Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Data Representation Represent! How information is stored in a Computer System With our resident Binary enthusiast … Brian ...
<ul><li>A  computer is a two state machine  (using only 1’s and 0’s to represent digits ‘on’ and ‘off’  </li></ul><ul><li>...
<ul><li>Use 1’s and 0’s to represent decimal numbers </li></ul>Binary... only ten people know it no ... wait ... <ul><li>A...
Are you getting it yet? <ul><li>How many different numbers can you represent with? </li></ul><ul><ul><li>4 bits? </li></ul...
<ul><li>Taking an example using 8 bits </li></ul><ul><li>256 individual combinations we can make </li></ul>What does it al...
<ul><li>We want to represent the number  83  in binary </li></ul><ul><li>(there’s a couple of ways of working it out) </li...
Ok idiots, give this a go <ul><li>Convert these from binary to decimal </li></ul><ul><li>0110  0111 </li></ul><ul><li>1110...
Challenge – 12 bits <ul><li>Convert these from binary to decimal </li></ul><ul><li>1001 0110  0111 </li></ul><ul><li>0101 ...
Right, so that’s easy <ul><li>Not great, it doesn’t let us represent </li></ul><ul><li>Negative Numbers </li></ul><ul><li>...
Two’s Compliment <ul><li>Allows us to represent negative numbers </li></ul><ul><li>Need a way of recognising if a number i...
Remember! <ul><li>To check which number representation we are using! If a question doesn’t tell you choose one yourself an...
The good thing! <ul><li>When we are trying to check what a number is in decimal we just repeat the process! (that’s why tw...
More good bits <ul><li>We used to use a signed bit to represent a negative number </li></ul><ul><li>This reduce the number...
<ul><li>23.75 = 0.2375 * 10 ^ 2 </li></ul><ul><li>2375 –  the mantissa </li></ul><ul><li>2 –  the exponent </li></ul><ul><...
Real Numbers <ul><li>Number 13.75 </li></ul><ul><li>8  4  2  1  0.5  0.25  0.125  0.0625  </li></ul><ul><li>1  0  1  1  1 ...
Increasing the M and the E <ul><li>Increasing the mantissa </li></ul><ul><li>Giving more bits to represent a number would ...
Increasing the M and the E <ul><li>Increasing the exponent </li></ul><ul><li>This means that the range of the numbers is i...
Questions and Reading <ul><li>From the Walsh Book Read </li></ul><ul><li>Pages – 2 to 9 </li></ul><ul><li>Questions (on pa...
Data Representation How text is represented/sent in a computer system ASCII Code UNICODE Memory Sizes Im the greatest Danc...
<ul><li>A  byte  is space which is used to store a  character ( 8 bits ) </li></ul><ul><li>All the characters which can be...
What does it all mean? <ul><li>What’s in a bit? </li></ul><ul><li>A  1  or a  0 </li></ul>How should you remember it? <ul>...
Memory Sizes <ul><li>Reminder </li></ul><ul><li>Big </li></ul><ul><li>Boys </li></ul><ul><li>Kicked </li></ul><ul><li>My <...
Memory Sizes <ul><li>Bit <-  smallest </li></ul><ul><li>Byte </li></ul><ul><li>Kilobyte </li></ul><ul><li>Megabyte </li></...
<ul><li>A  bit  is the smallest unit of memory </li></ul><ul><li>There are  8  bits in a byte </li></ul><ul><li>There are ...
Calculating Memory Sizes <ul><li>We don’t say our broadband speed is </li></ul><ul><li>33 million bits per second </li></u...
Calculating Memory Sizes <ul><li>bits / 8 </li></ul><ul><li>bytes / 1024 </li></ul><ul><li>kilobytes / 1024 </li></ul><ul>...
ASCII Code <ul><li>ASCII is a 7 bit code which allows 128 characters </li></ul><ul><li>Extended ASCII allows 8 bits or 256...
UNICODE <ul><li>What about the CODES that ASCII cannot represent? The Japanese for example </li></ul><ul><li>UNICODE is a ...
ASCII Code <ul><li>65 in decimal = A </li></ul><ul><li>66 = B </li></ul><ul><li>67 = C  and so on and so forth </li></ul><...
Data Representation Graphics How are Graphics stored in a Computer System Calculating memory requirements These glasses ar...
<ul><li>Graphics are made up of tiny dots called PIXELS each requiring  one bit </li></ul><ul><li>Picture Elements  49 bit...
Resolution <ul><li>A screen display of 800 x 600 is smaller is resolution  </li></ul><ul><li>1024 x 768 is higher resoluti...
Resolution <ul><li>A screen display of 800 x 600 is smaller is resolution  </li></ul><ul><li>1024 x 768 is higher resoluti...
Bit Mapped <ul><li>Think about Paint </li></ul><ul><li>When you draw a shape on top of another it rubs out anything on the...
Vector Graphics <ul><li>Keeps shapes as separate objects  </li></ul><ul><li>Saves attributes of objects rather than all pi...
Backing Storage Requirements This image of screech measures 2 inches by 2 inches. It has a resolution of 80 dpi using 256 ...
Your Turn This idiots picture measures 3 inches by 2 inches It has a resolution of 150 dots per inch. It uses TRUE COLOUR ...
Data Representation The need for Compression Different methods of Compression Compress Yourself!
Data Compression <ul><li>Compression simply means reducing the size of a file in order to save some space </li></ul><ul><l...
Lossless Compression <ul><li>Means that none of the original data is lost </li></ul><ul><li>Counting repeating pixels is o...
Lossy Compression <ul><li>Means you sacrifice some data to reduce the file size </li></ul><ul><li>Using complex mathematic...
Advantages of Compression <ul><li>Bit maps use up a lot of backing storage </li></ul><ul><li>Compression saves a lot of it...
Disadvantages of Compression <ul><li>If Lossy compression is used then detail may be lost from the images </li></ul><ul><l...
And here it ends <ul><li>That’s everything in Section 1: Data Representation </li></ul><ul><li>What you need to do now: </...
Upcoming SlideShare
Loading in …5
×

[1] Data Representation

Unit 1 Data Representation from Computer Systems Unit of Higher Computing

  • Login to see the comments

[1] Data Representation

  1. 1. Data Representation Represent! How information is stored in a Computer System With our resident Binary enthusiast … Brian Sup Homies! only 10 people understand binary Mr McAlpine Hamilton Grammar School
  2. 2. <ul><li>A computer is a two state machine (using only 1’s and 0’s to represent digits ‘on’ and ‘off’ </li></ul><ul><li>Represented using voltage ( 1 – 5 volts is ON! 0 volts … surprise OFF!) </li></ul><ul><li>Binary System 1’s and 0’s </li></ul><ul><li>To + - * / fewer rules need to be built into processor </li></ul><ul><li>Drop in voltage - NO EFFECT </li></ul><ul><li>Easy to represent two stages in storage devices (presence of pits on a CD-ROM) </li></ul>Binary... Why do computers use it?
  3. 3. <ul><li>Use 1’s and 0’s to represent decimal numbers </li></ul>Binary... only ten people know it no ... wait ... <ul><li>A BIT (1 OR 0) is the smallest unit of memory in a computer </li></ul><ul><li>1 bit – 1 or 0 ( two different numbers ) </li></ul><ul><li>2 bits – 00, 01, 10, 11 ( four numbers ) </li></ul><ul><li>3 bits – 000, 001, 010, 011, 100, 101, 110, 111 – ( 8 different numbers ) </li></ul>
  4. 4. Are you getting it yet? <ul><li>How many different numbers can you represent with? </li></ul><ul><ul><li>4 bits? </li></ul></ul><ul><ul><li>5 bits? </li></ul></ul><ul><ul><li>6 bits? </li></ul></ul><ul><ul><li>8 bits? </li></ul></ul><ul><li>Can easily work it out by … </li></ul><ul><li>Number of bits ^ 2 </li></ul>
  5. 5. <ul><li>Taking an example using 8 bits </li></ul><ul><li>256 individual combinations we can make </li></ul>What does it all mean? <ul><li>128 64 32 16 8 4 2 1 </li></ul>0 0 0 0 0 0 0 0 <ul><li>Lowest number we can represent </li></ul>1 1 1 1 1 1 1 1 <ul><li>Highest number we can represent </li></ul><ul><li>We simply add up the numbers with a 1 </li></ul><ul><li>128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 </li></ul>
  6. 6. <ul><li>We want to represent the number 83 in binary </li></ul><ul><li>(there’s a couple of ways of working it out) </li></ul>the other way around <ul><li>128 64 32 16 8 4 2 1 </li></ul>0 (coz 128 don’t fit!) 1 ( 64 fits, leaves 19 ) 0 1 (leaves 3 ) 0 0 Gives us 1 ( 1 left) 1 0 1 0 1 0 0 1 1
  7. 7. Ok idiots, give this a go <ul><li>Convert these from binary to decimal </li></ul><ul><li>0110 0111 </li></ul><ul><li>1110 0011 </li></ul><ul><li>0101 0110 </li></ul><ul><li>1010 1100 </li></ul><ul><li>Convert these decimals to binary </li></ul><ul><li>255 </li></ul><ul><li>84 </li></ul><ul><li>172 </li></ul><ul><li>4 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul>
  8. 8. Challenge – 12 bits <ul><li>Convert these from binary to decimal </li></ul><ul><li>1001 0110 0111 </li></ul><ul><li>0101 1110 0011 </li></ul><ul><li>1011 0101 0110 </li></ul><ul><li>1101 1010 1100 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul>
  9. 9. Right, so that’s easy <ul><li>Not great, it doesn’t let us represent </li></ul><ul><li>Negative Numbers </li></ul><ul><li>Fractions of numbers </li></ul><ul><li>Two’s Compliment </li></ul><ul><li>Floating Point Representation </li></ul>
  10. 10. Two’s Compliment <ul><li>Allows us to represent negative numbers </li></ul><ul><li>Need a way of recognising if a number is negative </li></ul><ul><li>Two’s Compliment does thus </li></ul><ul><li>Take positive binary number 0000 1010 +10 </li></ul><ul><li>Invert all bits 1111 0101 </li></ul><ul><li>ADD 1 ( 1 + 1 = 0, carry over) 1111 0110 -10 </li></ul><ul><li>Anyone work out how you know if it’s a negative number? </li></ul>
  11. 11. Remember! <ul><li>To check which number representation we are using! If a question doesn’t tell you choose one yourself and write it down! </li></ul><ul><li>Convert to two’s compliment representation </li></ul><ul><li>-9 </li></ul><ul><li>-45 </li></ul><ul><li>-187 </li></ul><ul><li>-283 </li></ul>
  12. 12. The good thing! <ul><li>When we are trying to check what a number is in decimal we just repeat the process! (that’s why two’s compliment is so good) </li></ul><ul><li>What are these numbers in decimal? </li></ul><ul><li>1000 1101 </li></ul><ul><li>1111 0110 </li></ul><ul><li>1010 1010 </li></ul><ul><li>1100 0011 </li></ul>
  13. 13. More good bits <ul><li>We used to use a signed bit to represent a negative number </li></ul><ul><li>This reduce the number of bits available to represent the number </li></ul><ul><li>This would have reduced the range of numbers which could be represented </li></ul><ul><li>Computer Arithmetic was “Pure Mental” </li></ul>
  14. 14. <ul><li>23.75 = 0.2375 * 10 ^ 2 </li></ul><ul><li>2375 – the mantissa </li></ul><ul><li>2 – the exponent </li></ul><ul><li>The same thing in binary </li></ul><ul><li>Mantissa gives the number to be represented </li></ul><ul><li>The exponent gives how many places to “float” the decimal point </li></ul>Real Numbers! We've got negative, now fractions
  15. 15. Real Numbers <ul><li>Number 13.75 </li></ul><ul><li>8 4 2 1 0.5 0.25 0.125 0.0625 </li></ul><ul><li>1 0 1 1 1 0 0 </li></ul><ul><li>Mantissa = 1101.1100 </li></ul><ul><li>Exponent (need to move 4 decimal places) </li></ul><ul><li>8 4 2 1 </li></ul><ul><li>0 1 0 0 </li></ul><ul><li>Exponent = 0 1 0 0 </li></ul><ul><li>1101 1100 0100 (all we need) </li></ul>
  16. 16. Increasing the M and the E <ul><li>Increasing the mantissa </li></ul><ul><li>Giving more bits to represent a number would increase the precision </li></ul><ul><li>Think of a tape measure </li></ul><ul><li>(if there are more wee bits marking the distances you will get a more precise measurement) </li></ul>
  17. 17. Increasing the M and the E <ul><li>Increasing the exponent </li></ul><ul><li>This means that the range of the numbers is increased </li></ul><ul><li>10 * small exponent = small number </li></ul><ul><li>10 * big exponent (more bits) = bigger number </li></ul>Worksheet 1
  18. 18. Questions and Reading <ul><li>From the Walsh Book Read </li></ul><ul><li>Pages – 2 to 9 </li></ul><ul><li>Questions (on page 20) </li></ul><ul><li>1 2 3 4 5 6 7 8 9 </li></ul>Worksheet 1
  19. 19. Data Representation How text is represented/sent in a computer system ASCII Code UNICODE Memory Sizes Im the greatest Dancer!
  20. 20. <ul><li>A byte is space which is used to store a character ( 8 bits ) </li></ul><ul><li>All the characters which can be represented are known as the character set </li></ul><ul><li>Each character to display is given a different code </li></ul><ul><li>ASCII is the most popular form </li></ul><ul><li>American Standard Code for Information Interchange </li></ul>Sending Text!
  21. 21. What does it all mean? <ul><li>What’s in a bit? </li></ul><ul><li>A 1 or a 0 </li></ul>How should you remember it? <ul><li>Kinder Bueno </li></ul><ul><li>8 wee bits or one big Byte ! </li></ul>
  22. 22. Memory Sizes <ul><li>Reminder </li></ul><ul><li>Big </li></ul><ul><li>Boys </li></ul><ul><li>Kicked </li></ul><ul><li>My </li></ul><ul><li>Granny </li></ul><ul><li>Twice </li></ul>
  23. 23. Memory Sizes <ul><li>Bit <- smallest </li></ul><ul><li>Byte </li></ul><ul><li>Kilobyte </li></ul><ul><li>Megabyte </li></ul><ul><li>Gigabyte </li></ul><ul><li>Terabyte <- biggest </li></ul>
  24. 24. <ul><li>A bit is the smallest unit of memory </li></ul><ul><li>There are 8 bits in a byte </li></ul><ul><li>There are 1024 bytes in a kilobyte </li></ul><ul><li>There are 1024 Kb in a Megabyte </li></ul><ul><li>There are 1024 Mb in a Gigabyte </li></ul><ul><li>There are 1024 Gb in a Terabyte </li></ul>Memories at the corner of my eye!
  25. 25. Calculating Memory Sizes <ul><li>We don’t say our broadband speed is </li></ul><ul><li>33 million bits per second </li></ul><ul><li>4 Megabytes </li></ul><ul><li>We don’t say our computer has </li></ul><ul><li>687194767360 bits of memory </li></ul><ul><li>80 Gigabytes </li></ul><ul><li>Calculating the correct sizes is a wee bit fidgety but you get used to it </li></ul>
  26. 26. Calculating Memory Sizes <ul><li>bits / 8 </li></ul><ul><li>bytes / 1024 </li></ul><ul><li>kilobytes / 1024 </li></ul><ul><li>megabytes / 1024 </li></ul><ul><li>gigabytes / 1024 </li></ul><ul><li>terabytes </li></ul><ul><li>TAKE A NOTE </li></ul>Terabytes * 1024 Gigabytes * 1024 Megabytes * 1024 Kilobytes * 1024 Bytes * 8 bits TAKE A NOTE Worksheet 3
  27. 27. ASCII Code <ul><li>ASCII is a 7 bit code which allows 128 characters </li></ul><ul><li>Extended ASCII allows 8 bits or 256 characters </li></ul><ul><li>Used to represent text although some characters don’t print </li></ul><ul><li>0 – 31 are what is known as control characters </li></ul><ul><li>Carriage Return, Tab, Clear Screen for example </li></ul>
  28. 28. UNICODE <ul><li>What about the CODES that ASCII cannot represent? The Japanese for example </li></ul><ul><li>UNICODE is a 16 bit code which is used to represent a lot more characters </li></ul><ul><li>ASCII uses less memory (7 bits) </li></ul><ul><li>UNICODE capable of representing a lot more characters </li></ul>
  29. 29. ASCII Code <ul><li>65 in decimal = A </li></ul><ul><li>66 = B </li></ul><ul><li>67 = C and so on and so forth </li></ul><ul><li>We can code messages and understand what they say etc </li></ul><ul><li>I intercepted a nasty text from Mr Arthur to Mr McGowan help me out a bit </li></ul><ul><li>Have a bash at working out this message </li></ul>Worksheet 2
  30. 30. Data Representation Graphics How are Graphics stored in a Computer System Calculating memory requirements These glasses are X-Ray
  31. 31. <ul><li>Graphics are made up of tiny dots called PIXELS each requiring one bit </li></ul><ul><li>Picture Elements 49 bits memory. WHY? </li></ul>GRAPHICS!
  32. 32. Resolution <ul><li>A screen display of 800 x 600 is smaller is resolution </li></ul><ul><li>1024 x 768 is higher resolution </li></ul><ul><li>Two types of Graphic </li></ul><ul><li>Bit mapped </li></ul><ul><li>Vector </li></ul>
  33. 33. Resolution <ul><li>A screen display of 800 x 600 is smaller is resolution </li></ul><ul><li>1024 x 768 is higher resolution </li></ul><ul><li>Two types of Graphic </li></ul><ul><li>Bit mapped </li></ul><ul><li>Vector </li></ul><ul><li>These store the graphics in different ways </li></ul>
  34. 34. Bit Mapped <ul><li>Think about Paint </li></ul><ul><li>When you draw a shape on top of another it rubs out anything on the bottom </li></ul><ul><li>It has a fixed resolution (which means your image is rubbish when printed!) </li></ul><ul><li>You can zoom in and edit individual pixels </li></ul><ul><li>It saves the full screen – even if there’s nothing on there! </li></ul>
  35. 35. Vector Graphics <ul><li>Keeps shapes as separate objects </li></ul><ul><li>Saves attributes of objects rather than all pixels – less memory requirements </li></ul><ul><li>Resolution Independence – prints at the full resolution available on printer </li></ul><ul><li>Can edit all the individual objects which make up the graphic, but not the individual pixels </li></ul>
  36. 36. Backing Storage Requirements This image of screech measures 2 inches by 2 inches. It has a resolution of 80 dpi using 256 colours Memory Required Total Pixels (2 * 80) * (2 * 80) = 25, 600 Each pixel could be one of 256 different colours 256 requires 8 bits 25,600 * 8 = 204, 800 bits 204, 800 = 25,600 bytes or 25 kilobytes
  37. 37. Your Turn This idiots picture measures 3 inches by 2 inches It has a resolution of 150 dots per inch. It uses TRUE COLOUR which uses 24 bits per pixel 395.5 Kilobytes Worksheet 4
  38. 38. Data Representation The need for Compression Different methods of Compression Compress Yourself!
  39. 39. Data Compression <ul><li>Compression simply means reducing the size of a file in order to save some space </li></ul><ul><li>Two different types </li></ul><ul><li>Lossy </li></ul><ul><li>Lossless </li></ul>
  40. 40. Lossless Compression <ul><li>Means that none of the original data is lost </li></ul><ul><li>Counting repeating pixels is one method </li></ul><ul><li>This means you can save </li></ul><ul><ul><li>Store what colour pixel is </li></ul></ul><ul><ul><li>How many are repeated in a row </li></ul></ul><ul><ul><li>Saves a lot of memory </li></ul></ul>
  41. 41. Lossy Compression <ul><li>Means you sacrifice some data to reduce the file size </li></ul><ul><li>Using complex mathematical coding </li></ul><ul><li>Ditching stuff our eyes cant see </li></ul><ul><li>Can reduce size more than lossless </li></ul><ul><li>But, only if it doesn’t make the file useless </li></ul>Worksheet 5
  42. 42. Advantages of Compression <ul><li>Bit maps use up a lot of backing storage </li></ul><ul><li>Compression saves a lot of it </li></ul><ul><li>The less space it takes up the less time it takes to transfer it in an email etc </li></ul><ul><li>Takes less time to load up in a web browser </li></ul>
  43. 43. Disadvantages of Compression <ul><li>If Lossy compression is used then detail may be lost from the images </li></ul><ul><li>Can alter the images introducing things that weren’t there </li></ul><ul><li>Take a lot of time to compress a very large image </li></ul><ul><li>Repeated compression can alter and affect the image </li></ul>
  44. 44. And here it ends <ul><li>That’s everything in Section 1: Data Representation </li></ul><ul><li>What you need to do now: </li></ul><ul><li>Read Scholar for more in depth information </li></ul><ul><li>Read Walsh for the same </li></ul><ul><li>Practice loads of questions (Walsh Book) </li></ul><ul><li>Study for end of section test </li></ul>

×