SlideShare a Scribd company logo
1 of 39
Download to read offline
Video Object Segmentation
고려대학교 고영준
Segmentation
• Divide data into meaningful segments
Segmentation
Superpixel Image segmentation
Video segmentation Video object segmentation
Video Object Segmentation
• Semi-supervised video object segmentation
• Primary object segmentation
• Multiple object segmentation
Semi-supervised Video Object Segmentation
• Track and segment a target object
• Annotated by a user in the first frame
First frame
& user annotation
Segment track
Primary Object Segmentation
• Segment a primary object in a video automatically
Primary object: Diver
Primary object: Tennis player
Multiple Object Segmentation
• Extract multiple segment tracks as many as possible
Primary Object Segmentation
Primary Object Segmentation
• Primary object segmentation
• Initial region estimation
• Motion boundaries
• Object proposal
• Saliency maps
• Refinement
• Construct models for the primary object and the background,
e.g. Gaussian mixture models (GMMs)
• Propose augmentation and reduction process (ARP)
Primary Object Segmentation in Videos Based on
Region Augmentation and Reduction
• Overview
• Input: A set of consecutive video frames
• Output: A set of pixel-wise segments to delineate the primary
object
Candidate Region Generation
• Candidate regions
• Ultrametric contour map (UCM)
• Obtain color-based and motion-based UCMs
• Each region in UCM becomes a superpixel
Candidate Region Generation
• Candidate regions
• Generate candidate regions by merging neighboring superpixels
• Determine the pair, 𝑠 𝑚 and 𝑠 𝑛, sharing the weakest boundary
• Merge 𝑠 𝑚 and 𝑠 𝑛 in a single superpixel
• Repeat this process only one superpixel remains
Candidate Region Generation
• Foreground confidence
• Measure the foreground confidence of each candidate region
• Appearance confidence 𝜙𝑖
(𝑡)
• Obtain a saliency map using technique in [1]
• Average the saliency values within the candidate region
• Edge confidence 𝜓𝑖
(𝑡)
• Combine color-based edge map and motion-based edge map
𝑐𝑖
(𝑡)
= 𝜙𝑖
(𝑡)
+ 𝜓𝑖
(𝑡)
[1] W.-D. Jang, C. Lee, and C.-S. Kim, “Primary object segmentation in videos via alternate convex optimization of foreground and
background distributions,” CVPR, 2016
Candidate Region Generation
• Foreground confidence
• Select the top 20 candidate regions
• Warp the selected candidate regions to neighboring frames
• Rearrange the set of candidate regions 𝒬(𝑡) = 𝑞1
𝑡
, 𝑞2
𝑡
, … , 𝑞 𝑁
(𝑡)
• Feature description
• Describe the feature 𝐟𝑖
(𝑡)
of each candidate region 𝑞𝑖
(𝑡)
using the
bag-of-visual-words approach
Initial Region Estimation
• Selecting initial primary object regions
• Choose the main region 𝑞 𝛿
(𝑡)
among candidate regions
• Exploit the recurrence property that a primary object appears
repeatedly in a video sequence
Input frames
Candidate region
generation
Initial region
estimation
Initial Region Estimation
• Selecting initial primary object regions
• Assume that feature of main region 𝑞 𝛿
(𝑡)
should be similar to
features of the main regions in the other frames
• 𝐩 𝜏
denotes the feature of the main region in frame 𝐼(𝜏)
𝛿 = arg min ෍
𝜏=1,𝜏≠𝑡
𝑑 𝜒 𝐟𝑖
(𝑡)
, 𝐩 𝜏
Input frames
Candidate region
generation
Initial region
estimation
Initial Region Estimation
• Selecting initial primary object regions
• Initialization of 𝐩 𝜏
• Superpose features of all candidate region in 𝒬(𝜏)
• Combine features of candidate regions, 𝐅(𝜏) = 𝐟1
𝜏
, … , 𝐟 𝑁
𝜏
, using
the foreground confidence vector 𝐜(𝜏) = 𝑐1
𝜏
, … , 𝑐 𝑁
𝜏
𝑇
• Obtain the main region 𝑞 𝛿
(𝑡)
by applying 𝐩 𝜏
for each frame
• Alternative update of the main regions
• Update 𝐩 𝑡 for each frame by 𝐩 𝑡 ← 𝐟𝛿
𝜏
• Choose the main region using the updated features
𝐩 𝜏
= 𝐅(𝜏)
𝐜(𝜏)
𝛿 = arg min ෍
𝜏=1,𝜏≠𝑡
𝑑 𝜒 𝐟𝑖
(𝑡)
, 𝐩 𝜏
Primary Object Region Refinement
• Refinement of primary object regions
• Initial regions may exclude parts of primary objects or include
noisy regions (background or other objects)
• Attempt to refine initial regions
• Augment initial regions with missing region
• Reducing initial regions by removing noisy regions
Primary Object Region Refinement
• Augmented regions
• Augment initial regions 𝑞 𝛿
𝑡
with candidate region 𝑞𝑖
𝑡
in 𝒬(𝑡)
• Reduced regions
• Reduce initial regions 𝑞 𝛿
𝑡
using candidate region 𝑞 𝑗
𝑡
in 𝒬(𝑡)
𝑞 𝛿
𝑡
𝑞𝑖
𝑡
𝑞𝑖
𝑡
𝑞 𝛿
𝑡
𝑟𝑖
𝑡
= 𝑞 𝛿
𝑡
∪ 𝑞𝑖
𝑡
𝑞 𝛿
𝑡
𝑞 𝑗
𝑡
𝑞 𝛿
𝑡
𝑞 𝑗
𝑡
𝑟𝑗
𝑡
= 𝑞 𝛿
𝑡
∩ 𝑞 𝑗
𝑡
Primary Object Region Refinement
• Augmentation and reduction process (ARP)
• Determine whether to augment or reduce 𝑞 𝛿
𝑡
by cost function
• Data cost
• Constrain that the refined region 𝑟𝑖
(𝑡)
should be similar to initial
regions in all frames
• Segmentation cost
• Make the refined region 𝑟𝑖
(𝑡)
as dissimilar from its nearby
background as possible
𝐶 𝑟𝑖
(𝑡)
= 𝐶data 𝑟𝑖
(𝑡)
+ 𝛾 ⋅ 𝐶seg 𝑟𝑖
(𝑡)
𝐶data 𝑟𝑖
(𝑡)
=
1
𝑇
෍
𝜏=1
𝑑 𝜒 𝐟r,𝑖
(𝑡)
, 𝐟𝛿
(𝑡)
𝐶seg 𝑟𝑖
(𝑡)
= −𝑑 𝜒 𝐟r,𝑖
(𝑡)
, 𝐟b,𝑖
(𝑡)
Primary Object Region Refinement
• Augmentation and reduction process (ARP)
• Minimize the cost function for the optimal refined region
• Perform ARP iteratively
• Construct the set of augmented and reduced regions again by
employing 𝑟∗
𝑡
as the initial region
• Find the optimal 𝑟∗
𝑡
by minimizing 𝐶 𝑟𝑖
(𝑡)
• Repeat until 𝑟∗
𝑡
is unchanged
𝑟∗
𝑡
= arg min 𝐶 𝑟𝑖
(𝑡)
Primary Object Region Refinement
• Augmentation and reduction process (ARP)
• DAVIS dataset [2]
• 50 video sequences (3,455 annotated frames)
• Performance measure
• Region similarity 𝒥: Intersection over union
• Contour accuracy ℱ: F-measure that is the harmonic mean of the
contour precision and recall rates
Experimental results
[2] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung, “A benchmark dataset and evaluation
methodology for video object segmentation,” CVPR 2016
Experimental results
• Impacts of ARP
• Compare ARP with the conventional refinement techniques [20,
36]
• Apply refinement techniques to our initial regions (IR)
[20] A. Papazoglou and V. Ferrari, “Fast object segmentation in unconstrained video,” ICCV,2013.
[36] D. Zhang, O. Javed, and M. Shah, “Video object segmentation through spatially accurate and temporally dense extraction of
primary object regions,” CVPR, 2013.
Experimental results
• Quantitative comparison
• Semi-supervised: Human annotation at the first frame
• Multiple VOS: Output multiple objects
• POS: Output primary object objects
Experimental results
• Qualitative results
Multiple Object Segmentation
Multiple Object Segmentation
• Multiple object segmentation
• Motion segmentation
• Cluster point trajectories in a video
• Video object proposal
• Proposal matching
• Proposal clustering
• Segmentation guided by object detection and tracking
CDTS: Collaborative Detection, Tracking, and Segmentation
for Online Multiple Object Segmentation in videos
• Overview
• Input: A set of consecutive video frames
• Output: Multiple segment tracks
Input frames
Detection and
tracking results
Joint detection
and tracking
ASE segmentationObject track generation
Object Track Generation
• Joint detection and tracking
• Detector [3]
• Find object location without manual annotations
• Some objects may remain undetected
• Tracker [4]
• Boost the recall rate of objects using temporal correlations
• Three cases
• Both detection and tracking boxes
• Only detection box
• Only tracking box
[3] Y. Li, K. He, J. Sun, et al. “R-FCN: Object detection via region-based fully convolutional networks,” NIPS, 2016
[4] H.-U. Kim, D.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “SOWP: Spatially ordered and weighted patch descriptor for visual tracking,” ICCV, 2015.
Object Track Generation
• Joint detection and tracking
• Both detection and tracking boxes
• Match detection and tracking boxes
• The Hungarian algorithm
• Choose the more accurate box for each matching pair
• Link the selected box to the corresponding object track
• Unmatched detection box
• Regard as newly appearing object
• Unmatched tracking box
• Link to the corresponding object track
ASE Segmentation
• Alternate shrinking and expansion (ASE)
• Over-segment frame in to superpixels
• Dichotomize each superpixel within and near the box into
either foreground or background class
ASE Segmentation
• Over-segmentation
• Obtain superpixels using UCM
• Preliminary classification
• Exploit overlap ratio between the box and each superpixel
• Refine preliminary foreground regions
ASE Segmentation
• Intra-frame refinement
• Constrain foreground regions to have intense edge strengths
• Boundary cost
• Shrink foreground regions by remove superpixels to minimize
the boundary cost in a greedy manner
𝐶bnd 𝐹𝑖
(𝑡)
= − ෍
𝐱∈𝜕𝐹𝑖
(𝑡)
𝑈 𝑡
𝐱
ASE Segmentation
• Inter-frame refinement
• Constrain that the refined region should be similar to the
segmentation results in previous frames
• Cost function
• Expand foreground regions by augmenting superpixels
• Perform shrinking in a similar way
𝐶inter 𝐹𝑖
(𝑡)
, ℬ𝑖
(𝑡)
= 𝛼 ⋅ 𝐶tmp 𝐹𝑖
𝑡
+ 𝐶seg 𝐹𝑖
(𝑡)
, ℬ𝑖
(𝑡)
+𝐶bnd 𝐹𝑖
(𝑡)
ASE Segmentation
Experimental Results
• YouTube-Objects dataset
• Contain 126 videos for 10 object classes
• Performance measure
• Intersection over union (IoU)
[34] Y.-H. Tsai, G. Zhong, and M.-H. Yang, “Semantic cosegmentation in videos.,” ECCV,2016.
[42] Y. Zhang, X. Chen, J. Li, C. Wang, and C. Xia, “Semantic object segmentation via detection in weakly labeled video,” CVPR 2015.
Experimental results
• Qualitative results
Q&A
• Thank you

More Related Content

What's hot

ImageProcessing10-Segmentation(Thresholding) (1).ppt
ImageProcessing10-Segmentation(Thresholding) (1).pptImageProcessing10-Segmentation(Thresholding) (1).ppt
ImageProcessing10-Segmentation(Thresholding) (1).pptVikramBarapatre2
 
Video object tracking with classification and recognition of objects
Video object tracking with classification and recognition of objectsVideo object tracking with classification and recognition of objects
Video object tracking with classification and recognition of objectsManish Khare
 
Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)asodariyabhavesh
 
Machine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkMachine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkRichard Kuo
 
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...Taegyun Jeon
 
Reinforcement learning
Reinforcement learningReinforcement learning
Reinforcement learningDing Li
 
Deep Learning in Bio-Medical Imaging
Deep Learning in Bio-Medical ImagingDeep Learning in Bio-Medical Imaging
Deep Learning in Bio-Medical ImagingJoonhyung Lee
 
Chapter 8 image compression
Chapter 8 image compressionChapter 8 image compression
Chapter 8 image compressionasodariyabhavesh
 
Digital Image Processing - Image Compression
Digital Image Processing - Image CompressionDigital Image Processing - Image Compression
Digital Image Processing - Image CompressionMathankumar S
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networksAkash Goel
 
Digital Image Fundamentals
Digital Image FundamentalsDigital Image Fundamentals
Digital Image FundamentalsA B Shinde
 
Object Detection & Tracking
Object Detection & TrackingObject Detection & Tracking
Object Detection & TrackingAkshay Gujarathi
 
Image classification using convolutional neural network
Image classification using convolutional neural networkImage classification using convolutional neural network
Image classification using convolutional neural networkKIRAN R
 
5. gray level transformation
5. gray level transformation5. gray level transformation
5. gray level transformationMdFazleRabbi18
 
Classification using back propagation algorithm
Classification using back propagation algorithmClassification using back propagation algorithm
Classification using back propagation algorithmKIRAN R
 

What's hot (20)

ImageProcessing10-Segmentation(Thresholding) (1).ppt
ImageProcessing10-Segmentation(Thresholding) (1).pptImageProcessing10-Segmentation(Thresholding) (1).ppt
ImageProcessing10-Segmentation(Thresholding) (1).ppt
 
Video object tracking with classification and recognition of objects
Video object tracking with classification and recognition of objectsVideo object tracking with classification and recognition of objects
Video object tracking with classification and recognition of objects
 
Yolo
YoloYolo
Yolo
 
Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)Chapter 3 image enhancement (spatial domain)
Chapter 3 image enhancement (spatial domain)
 
Machine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkMachine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural Network
 
AlexNet
AlexNetAlexNet
AlexNet
 
Siamese networks
Siamese networksSiamese networks
Siamese networks
 
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...
[PR12] PR-050: Convolutional LSTM Network: A Machine Learning Approach for Pr...
 
Reinforcement learning
Reinforcement learningReinforcement learning
Reinforcement learning
 
Deep Learning in Bio-Medical Imaging
Deep Learning in Bio-Medical ImagingDeep Learning in Bio-Medical Imaging
Deep Learning in Bio-Medical Imaging
 
Chapter 8 image compression
Chapter 8 image compressionChapter 8 image compression
Chapter 8 image compression
 
Digital Image Processing - Image Compression
Digital Image Processing - Image CompressionDigital Image Processing - Image Compression
Digital Image Processing - Image Compression
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
 
IMAGE SEGMENTATION.
IMAGE SEGMENTATION.IMAGE SEGMENTATION.
IMAGE SEGMENTATION.
 
Digital Image Fundamentals
Digital Image FundamentalsDigital Image Fundamentals
Digital Image Fundamentals
 
Introduction to OpenCV
Introduction to OpenCVIntroduction to OpenCV
Introduction to OpenCV
 
Object Detection & Tracking
Object Detection & TrackingObject Detection & Tracking
Object Detection & Tracking
 
Image classification using convolutional neural network
Image classification using convolutional neural networkImage classification using convolutional neural network
Image classification using convolutional neural network
 
5. gray level transformation
5. gray level transformation5. gray level transformation
5. gray level transformation
 
Classification using back propagation algorithm
Classification using back propagation algorithmClassification using back propagation algorithm
Classification using back propagation algorithm
 

Viewers also liked

Step-by-step approach to question answering
Step-by-step approach to question answeringStep-by-step approach to question answering
Step-by-step approach to question answeringNAVER Engineering
 
바둑인을 위한 알파고
바둑인을 위한 알파고바둑인을 위한 알파고
바둑인을 위한 알파고Donghun Lee
 
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단NAVER Engineering
 
Multimodal Sequential Learning for Video QA
Multimodal Sequential Learning for Video QAMultimodal Sequential Learning for Video QA
Multimodal Sequential Learning for Video QANAVER Engineering
 
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningNAVER Engineering
 
알파고 해부하기 1부
알파고 해부하기 1부알파고 해부하기 1부
알파고 해부하기 1부Donghun Lee
 
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망NAVER Engineering
 
Deep Learning, Where Are You Going?
Deep Learning, Where Are You Going?Deep Learning, Where Are You Going?
Deep Learning, Where Are You Going?NAVER Engineering
 
알파고 풀어보기 / Alpha Technical Review
알파고 풀어보기 / Alpha Technical Review알파고 풀어보기 / Alpha Technical Review
알파고 풀어보기 / Alpha Technical Review상은 박
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkNAVER Engineering
 
RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기Woong won Lee
 
Finding connections among images using CycleGAN
Finding connections among images using CycleGANFinding connections among images using CycleGAN
Finding connections among images using CycleGANNAVER Engineering
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기NAVER Engineering
 
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기이 의령
 
알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리Shane (Seungwhan) Moon
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016Taehoon Kim
 
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...Jeongkyu Shin
 
알아두면 쓸데있는 신기한 강화학습 NAVER 2017
알아두면 쓸데있는 신기한 강화학습 NAVER 2017알아두면 쓸데있는 신기한 강화학습 NAVER 2017
알아두면 쓸데있는 신기한 강화학습 NAVER 2017Taehoon Kim
 
what is_tabs_share
what is_tabs_sharewhat is_tabs_share
what is_tabs_shareNAVER D2
 
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기NAVER D2
 

Viewers also liked (20)

Step-by-step approach to question answering
Step-by-step approach to question answeringStep-by-step approach to question answering
Step-by-step approach to question answering
 
바둑인을 위한 알파고
바둑인을 위한 알파고바둑인을 위한 알파고
바둑인을 위한 알파고
 
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단
조음 Goodness-Of-Pronunciation 자질을 이용한 영어 학습자의 조음 오류 진단
 
Multimodal Sequential Learning for Video QA
Multimodal Sequential Learning for Video QAMultimodal Sequential Learning for Video QA
Multimodal Sequential Learning for Video QA
 
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement Learning
 
알파고 해부하기 1부
알파고 해부하기 1부알파고 해부하기 1부
알파고 해부하기 1부
 
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망
딥러닝을 활용한 비디오 스토리 질의응답: 뽀로로QA와 심층 임베딩 메모리망
 
Deep Learning, Where Are You Going?
Deep Learning, Where Are You Going?Deep Learning, Where Are You Going?
Deep Learning, Where Are You Going?
 
알파고 풀어보기 / Alpha Technical Review
알파고 풀어보기 / Alpha Technical Review알파고 풀어보기 / Alpha Technical Review
알파고 풀어보기 / Alpha Technical Review
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident network
 
RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기
 
Finding connections among images using CycleGAN
Finding connections among images using CycleGANFinding connections among images using CycleGAN
Finding connections among images using CycleGAN
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
 
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기
[2017 PYCON 튜토리얼]OpenAI Gym을 이용한 강화학습 에이전트 만들기
 
알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
 
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...
Let Android dream electric sheep: Making emotion model for chat-bot with Pyth...
 
알아두면 쓸데있는 신기한 강화학습 NAVER 2017
알아두면 쓸데있는 신기한 강화학습 NAVER 2017알아두면 쓸데있는 신기한 강화학습 NAVER 2017
알아두면 쓸데있는 신기한 강화학습 NAVER 2017
 
what is_tabs_share
what is_tabs_sharewhat is_tabs_share
what is_tabs_share
 
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
 

Similar to Video Object Segmentation in Videos

PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorJinwon Lee
 
Contour-Constrained Superpixels for Image and Video Processing
Contour-Constrained Superpixels for Image and Video ProcessingContour-Constrained Superpixels for Image and Video Processing
Contour-Constrained Superpixels for Image and Video ProcessingNAVER Engineering
 
Deep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSDeep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSGanesan Narayanasamy
 
Various object detection and tracking methods
Various object detection and tracking methodsVarious object detection and tracking methods
Various object detection and tracking methodssujeeshkumarj
 
Object detection at night
Object detection at nightObject detection at night
Object detection at nightSanjay Crúzé
 
object detection paper review
object detection paper reviewobject detection paper review
object detection paper reviewYoonho Na
 
Temporal Superpixels Based on Proximity-Weighted Patch Matching
Temporal Superpixels Based on Proximity-Weighted Patch MatchingTemporal Superpixels Based on Proximity-Weighted Patch Matching
Temporal Superpixels Based on Proximity-Weighted Patch MatchingNAVER Engineering
 
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient SimulationDongwonSon1
 
Real-time Object Tracking
Real-time Object TrackingReal-time Object Tracking
Real-time Object TrackingWonsang You
 
Synthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed realitySynthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed realityNAVER Engineering
 
Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Semantic-Aware Sky Replacement (SIGGRAPH 2016)Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Semantic-Aware Sky Replacement (SIGGRAPH 2016)Yi-Hsuan Tsai
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ..."Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...Edge AI and Vision Alliance
 
150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNNJunho Cho
 
Computer vision-nit-silchar-hackathon
Computer vision-nit-silchar-hackathonComputer vision-nit-silchar-hackathon
Computer vision-nit-silchar-hackathonAditya Bhattacharya
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaPreferred Networks
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...Edge AI and Vision Alliance
 
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...Edge AI and Vision Alliance
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012Jinwon Lee
 

Similar to Video Object Segmentation in Videos (20)

PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox Detector
 
Contour-Constrained Superpixels for Image and Video Processing
Contour-Constrained Superpixels for Image and Video ProcessingContour-Constrained Superpixels for Image and Video Processing
Contour-Constrained Superpixels for Image and Video Processing
 
Deep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSDeep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUS
 
Various object detection and tracking methods
Various object detection and tracking methodsVarious object detection and tracking methods
Various object detection and tracking methods
 
Object detection at night
Object detection at nightObject detection at night
Object detection at night
 
object detection paper review
object detection paper reviewobject detection paper review
object detection paper review
 
Temporal Superpixels Based on Proximity-Weighted Patch Matching
Temporal Superpixels Based on Proximity-Weighted Patch MatchingTemporal Superpixels Based on Proximity-Weighted Patch Matching
Temporal Superpixels Based on Proximity-Weighted Patch Matching
 
NMSL_2017summer
NMSL_2017summerNMSL_2017summer
NMSL_2017summer
 
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
 
Real-time Object Tracking
Real-time Object TrackingReal-time Object Tracking
Real-time Object Tracking
 
Synthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed realitySynthesizing pseudo 2.5 d content from monocular videos for mixed reality
Synthesizing pseudo 2.5 d content from monocular videos for mixed reality
 
Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Semantic-Aware Sky Replacement (SIGGRAPH 2016)Semantic-Aware Sky Replacement (SIGGRAPH 2016)
Semantic-Aware Sky Replacement (SIGGRAPH 2016)
 
SSD: Single Shot MultiBox Detector (UPC Reading Group)
SSD: Single Shot MultiBox Detector (UPC Reading Group)SSD: Single Shot MultiBox Detector (UPC Reading Group)
SSD: Single Shot MultiBox Detector (UPC Reading Group)
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ..."Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
 
150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNN
 
Computer vision-nit-silchar-hackathon
Computer vision-nit-silchar-hackathonComputer vision-nit-silchar-hackathon
Computer vision-nit-silchar-hackathon
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi Kerola
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
 
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
“Understanding, Selecting and Optimizing Object Detectors for Edge Applicatio...
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012
 

More from NAVER Engineering

디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIXNAVER Engineering
 
진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)NAVER Engineering
 
서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트NAVER Engineering
 
BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호NAVER Engineering
 
이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라NAVER Engineering
 
날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기NAVER Engineering
 
쏘카프레임 구축 배경과 과정
 쏘카프레임 구축 배경과 과정 쏘카프레임 구축 배경과 과정
쏘카프레임 구축 배경과 과정NAVER Engineering
 
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기NAVER Engineering
 
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)NAVER Engineering
 
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드NAVER Engineering
 
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기NAVER Engineering
 
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활NAVER Engineering
 
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출NAVER Engineering
 
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우NAVER Engineering
 
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...NAVER Engineering
 
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법NAVER Engineering
 
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며NAVER Engineering
 
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기NAVER Engineering
 
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기NAVER Engineering
 

More from NAVER Engineering (20)

React vac pattern
React vac patternReact vac pattern
React vac pattern
 
디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX
 
진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)
 
서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트
 
BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호
 
이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라
 
날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기
 
쏘카프레임 구축 배경과 과정
 쏘카프레임 구축 배경과 과정 쏘카프레임 구축 배경과 과정
쏘카프레임 구축 배경과 과정
 
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
 
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
 
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
 
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
 
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
 
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
 
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
 
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
 
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
 
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
 
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
 
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
 

Recently uploaded

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 

Recently uploaded (20)

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 

Video Object Segmentation in Videos

  • 3. • Divide data into meaningful segments Segmentation Superpixel Image segmentation Video segmentation Video object segmentation
  • 4. Video Object Segmentation • Semi-supervised video object segmentation • Primary object segmentation • Multiple object segmentation
  • 5. Semi-supervised Video Object Segmentation • Track and segment a target object • Annotated by a user in the first frame First frame & user annotation Segment track
  • 6. Primary Object Segmentation • Segment a primary object in a video automatically Primary object: Diver Primary object: Tennis player
  • 7. Multiple Object Segmentation • Extract multiple segment tracks as many as possible
  • 9. Primary Object Segmentation • Primary object segmentation • Initial region estimation • Motion boundaries • Object proposal • Saliency maps • Refinement • Construct models for the primary object and the background, e.g. Gaussian mixture models (GMMs) • Propose augmentation and reduction process (ARP)
  • 10. Primary Object Segmentation in Videos Based on Region Augmentation and Reduction • Overview • Input: A set of consecutive video frames • Output: A set of pixel-wise segments to delineate the primary object
  • 11. Candidate Region Generation • Candidate regions • Ultrametric contour map (UCM) • Obtain color-based and motion-based UCMs • Each region in UCM becomes a superpixel
  • 12. Candidate Region Generation • Candidate regions • Generate candidate regions by merging neighboring superpixels • Determine the pair, 𝑠 𝑚 and 𝑠 𝑛, sharing the weakest boundary • Merge 𝑠 𝑚 and 𝑠 𝑛 in a single superpixel • Repeat this process only one superpixel remains
  • 13. Candidate Region Generation • Foreground confidence • Measure the foreground confidence of each candidate region • Appearance confidence 𝜙𝑖 (𝑡) • Obtain a saliency map using technique in [1] • Average the saliency values within the candidate region • Edge confidence 𝜓𝑖 (𝑡) • Combine color-based edge map and motion-based edge map 𝑐𝑖 (𝑡) = 𝜙𝑖 (𝑡) + 𝜓𝑖 (𝑡) [1] W.-D. Jang, C. Lee, and C.-S. Kim, “Primary object segmentation in videos via alternate convex optimization of foreground and background distributions,” CVPR, 2016
  • 14. Candidate Region Generation • Foreground confidence • Select the top 20 candidate regions • Warp the selected candidate regions to neighboring frames • Rearrange the set of candidate regions 𝒬(𝑡) = 𝑞1 𝑡 , 𝑞2 𝑡 , … , 𝑞 𝑁 (𝑡) • Feature description • Describe the feature 𝐟𝑖 (𝑡) of each candidate region 𝑞𝑖 (𝑡) using the bag-of-visual-words approach
  • 15. Initial Region Estimation • Selecting initial primary object regions • Choose the main region 𝑞 𝛿 (𝑡) among candidate regions • Exploit the recurrence property that a primary object appears repeatedly in a video sequence Input frames Candidate region generation Initial region estimation
  • 16. Initial Region Estimation • Selecting initial primary object regions • Assume that feature of main region 𝑞 𝛿 (𝑡) should be similar to features of the main regions in the other frames • 𝐩 𝜏 denotes the feature of the main region in frame 𝐼(𝜏) 𝛿 = arg min ෍ 𝜏=1,𝜏≠𝑡 𝑑 𝜒 𝐟𝑖 (𝑡) , 𝐩 𝜏 Input frames Candidate region generation Initial region estimation
  • 17. Initial Region Estimation • Selecting initial primary object regions • Initialization of 𝐩 𝜏 • Superpose features of all candidate region in 𝒬(𝜏) • Combine features of candidate regions, 𝐅(𝜏) = 𝐟1 𝜏 , … , 𝐟 𝑁 𝜏 , using the foreground confidence vector 𝐜(𝜏) = 𝑐1 𝜏 , … , 𝑐 𝑁 𝜏 𝑇 • Obtain the main region 𝑞 𝛿 (𝑡) by applying 𝐩 𝜏 for each frame • Alternative update of the main regions • Update 𝐩 𝑡 for each frame by 𝐩 𝑡 ← 𝐟𝛿 𝜏 • Choose the main region using the updated features 𝐩 𝜏 = 𝐅(𝜏) 𝐜(𝜏) 𝛿 = arg min ෍ 𝜏=1,𝜏≠𝑡 𝑑 𝜒 𝐟𝑖 (𝑡) , 𝐩 𝜏
  • 18. Primary Object Region Refinement • Refinement of primary object regions • Initial regions may exclude parts of primary objects or include noisy regions (background or other objects) • Attempt to refine initial regions • Augment initial regions with missing region • Reducing initial regions by removing noisy regions
  • 19. Primary Object Region Refinement • Augmented regions • Augment initial regions 𝑞 𝛿 𝑡 with candidate region 𝑞𝑖 𝑡 in 𝒬(𝑡) • Reduced regions • Reduce initial regions 𝑞 𝛿 𝑡 using candidate region 𝑞 𝑗 𝑡 in 𝒬(𝑡) 𝑞 𝛿 𝑡 𝑞𝑖 𝑡 𝑞𝑖 𝑡 𝑞 𝛿 𝑡 𝑟𝑖 𝑡 = 𝑞 𝛿 𝑡 ∪ 𝑞𝑖 𝑡 𝑞 𝛿 𝑡 𝑞 𝑗 𝑡 𝑞 𝛿 𝑡 𝑞 𝑗 𝑡 𝑟𝑗 𝑡 = 𝑞 𝛿 𝑡 ∩ 𝑞 𝑗 𝑡
  • 20. Primary Object Region Refinement • Augmentation and reduction process (ARP) • Determine whether to augment or reduce 𝑞 𝛿 𝑡 by cost function • Data cost • Constrain that the refined region 𝑟𝑖 (𝑡) should be similar to initial regions in all frames • Segmentation cost • Make the refined region 𝑟𝑖 (𝑡) as dissimilar from its nearby background as possible 𝐶 𝑟𝑖 (𝑡) = 𝐶data 𝑟𝑖 (𝑡) + 𝛾 ⋅ 𝐶seg 𝑟𝑖 (𝑡) 𝐶data 𝑟𝑖 (𝑡) = 1 𝑇 ෍ 𝜏=1 𝑑 𝜒 𝐟r,𝑖 (𝑡) , 𝐟𝛿 (𝑡) 𝐶seg 𝑟𝑖 (𝑡) = −𝑑 𝜒 𝐟r,𝑖 (𝑡) , 𝐟b,𝑖 (𝑡)
  • 21. Primary Object Region Refinement • Augmentation and reduction process (ARP) • Minimize the cost function for the optimal refined region • Perform ARP iteratively • Construct the set of augmented and reduced regions again by employing 𝑟∗ 𝑡 as the initial region • Find the optimal 𝑟∗ 𝑡 by minimizing 𝐶 𝑟𝑖 (𝑡) • Repeat until 𝑟∗ 𝑡 is unchanged 𝑟∗ 𝑡 = arg min 𝐶 𝑟𝑖 (𝑡)
  • 22. Primary Object Region Refinement • Augmentation and reduction process (ARP)
  • 23. • DAVIS dataset [2] • 50 video sequences (3,455 annotated frames) • Performance measure • Region similarity 𝒥: Intersection over union • Contour accuracy ℱ: F-measure that is the harmonic mean of the contour precision and recall rates Experimental results [2] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology for video object segmentation,” CVPR 2016
  • 24. Experimental results • Impacts of ARP • Compare ARP with the conventional refinement techniques [20, 36] • Apply refinement techniques to our initial regions (IR) [20] A. Papazoglou and V. Ferrari, “Fast object segmentation in unconstrained video,” ICCV,2013. [36] D. Zhang, O. Javed, and M. Shah, “Video object segmentation through spatially accurate and temporally dense extraction of primary object regions,” CVPR, 2013.
  • 25. Experimental results • Quantitative comparison • Semi-supervised: Human annotation at the first frame • Multiple VOS: Output multiple objects • POS: Output primary object objects
  • 28. Multiple Object Segmentation • Multiple object segmentation • Motion segmentation • Cluster point trajectories in a video • Video object proposal • Proposal matching • Proposal clustering • Segmentation guided by object detection and tracking
  • 29. CDTS: Collaborative Detection, Tracking, and Segmentation for Online Multiple Object Segmentation in videos • Overview • Input: A set of consecutive video frames • Output: Multiple segment tracks Input frames Detection and tracking results Joint detection and tracking ASE segmentationObject track generation
  • 30. Object Track Generation • Joint detection and tracking • Detector [3] • Find object location without manual annotations • Some objects may remain undetected • Tracker [4] • Boost the recall rate of objects using temporal correlations • Three cases • Both detection and tracking boxes • Only detection box • Only tracking box [3] Y. Li, K. He, J. Sun, et al. “R-FCN: Object detection via region-based fully convolutional networks,” NIPS, 2016 [4] H.-U. Kim, D.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “SOWP: Spatially ordered and weighted patch descriptor for visual tracking,” ICCV, 2015.
  • 31. Object Track Generation • Joint detection and tracking • Both detection and tracking boxes • Match detection and tracking boxes • The Hungarian algorithm • Choose the more accurate box for each matching pair • Link the selected box to the corresponding object track • Unmatched detection box • Regard as newly appearing object • Unmatched tracking box • Link to the corresponding object track
  • 32. ASE Segmentation • Alternate shrinking and expansion (ASE) • Over-segment frame in to superpixels • Dichotomize each superpixel within and near the box into either foreground or background class
  • 33. ASE Segmentation • Over-segmentation • Obtain superpixels using UCM • Preliminary classification • Exploit overlap ratio between the box and each superpixel • Refine preliminary foreground regions
  • 34. ASE Segmentation • Intra-frame refinement • Constrain foreground regions to have intense edge strengths • Boundary cost • Shrink foreground regions by remove superpixels to minimize the boundary cost in a greedy manner 𝐶bnd 𝐹𝑖 (𝑡) = − ෍ 𝐱∈𝜕𝐹𝑖 (𝑡) 𝑈 𝑡 𝐱
  • 35. ASE Segmentation • Inter-frame refinement • Constrain that the refined region should be similar to the segmentation results in previous frames • Cost function • Expand foreground regions by augmenting superpixels • Perform shrinking in a similar way 𝐶inter 𝐹𝑖 (𝑡) , ℬ𝑖 (𝑡) = 𝛼 ⋅ 𝐶tmp 𝐹𝑖 𝑡 + 𝐶seg 𝐹𝑖 (𝑡) , ℬ𝑖 (𝑡) +𝐶bnd 𝐹𝑖 (𝑡)
  • 37. Experimental Results • YouTube-Objects dataset • Contain 126 videos for 10 object classes • Performance measure • Intersection over union (IoU) [34] Y.-H. Tsai, G. Zhong, and M.-H. Yang, “Semantic cosegmentation in videos.,” ECCV,2016. [42] Y. Zhang, X. Chen, J. Li, C. Wang, and C. Xia, “Semantic object segmentation via detection in weakly labeled video,” CVPR 2015.