫سد‬.‫يجت‬ ‫ًٔب‬ ‫اُزشثخ‬ ‫ػـؾ‬ َ‫ثلؼ‬ ‫اكويخ‬ ٟٞ‫ه‬ ‫ُزُٞذ‬ ‫رج٘جب‬ ٟ‫ٓزٞاص‬ ٌَ‫ثش‬ ّ‫ثبُشد‬ ‫أُزجبٝسح‬ ‫اُخاليب‬ ‫ِٓئ‬ ْ‫يز‬ ٕ‫أ‬ ‫ٓشاػبح‬ ٖٓ ‫اُ٘ٞع‬ ‫ٛزا‬ ‫ٝئزبص‬ ٠‫اُـشبئ‬ ‫اُذبئؾ‬ ٖٓ ‫ٝادذح‬ ‫ٗبديخ‬ ٖٓ ّ‫اُشد‬ ‫ُٞجٞد‬ ‫ٗزيجخ‬ ٠‫اُـشبئ‬ ‫اُجذاس‬ ٠ِ‫ػ‬ ٠‫اُـشبئ‬ ‫اُذبئؾ‬ ٍٞ‫ؽ‬ ‫ثضيبدح‬ ٕ‫االرضا‬ ٠ِ‫ػ‬ ٚ‫هذسر‬ ‫صيبدح‬ ‫ثآٌبٗيخ‬ ‫اُغذٝد‬. This type of cellular cofferdam consists of circular arcs at the inner and outer sides, which are connected by straight diaphragm walls as shown in figure (13). The connection between the curved parts and diaphragms are made by
  • 12. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 12 means of specially fabricated Y- elements. The cofferdam is made from interconnected steel sheet piles. The cells are filled with coarse-grained soils, which increase the weight of the cofferdam and its stability. The leakage of the cofferdam is also reduced. To avoid rupture of the diaphragm due to unequal pressures on the two sides, it is essential to fill all the cells at approximately the same rate. The advantage of the diaphragm type is that the effective width of the cofferdam may be increased easily by lengthening the diaphragm. Figure (13) Diaphragm cellular cofferdams b) Circular Type cellular cofferdam ‫اُذائشيخ‬ ‫اُغذٝد‬ ‫ثخاليب‬ ‫ٓؼب‬ ‫ٓشرجطخ‬ ْ‫اُذج‬ ‫ًجيشح‬ ‫اُذائشيخ‬ ‫اُخاليب‬ ٖٓ ‫ٓجٔٞػخ‬ ٖ‫ػ‬ ‫ػجبسح‬ ‫اُـشبئيخ‬ ‫اُذائشيخ‬ ‫اُغذٝد‬ ‫اطـش‬ ‫دائشيخ‬.ٍ‫األدٔب‬ ‫يٞصع‬ ٟ‫اُز‬ ٟ‫اُذائش‬ ‫ُشٌِٜب‬ ‫ٗزيجخ‬ ‫ثزارٜب‬ ‫ٓغزوِخ‬ ‫اُخاليب‬ ٖٓ ‫خِيخ‬ ًَ ‫ٝرؼزجش‬ ‫ثزارٜب‬ ‫ٓغزوِخ‬ ‫ػِٔيخ‬ ‫خِيخ‬ ًَ ّ‫سد‬ ‫ػِٔيخ‬ َ‫يجؼ‬ ‫ٓٔب‬ ‫اُوششيخ‬ ‫أُ٘شئبد‬ ٠ِ‫ػ‬ ٍ‫األدٔب‬ ‫رٞصيغ‬ ٚ‫يشبث‬ ٌَ‫ثش‬ ٟ‫األخش‬ ِٞ‫ر‬ ‫ٝادذح‬ ‫اُخاليب‬ ّ‫سد‬ ٌٖٔ‫ي‬ ‫ثذيش‬.ٍ‫األدٔب‬ َٔ‫رذ‬ ٠ِ‫ػ‬ ‫اُؼبُيخ‬ ‫ثوذسرٜب‬ ‫رٔزبص‬ ‫اُذائشيخ‬ ‫ٝاُخاليب‬
  • 13. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 13 ‫أًجش‬ ‫ُؼذد‬ ‫الدزيبجٜب‬ً‫ا‬‫ٗظش‬ ‫رٌِلخ‬ ‫ٜٓ٘ب‬ ‫أًضش‬ ‫ٌُٜٝ٘ب‬ ‫اُـشبئيخ‬ ‫اُخاليب‬ ٖٓ ‫أًجش‬ ٌَ‫ثش‬ ‫ػِيٜب‬ ‫اُٞاهؼخ‬ ‫األكويخ‬ ‫أُؼذاد‬ ‫ديش‬ ٖٓ ‫ٝاُزشًيت‬ ‫اُذم‬ ٠‫ك‬ ‫ػبُيخ‬ ‫آٌبٗيبد‬ ٠ُ‫ئ‬ ‫ادزيبجٜب‬ ٠ُ‫ئ‬ ‫ثبإلػبكخ‬ ‫اُذائشيخ‬ ‫اُوطغ‬ ٖٓ ‫أُذسثخ‬ ‫أُبٛشح‬ ‫ٝاُؼٔبُخ‬. It consists of a set of large diameter circular cells interconnected by arcs of smaller diameter. This is shown in Figure (14). The walls of the connecting cells are perpendicular to main circular cell of large diameter. The segmental arcs are joined by special T-pile to the main cell. The circular type of cellular cofferdam is self sustaining, independent of the adjacent circular cells. Each cell can be filled independently. The stability of such cells is much larger as compared with the diaphragm type. The circular type is more expensive as compared to the diaphragm type, because these require more sheet piles and skilled technology for setting and driving the pile. As the diameter of the circular cell is limited by interlock tension, their ability to resist large lateral pressures due to high head is restricted. Figure (14) Circular cellular cofferdams
  • 14. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 14 Problem (1) State the types of cofferdams, indicating the circumstances under which each is most suitable. Solution a)Following are some of the common types of cofferdams (1) Earth fill cofferdam (2) Rock fill cofferdam (3) Single wall cofferdam (4) Double wall cofferdam. (5) Cellular cofferdam. b) Circumstances: (1) Earth fill cofferdam:- The use of this variety is limited in the vicinity where the impervious earth is available and the water depth is shallow with low velocity of flow. This type is not used where there is danger of overtopping of water. (2)Rock fill cofferdam:- These are constructed by placing rock along stream. They can be used for depths of water up to about 3 m and are suitable even in swift waters. These are economical in places where rock is available in plenty. (3)Single wall cofferdam:- This type of cofferdam is suitable when available working space is limited and area enclosed is small. It can be used up to a depth of water equal to 25 m. (4) Double wall cofferdam:- Double wall cofferdams are provided to enclose a larger area. This type is useful where scour problems and space limitations are prevalent. (5) Cellular cofferdam:- These are suitable for dewatering large areas. These can withstand overtopping of water. These types of cofferdams are used in case of bridges with long spans.
  • 15. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 15 1-3-1 -2Design of cellular cofferdams ‫ًا‬‫ال‬‫أو‬-‫االتتذائيح‬ ‫االتعاد‬ ٠ُ‫ًبُزب‬ ٚ‫اسرلبػ‬ ٖٓ ‫ٗغجخ‬ ‫اُغذ‬ ‫ػشع‬ ٕ‫أ‬ ‫ٗلزشع‬ ‫أُضدٝجخ‬ ‫اُِٞديخ‬ ‫اُغزبئش‬ ٖٓ ‫ُِغذ‬ ‫ثبُ٘غجخ‬: B=0.85H ‫اُزبُيخ‬ ‫اُؼالهخ‬ ‫أُزٞعؾ‬ ٚ‫ػشػ‬ ‫يذون‬ ‫ٝثذيش‬ ٌِٚ‫ُش‬ َ‫ب‬‫ٝكو‬ ٚ‫هطبػ‬ ‫اثؼبد‬ ‫رذذد‬ ‫اُخاليب‬ ٝ‫ر‬ ‫ُِغذ‬ ‫ثبُ٘غجخ‬: B=A/2L Where: A ‫اُخاليب‬ ٖٓ ‫أُزٌشس‬ ‫اُجضء‬ ‫ٓغبدخ‬ 2L ‫أُزٌشس‬ ‫اُجضء‬ ‫ٛزا‬ ٍٞ‫ؽ‬ ‫األريخ‬ ‫اُؼالهخ‬ ٖٓ ِٟٞ‫اُخ‬ ‫اُغذ‬ ‫اثؼبد‬ ٠ِ‫ػ‬ ٍٞ‫اُذظ‬ ٌٖٔ‫ي‬ ‫ًٔب‬: B= 0.78 D to 0.875 D Where: D=1.2H ‫اُخِيخ‬ ‫هطش‬ H ِٟٞ‫اُخ‬ ‫اُغذ‬ ‫اسرلبع‬ L ‫أُذٞس‬ ٠ُ‫ئ‬ ‫أُذٞس‬ ٖٓ ‫اُخاليب‬ ٖ‫ثي‬ ‫أُغبكخ‬ ‫َا‬‫ا‬‫حاوي‬:‫انمؤحرج‬ ‫انقىي‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬ ‫ٝرُي‬ ‫أُإصشح‬ ٟٞ‫اُو‬ ٖٓ ٕ‫ٗٞػب‬ ‫ٛ٘بى‬(15)‫ٛٔب‬: ‫أ‬-‫اُخبسجيخ‬ ٟٞ‫اُو‬:‫األٓٞاط‬ ‫ٝػـؾ‬ ٙ‫ٝأُيب‬ ‫ُِزشثخ‬ ٠‫اُجبٗج‬ ‫ٝاُؼـؾ‬ ‫اُغذ‬ ٕ‫ٝص‬ َٔ‫ٝرش‬. ‫ة‬-‫داخِيخ‬ ٟٞ‫ه‬:‫اُغذ‬ َ‫داخ‬ ‫اُزغشة‬ ٟٞ‫ه‬ َٔ‫ٝرش‬ ٠ُ‫ًبُزب‬ ‫اُخِيخ‬ َ‫داخ‬ ٙ‫ُِٔيب‬ ‫اُذش‬ ‫اُغطخ‬ َ‫ٓي‬ ٌٕٞ‫ي‬ ‫ديش‬: ‫اُزظشف‬ ‫دش‬ ٖ‫خش‬ ّ‫سد‬(1٠‫اكو‬:1٠‫سأع‬) ٠‫ؽٔي‬ ٖ‫خش‬ ّ‫سد‬(2٠‫أكو‬:1٠‫سأع‬) ‫اُذيجبد‬ ْ‫ٗبػ‬ ّ‫سد‬(3٠‫اكو‬:1٠‫سأع‬). ‫َا‬‫ا‬‫حانخ‬:‫نهسذ‬ ‫انسالمح‬ ‫اختثاراخ‬ ٠‫األر‬ َٔ‫رش‬ ٠‫ٝاُز‬ ُٚ ‫اُغالٓخ‬ ‫اخزجبساد‬ ٠‫ك‬ ‫ًبكيخ‬ ٕ‫أٓب‬ ‫ٓؼبٓالد‬ ‫اُغذ‬ ‫يذون‬ ٕ‫أ‬ ‫يجت‬: ‫أ‬-‫االوسالق‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬ Check against sliding can be calculated as follow:
  • 16. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 16 Where: W=B {(H-H1) γT+H1 γsub} ٕ‫ٝص‬‫اُخِيخ‬ َ‫داخ‬ ‫اُزشثخ‬ Pw= 0.5γw H2 ‫أُبئيخ‬ ‫أُغذخ‬ ‫ٗبديخ‬ ٖٓ ٙ‫أُيب‬ ‫ػـؾ‬ ‫ٓذظِخ‬ PA=0.5γsub Ka H2² ٍ‫اُلؼب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬ Pp= Ppˋ+Pw1 ّٝ‫أُوب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬+‫ُِغذ‬ ٠ِ‫اُذاخ‬ ٚ‫اُٞج‬ ‫ٗبديخ‬ ٖٓ ٙ‫أُيب‬ Ppˋ=0.5γsub Kp H4² ‫اُغذ‬ ٚ‫ُٞج‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٖٓ ّٝ‫أُوب‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ٓذظِخ‬ Pw1= 0.5γw H3 2 ‫ُِغذ‬ ‫اُذاخِيخ‬ ‫اُ٘بديخ‬ ٖٓ ٙ‫أُيب‬ ‫ػـؾ‬ ‫ٓذظِخ‬ λ =0.5 for smooth rock, ‫اُغذ‬ ‫ػِيٜب‬ ‫أُشرٌض‬ ‫اُزشثخ‬ ٝ ‫اُغذ‬ َ‫داخ‬ ‫اُزشثخ‬ ٖ‫ثي‬ ‫االدزٌبى‬ َٓ‫ٓؼب‬ λ = tan ϕ for other soil Figure (15) Forces affected on cellular cofferdams ‫ب‬-‫االوقالب‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬ Check against overturning can be calculated by taking a moment about point A, as follow: Where: MR =Resistance moment 50.125.1 W. =.S.   pAW pPP F  50.33=.S.  O R M M F
  • 17. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 17 MO= Overturning Moment ‫د‬-‫األساش‬ ‫ترتح‬ ً‫ف‬ ‫االوهيار‬ ‫ضذ‬ ‫انسالمح‬ ‫اختثار‬ Factor of safety can be calculated as follow: Where: qult ٠‫ششيط‬ ‫ألعبط‬ ٠‫االهظ‬ َ‫اُزذٔي‬ ‫جٜذ‬ ٠ٛٝ ٟ‫األخش‬ ‫االخزجبساد‬ ٖٓ ‫ٓجٔٞػخ‬ ‫رٞجذ‬ ‫ًٔب‬: ‫د‬-‫اُغذ‬ ‫ٓذٞس‬ ‫ػ٘ذ‬ ٠‫اُشأع‬ ‫ثبُوض‬ ‫االٜٗيبس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬ ٙ-‫االعبط‬ ‫ٝرشثخ‬ ّ‫اُشد‬ ٖ‫ثي‬ ٠‫دجيج‬ ٍ‫اٗلظب‬ ‫دذٝس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬ ٝ-٠ِ‫اُذاخ‬ ّ‫اُشد‬ ٠ِ‫ػ‬ ‫اُخبسجيخ‬ ‫ُِغزبئش‬ ‫اٗضالم‬ ‫دذٝس‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬ ‫ص‬-٠ِ‫اُذاخ‬ ‫اُ٘ذش‬ ‫ػذ‬ ‫اُغذ‬ ‫عالٓخ‬ ‫اخزجبس‬ Problem (2) Design the cofferdam shown in the figure below: 332 . = 3 1 4 1R HP H P BW M wp  33 P= 2 wo H P H M a 50.20.2 /6/ =. 2 b.c   BMBW q F O ult
  • 18. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 18 Solution B=0.85 H = 0.85x20=17m Where the fill is fine particles, so the inclination of saturation line =3:1 H3=20-17/3=14.34 m H1=20-8.5/3=17.16m ka=(1-sin35°)/(1+sin35°) = 0.27 kp=3.69 PA=0.5γsub Ka H2² = 0.5x10x0.27x8²= 86.4kN, ya=8/3=2.67m Pw= 0.5γw H2 = 0.5x10x20²=2000 kN, y1= 20/3=6.67m Ppˋ=0.5γsub Kp H4² = 0.5x10x3.69x5²=461.25kN, yp=5/3=1. 67m Pw1= 0.5γw H3 2 =0.5 x10 x 14.34²= 1028.178kN, y2=4.78m Pp= Ppˋ+Pw1 = 461.25+1028.178=1489.428kN W=B {(H-H1) γT+H1 γsub}=17{ (20-17.16)x18+17.16x 8}=3202.8kN Check against sliding W=3202.8kN λ = tan ϕ=tan35°=0.7 50.125.1 W. =.S.   pAW pPP F  safe x F 50.125.175.3 42.14894.862000 7.08.3202 =.S.  
  • 19. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 19 Check against overturning: Check against overturning can be calculated by taking a moment about point A. =3202.8x8.5+461.25x1.67+1028.178x4.78 =32908.77 kN.m = 2000x6.67+86.4x2.67=13570.68kN.m F.S.=32908.77/13570.68=2.42<3 unsafe Take B=20m, B/2 =10 m W=B {(H-H1) γT+H1 γsub}=20{ (20-17.16)x18+17.16x 8}=3768kN MR=3768x10+461.25x1.67+1028.178x4.78 =43364.97 kN.m F.S.=43364.97/13570.68=3.2 safe ٖٓ ٕ‫األٓب‬ َٓ‫ٓؼب‬ ‫هئخ‬ ٖ‫ػ‬ ‫ثبُزؼٞيغ‬ ‫ػٌغيخ‬ ‫ثطشيوخ‬ َ‫اُذ‬ ٌُٖٔٔ‫ا‬ ٖٓ3:3.5‫أُؼبدُخ‬ ٠‫ك‬ ‫اُزؼٞيغ‬ ْ‫ص‬ ‫اُغذ‬ ‫ػشع‬ ‫هئخ‬ ٠ِ‫ػ‬ ٍٞ‫ُِذظ‬. W=B {(H-H1) γT+H1 γsub}=B{ (20-17.16)x18+17.16x 8}=188.4B W.B/2= (188.4B).B/2=94.2B² MR= 94.2B²+5684.97 3.25= 94.2B²+5684.97/13570.68 B=20.34 m ≈20.5m 50.33=.S.  O R M M F 332 . = 3 1 4 1R HP H P BW M wp  33 P= 2 wo H P H M a 25.3=.S.  O R M M F 78.4178.102867.125.461 2 . =R xx BW M 
  • 20. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 20 Check on soil stresses under the cofferdam MT=MR-Mo=94.2x20.5²+5684.97-13570.68=31701.84 kN.m W=188.4B=188.4x20.5=3862.2kN xˋ=MT/W =31701.84/3862.2=8.2 m xˋ: ‫اُغذ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٟٞ‫ُِو‬ ‫أُذظِخ‬ ‫رأصيش‬ ‫ٗوطخ‬ e=B/2- xˋ=20.5/2-8.2=1.75m e : ‫اُغذ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٟٞ‫ُِو‬ ‫أُذظِخ‬ ‫رأصيش‬ ‫ٝٗوطخ‬ ‫اُغذ‬ ‫ٓشًض‬ ٖ‫ثي‬ ‫أُغبكخ‬ ٠ٛ F1,2 : ‫اُغذ‬ َ‫أعل‬ ‫االجٜبداد‬ F1=3862.2/20.5 (1+ (6x1.75)/20.5)=284.9 kN/m² F2=3862.2/20.5(1-(6x1.75)/20.5)=91.9 kN/m²>0.0 ok ) 6 1(=1,2 B e B W F 
  • 21. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 21 2-Braced Cuts َ‫ٓض‬ ‫اُزذزيخ‬ ‫اُج٘يخ‬ ‫ٝخطٞؽ‬ ‫اُجذسٝٓبد‬ ‫اٗشبء‬ ٍ‫اػٔب‬ ّٝ‫ُض‬ ‫اُذلش‬ ٍ‫ثأػٔب‬ ّ‫اُويب‬ ٠‫اُٜ٘ذع‬ َٔ‫اُؼ‬ ٠‫يغزذػ‬ ‫ُِٔٞاطلبد‬ ً‫ب‬‫ٝكو‬ ٍ‫األػٔب‬ ّ‫الرٔب‬ ‫اُذلش‬ ‫ٛزا‬ ‫جٞاٗت‬ ‫ع٘ذ‬ ّ‫يغزِض‬ ‫ٓٔب‬ ٠‫ٝاُظذ‬ ‫ٝاُظشف‬ ‫ٝاٌُٜشثبء‬ ٙ‫أُيب‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ّ‫ثبعزخذا‬ ‫اُذلش‬ ‫جٞاٗت‬ ْ‫رذػي‬ ْ‫يز‬ ‫ديش‬ ْ‫أُذػ‬ ٝ‫أ‬ ‫أُغ٘ٞد‬ ‫ثبُذلش‬ ‫يؼشف‬ ‫ثٔب‬ ‫أُطِٞثخ‬ ‫ٓخزِلخ‬ ‫ألعبُيت‬ ً‫ب‬‫ٝكو‬ ‫أُؼذٗيخ‬ ‫اُغزبئش‬ ٝ‫أ‬. 2-1Using of Braced Cuts Braced cut is used for different purposes. 1-It is used to resist the lateral pressure. ‫اُجبٗجيخ‬ ‫اُؼـٞؽ‬ ‫ٓوبٝٓخ‬ 2-It provides safety to the construction work ‫اإلٗشبء‬ ‫أص٘بء‬ ٍ‫األػٔب‬ ٖ‫رأٓي‬. 3-It enables deep excavation. ‫اُؼٔين‬ ‫اُذلش‬ ٍ‫ثأػٔب‬ ّ‫اُويب‬ ٖٓ ٖ‫اُزٌٔي‬ 2-3 Types of Braced Cuts 1-Vertical Timber sheeting ‫سأعيخ‬ ‫خشجيخ‬ ‫عزبئش‬ 2- Steel Sheet Piles ‫ٓؼذٗيخ‬ ‫ُٞديخ‬ ‫عزبئش‬ 3-Soldier Beams ْ‫اُزذدػي‬ ‫ًٔشاد‬ 4- Tie Backs ‫اُخِليخ‬ ‫األسثطخ‬ 2-3-1 Vertical Timber Sheeting ٖٓ ‫ثغٔي‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ٖٓ ‫عزبسح‬ ‫رشًيت‬ ْ‫يز‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ٠‫ك‬8٠ُ‫ئ‬10ٍٞ‫د‬ ‫ر٘ليزٛب‬ ْ‫يز‬ ٠‫ٝاُز‬ ْ‫ع‬ ٠‫اُظذ‬ ‫اُظشف‬ ‫خ٘بدم‬ ‫ع٘ذ‬ ٍ‫ًأػٔب‬ ‫اُظـيشح‬ ‫أُششٝػبد‬ ٠‫ك‬ ّ‫االعزخذا‬ ‫شبئؼخ‬ ٠ٛٝ َٔ‫اُؼ‬ ‫ٓٞهغ‬ ٠ُ‫ئ‬ َ‫رظ‬ ‫ألػٔبم‬ ‫ٝاُـبص‬ ٙ‫ٝأُيب‬2.5‫ٓزش‬.ٍٞ‫د‬ ‫رِزق‬ ‫خشجيخ‬ ْ‫ثوٞائ‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ْ‫رذػي‬ ْ‫يز‬ ‫ًٔب‬ ‫ٝرُي‬ ‫ٓبئِخ‬ ٝ‫أ‬ ً‫ب‬ٓ‫رٔب‬ ‫أكويخ‬ ٌٕٞ‫ر‬ ٠‫ٝاُز‬ ‫ػٞاسع‬ ٝ‫أ‬ ‫دػبٓبد‬ ٠ُ‫ئ‬ َٔ‫اُذ‬ َ‫ر٘و‬ ٠‫ٝاُز‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬ ٞٛ ‫ًٔب‬(16.)
  • 22. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 22 Figure (16) Vertical Timber sheeting 2-3-2 Steel Sheet Piles ٍٞ‫اُٞط‬ ‫ٝثؼذ‬ ‫اُز٘ليز‬ ‫ٓٞهغ‬ ٍٞ‫د‬ ‫اُزشثخ‬ ٠‫ك‬ ً‫ب‬‫ٓؼ‬ ‫ٓؼشوخ‬ ‫ٓؼذٗيخ‬ ‫ُٞديخ‬ ‫عزبئش‬ ‫دم‬ ْ‫يز‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ٠‫ك‬ ٖٓ ٌٕٞ‫ر‬ ٠‫ٝاُز‬ ‫اُذػبٓبد‬ ٝ ‫اُظِت‬ ٖٓ ‫أُظ٘ٞػخ‬ ‫األكويخ‬ ‫اُؼٞاسع‬ ‫رضجيذ‬ ْ‫يز‬ ‫اُذلش‬ ٠‫ك‬ ٖ‫ٓؼي‬ ‫ُؼٔن‬ ٍ‫ثبألشٌب‬ ‫ٓٞػخ‬ ٞٛ‫ًٔب‬ ‫ٝرُي‬ ‫أُطِٞة‬ ‫ُِؼٔن‬ ٍٞ‫اُٞط‬ ٠‫دز‬ ‫ٝرُي‬ ْ‫ُِزذػي‬ ‫اُخشت‬ ٝ‫أ‬ ‫اُظِت‬(17) ٝ(18. ) Figure (17) Steel sheet piles
  • 23. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 23 Figure (18) Steel sheet piles Design of Steel sheet pile • The sheet pile can be calculated as continuous beam resting on the wales, so the sheet pile can be designed/m • The Wales must be designed as continues beam resting on the struts, so the reaction on the Wales can be calculated • With the reaction in the struts, the struts can be designed as compression member. The moment in the strut due to its own weight and buckling must be taken into consideration. 2-3-3 Soldier Beam ٠ِ‫ػ‬ ‫االٗشبء‬ ‫ٓٞهغ‬ ٍٞ‫د‬ ‫دهٜب‬ ْ‫يز‬ ‫ارش‬ ‫دشف‬ ٌَ‫ش‬ ٠ِ‫ػ‬ ‫دذيذيخ‬ ‫خٞاصين‬ ٖ‫ػ‬ ‫ػجبسح‬ ْ‫اُزذػي‬ ‫ًٔشاد‬ ٖٓ ‫ٓغبكبد‬1.5:2.5ٖ‫ثي‬ ‫اُزجٜيض‬ ‫عبثوخ‬ ‫ثالؽبد‬ ٝ‫أ‬ ‫خشجيخ‬ ‫اُٞاح‬ ‫ٝػغ‬ ْ‫يز‬ ‫اُذلش‬ ّ‫روذ‬ ‫ٝٓغ‬ ‫ٓزش‬ ٌَ‫ثبُش‬ ‫ًٔب‬ ‫أكويخ‬ ‫ٝدػبٓبد‬ ‫ػٞاسع‬ ‫رشًيت‬ ْ‫يز‬ ْ‫ص‬ ‫اُذذيذيخ‬ ‫اُخٞاصين‬(19).ٌٕٞ‫ي‬ ‫اُذبُخ‬ ٙ‫ٛز‬ ٠‫ٝك‬ َ‫ب‬‫ثغيط‬ ‫رشرٌضاسرٌبصا‬ ٠‫ٝاُز‬ ‫اُزجٜيض‬ ‫عبثوخ‬ ‫اُجالؽبد‬ ٝ‫أ‬ ‫اُخشجيخ‬ ‫األُٞاح‬ ٠ِ‫ػ‬ ‫ٓجبششح‬ ‫ٓإصش‬ ‫اُزشثخ‬ ‫ػـؾ‬ ‫ثغيطخ‬ ‫ًٔشاد‬ ‫أٜٗب‬ ٠ِ‫ػ‬ ٠‫األكو‬ ٙ‫االرجب‬ ٠‫ك‬ ‫رظٔئٜب‬ ْ‫يز‬ ٠ُ‫ٝثبُزب‬ ‫اُذذيذيخ‬ ْ‫اُزذػي‬ ‫ًٔشاد‬ ٠ِ‫ػ‬ ‫االسرٌبص‬.‫عبثوخ‬ ‫اُجالؽبد‬ َ‫كؼ‬ ‫سد‬ َٔ‫رذ‬ ‫سأعيخ‬ ‫ًٔشاد‬ ‫أٜٗب‬ ٠ِ‫ػ‬ ‫رظٔئٜب‬ ْ‫يز‬ ْ‫اُزذػي‬ ‫ًٔشاد‬ ‫ثي٘ٔب‬ ‫أٜٗب‬ ٠ِ‫ػ‬ ‫رظٔئٜب‬ ْ‫يز‬ ٠‫اُز‬ ‫اُذػبٓبد‬ ٠ُ‫ئ‬ َٔ‫اُذ‬ َ‫ر٘و‬ ٠‫ٝاُز‬ ‫األكويخ‬ ‫اُؼٞاسع‬ ٠ِ‫ػ‬ ‫ٝرشرٌض‬ ‫اُزجٜيض‬ ٠‫اُزار‬ ‫ٝصٜٗب‬ ٖ‫ػ‬ ‫اُ٘بشئ‬ ‫االٗذ٘بء‬ ّ‫ػض‬ ٠ُ‫ئ‬ ‫ثبالػبكخ‬ ‫األكويخ‬ ‫اُؼٞاسع‬ َ‫كؼ‬ ‫سد‬ ‫رأخز‬ ‫ػـؾ‬ ‫ػ٘بطش‬ ‫االٗجؼبط‬ ‫ٝهئخ‬.
  • 24. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 24 Figure (19) Soldier Beam 2-3-4 Tie Backs ‫األكويخ‬ ‫اُؼٞاسع‬ ّ‫اعزخذا‬ ‫يظجخ‬ ‫ثذيش‬ ‫ًجيش‬ ٌَ‫اُذلشثش‬ ‫ػشع‬ ‫يضيذ‬ ‫ػ٘ذٓب‬ ‫اُطشيوخ‬ ٙ‫ٛز‬ ّ‫رغزخذ‬ ‫دلش‬ ْ‫يز‬ ‫ديش‬ ‫اُغبٗذ‬ ‫اُذبئؾ‬ ْ‫ُزذػي‬ ٠‫خِل‬ ‫ثشثبؽ‬ ‫اعزجذاُٜب‬ ْ‫يز‬ ‫ديش‬ ً‫ب‬‫اهزظبدي‬ ‫ٌِٝٓق‬ ‫طؼت‬ ‫ٝاُذػبٓبد‬ ٞٛ‫ًٔب‬ ‫ٝرُي‬ ‫اُذلشح‬ َ‫داخ‬ ‫خشعبٗخ‬ ‫ٝطت‬ ‫رغِيخ‬ ‫دذيذ‬ ٍ‫ادخب‬ ْ‫يز‬ ْ‫ص‬ ‫اُغبٗذ‬ ‫اُذبئؾ‬ ‫خِق‬ ‫ٓبئِخ‬ ‫دلشح‬ ٌَ‫ثبُش‬ ‫ٓٞػخ‬(20.) Figure (20) Tie Back
  • 25. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 25 2-4 Lateral Earth Pressure Distribution on Braced Cuts ‫اُزوِيذيخ‬ ‫اُطشم‬ ٍ‫خال‬ ٖٓ ٚ٘‫رؼيي‬ ٌٖٔ‫ي‬ ٟ‫ٝاُز‬ ‫اُزشثخ‬ ‫ػـؾ‬ ٞٛ ‫اُغ٘ذ‬ ‫دبئؾ‬ ٠ِ‫ػ‬ ‫أُإصشح‬ ٍ‫األدٔب‬ ٌَ‫ثبُش‬ ‫أُٞػذخ‬ ‫اُزوشيجيخ‬ ْ‫اُوي‬ ٍ‫خال‬ ٖٓ ٝ‫أ‬ ‫أُؼشٝكخ‬(21)ٍ‫خال‬ ٖٓ ‫ػِيٜب‬ ٍٞ‫اُذظ‬ ْ‫ر‬ ٠‫ٝاُز‬ ‫ٝدوِيخ‬ ‫ٓؼِٔيخ‬ ‫رجبسة‬. Figure (21) Lateral Earth Pressure on Braced Cuts Problem (3) A long trench is excavated in medium dense sand for the foundation of a multistory building. The sides of the trench are supported with sheet pile walls fixed in place by struts and Wales as shown in the Figure below. The soil properties are: γ= 18.5 kN/m3 , c = 0 and ϕ = 38° Determine: (a) The pressure distribution on the walls with respect to depth. (b) Strut loads. The struts are placed horizontally at distances L = 4 m center to center. (c) The maximum bending moment for determining the pile wall section. (d) The maximum bending moments for determining the section of the wales.
  • 26. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 26 Solution (a) The pressure distribution on the walls Ka = tan2 (45 - ϕ/2) Pa = 0.65 γ H Ka = 0.65 x 18.5 x 8 tan2 (45 - 38/2) = 23 kN/m2
  • 27. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 27 (b) Strut loads The reactions at the ends of struts A, B and C are represented by RA, RB and Rc respectively. For reaction RA , take moments about B. RA x3 - 4x23x (4/2) = 0 RA = 61.33 kN RB1 = 23 x 4-61.33 = 30.67 kN Due to the symmetry of the load distribution, RB1 = RB2 = 30.67 kN, and RA = Rc = 61.33 kN. Now the strut loads are (for L - 4 m) Strut A, PA = 61.33 x 4 - 245 kN Strut B, PB = (RBl + RB2 ) x 4 = 61.34 x 4 ≈ 245 kN Strut C, Pc = 245 kN. (c) Moment of the pile wall section To determine moments at different points it is necessary to draw a diagram showing the shear force distribution as shown in the figure below MA = 0.5 x 1 x 23 = 1 1.5 kN. m Mc = 0.5 x 1 x 23 = 1 1.5 kN. m Mm =1.33x30.67-(23x1.33²/2)= 20.4 kN. m
  • 28. ‫اُشؤف‬ ‫ػجذ‬ ‫اُغيذ‬ ٖٓ‫ٓإ‬ ‫د‬-‫األصٛش‬ ‫ٛ٘ذعخ‬ 28 Mn = 1.33x30.67-(23x1.33²/2)= 20.4 kN. m The maximum moment = 20.4 kN.m A suitable section of sheet pile can be determined (d) Maximum moment for Wales The bending moment equation for Wales is Mmax=RL2 /8 Where: R = maximum strut load = 245 kN L = spacing of struts = 4 m Mmax= 245x42 /8=490 kN.m A suitable section for the Wales can be determined 2-4Check to avoid heave Braced cuts in clay become unstable as a result of heaving of the bottom of the excavation. The bottom of a cut in sand is generally stable. When the water table is encountered, the bottom of the cut is stable as long as the water level inside the cut (excavation) is higher than the ground water table. In case dewatering is needed the factor of safety, against up lift should be checked. ‫اُذلش‬ ‫هبع‬ ٠‫ك‬ ‫اٗزلبر‬ ‫ُذذٝس‬ ‫ٗزيجخ‬ ‫ٓغزوش‬ ‫ؿيش‬ ‫يظجخ‬ ٕ‫أ‬ ٌُٖٔٔ‫ا‬ ٖٓ ‫اُطي٘يخ‬ ‫اُزشثخ‬ ٠‫ك‬ ‫أُغ٘ٞد‬ ‫اُذلش‬ ‫أُطِٞة‬ ٕ‫األٓب‬ ‫ُزذوين‬ ‫رأًيذيخ‬ ‫دغبثبد‬ َٔ‫ثؼ‬ ّ‫اُويب‬ ٠‫يغزذػ‬ ‫ٓٔب‬ ‫جٞكيخ‬ ٙ‫ٓيب‬ ‫ٝجٞد‬ ‫دبُخ‬ ٠‫ك‬ ‫ٝرُي‬(‫ًٔب‬ ‫اُجٞكيخ‬ ٙ‫أُيب‬ ‫رخليغ‬ ‫ٓذبػشح‬ ٠‫ك‬ ٚ‫ششد‬ ‫عجن‬).