SlideShare a Scribd company logo
1 of 93
Download to read offline
Looking at the way our methods and systems of
communication have evolved by nature, nurture and
design so we may operate effectively in the best and
the worst of conditions. Supported by mathematical
analysis reinforced by practical demonstrations
Demystifying
Information Theory
The ‘glue’ that binds life and the
universe into a coherent matrix
I N F O R M A T I O N T H E O R Y
Origin: Claude E. Shannon in 1948 "A Mathematical Theory of Communication”
Genetic: Lossless (Zip)/Lossy(MP3) data compression/coding for info transmission/ storage
Extended: Linguistics, human perception, and the understanding of black holes ++
Entropy: Quantifies the amount of uncertainty involved in any form of information
Measures: Relative entropy, mutual information, channel capacity, bandwidth, S/N, bit errors
Intersections: Maths, statistics, computer science, electronics, physics, chemistry, neurobiology
Applicability: Statistical inference, natural language processing, cryptography, neurobiology,
evolution/function of molecular codes, thermal physics, quantum computing, linguistics,
plagiarism detection, pattern recognition, anomaly detection, source coding, channel coding,
algorithmic complexity theory, cosmology, security, +++ all forms of communications from
electronic, optical, paper, biological +++
Quantification, data storage, and communication
Communication
I N F O R M A T I O N
Actions
Gestures
Facial Expression
Body Langage
Pheromones
Grunts - Noises
Spoken Language
Shouting
Waving
Fires
Smoke
Flags
Drums
Horns
Mirrors
Runners
Riders
Pigeons
Semaphore
Storage
Paintings
Carvings
Stories
Songs
Dance
Drama
Talley Sticks
Clay Tablets
Animal Skins
Bamboo Strips
Paper
Books
Libraries
Mechanisms
Speed/content limited; most suited to
localised applications in largely
c o n t a i n e d s o c i e t i e s w i t h l i t t l e
movement of goods and people….best
thought of as ‘human scale’ systems
480 × 432 - sunreed.com
Computing Power
G R 0 W T H
216 × 162 - sphinxbazaar.com
480 × 432 - sunreed.com
E x p o n e n t i a l l y m o r e p r o c e s s i n g p o w e r, ( a n d
m o r e r e c e n t l y ) i n t e l l i g e n c e , f o r
e x p o n e n t i a l l y l e s s : c o s t , p h y s i c a l s p a c e ,
e n e r g y , m a t e r i a l … f u n d a m e n t a l l y i m p o s s i b l e
w i t h o u t a s o l i d u n d e r s t a n d i n g o f i n f o t h e o r y
D a t a S t o r a g e
480 × 432 - sunreed.com
G R 0 W T H
E x p o n e n t i a l l y m o r e d a t a c r e a t e d a n d s t o r e d f o r
e x p o n e n t i a l l y l e s s : c o s t , p h y s i c a l s p a c e , e n e r g y ,
m a t e r i a l … a l l f u n d a m e n t a l l y i m p o s s i b l e w i t h o u t a
s o l i d u n d e r s t a n d i n g o f i n f o r m a t i o n ( t h e o r y )
Communication
G R 0 W T H
E x p o n e n t i a l l y m o r e d e v i c e s a n d p r o d u c t s o n - l i n e
f o r e x p o n e n t i a l l y l e s s / i t e m : c o s t , p h y s i c a l
s p a c e , e n e r g y , m a t e r i a l … a l l g e n e r a t i n g m o r e
c o n n e c t i o n s a n d t r a f f i c … f u n d a m e n t a l l y i m p o s s i b l e
w i t h o u t i n f o r m a t i o n t h e o r y
The ~10m limit of humans
I N F O R M A T I O N
Conversation - Eye Contact
Facial Expressions - Pheromones
Body Language - Privacy
At about 1m all forms
of human communication
work extremely well
The ~10m limit of humans
I N F O R M A T I O N
As we physically move apart all forms
of human communication progressively degrade
and we lose clarity and privacy
Our technologies have only
recently (~100 years)closed
this gap across the planet
The information storage story
is very similar - from stories,
song and dance to IT over
1000s of years - IT ~ 50 years
V e r y e a r l y i n s i g h t i n t o i n f o r m a t i o n
“ T h e m o s t i m p o r t a n t m e s s a g e i s
t h e l e a s t e x p e c t e d o n e ”
Petronius (c. 27 – 66 AD) was a Roman writer of the Neronian age; a noted
satirist. He is identified with C. Petronius Arbiter, but the manuscript text of the
Satyricon calls himTitus Petronius. Satyricon is his sole surviving work.
First quoted at me when I was a student in the 1970s but I have never
been able to validate, but just like Confucius, Arbiter is credited with
hundreds of undocumented quotes of this nature.
P E T R O N I U S A R B I T E R
Victory/Nelson/Trafalgar
1805 England expects every
man to do his duty
At sea the ships are rolling,
the wind is blowing, it may
be raining, sleeting, snowing,
and it might be dull, overcast,
stormy, or night time!
Very limited message sets
Slow rate of communication
High probability of error
Can be read by the enemy ?
Needs coding for secrecy
British Navy 1653 & on
S E M A P H O R E
S E M A P H O R E
Chappe - Napoleonic War - 1791
England expects every
man to do his duty
Lille to Paris communication
with towers every 12 - 25 km
about an hour for 150km
provided all the operators were
alert/awake/not indisposed!
~10 words/minute
Wide ranger of message sets
Slow rate of communication
High probability of error
Can be read by the enemy ?
Needs coding for secrecy
820 × 540 - commons.wikimedia.org
170 × 231 - en.wikipedia.org
1790 & on
S E M A P H O R E
Surrey - Napoleonic War - 1822
England expects every
man to do his duty
Wide ranger of message sets
Slow rate of communication
High probability of error
Can be read by the enemy ?
Needs coding for secrecy
Portsmouth to London comms
with towers every 12 - 25 km
about an hour for 150km
provided all the operators were
alert/awake/not indisposed!
~10 words/minute
1790 & on
S E M A P H O R E
Modern times USA and UK engineers combined the heliotrope surveying instrument (1821 Carl Friedrich Gauss)
and Morse code for signalling. Henry C. Mance, working for UK government’s Persian Gulf Telegraph Department
in Karachi, perfected (1869) the wireless communications apparatus he dubbed the heliograph. In 1875 Mance’s
device was approved for use by the British-Indian Army. ~20 words/minute
HelioGraph - Ancient China - Modern Wars ~1822
R A I L W A Y S
Changed everything
T h e h i g h s p e e d
transportation of
people and goods
a t a n i n h u m a n
s p e e d a n d s c a l e
demanded faster
i n f o r m a t i o n
transport
Railway Networks demanded
faster telecommunications
than all train traffic
Nationwide standard time
was required for the first
time in mankind’s history
Timetables Safety
Signalling Scheduling
Control Orchestration
T E L E G R A P H
Saw a dash dot bubble
1837 & on
T E L E G R A P H
I N V E N T E D
Railways = new industry
Standardised, and very simple
signalling format used to
ensure high efficiency and a
low error rate
A collaboration resulting in an iconic result
Vail refined the prototype produced by Morse, who retained all the patents. The
‘story’ is that; by visiting a printers and counting the number off occurrences of each
letter ‘e’ was found to be dominant and so was assigned the smallest element - one
dot; ‘i’ was next and was assigned two dots, and then ‘t’ with dash…and so on.
M O R S G E / V A I L C O D E
A collaboration resulting in an iconic result
The efficiency of the symbol and code relationship can be gaged from the above tree
with less signal space used for the most common letters and most allocated to the
rarest incidences Q, Y, Z
M O R S G E / V A I L C O D E
.
..
…
….
-
--
---
-..-
-- -.--..
Extended to other languages/character sets
All other language adaptations lead to significant inefficiencies !
M O R S G E / V A I L C O D E
Chinese Russian Japanese
A path resulting in a transformative result
C H A R A C T E R S E T S
A n e v o l u t i o n t o w a r d
f l e x i b i l i t y d i s a m b i g u a t i o n ,
a d a p t a b i l i t y , r e d u n d a n c y ,
reasonable efficiency, clarity,
g l o b a l s t a n d a r d i s a t i o n o f
c h a r a c t e r f o r m a t , s p e l l i n g
and phraseology
The transmission, processing, extraction, and utilisation of information
I love thee to the depth and breadth and height My soul can reach
106783428576210048898337213498501
R E D U D A N C Y
In character sets & fonts
R E D U D A N C Y
Readable with missing bits
O ce m re unto th bre h, dear frie s, once m re;
Or close the wa l up ith our En sh dead! In peace
the 's nothing so beco s a an, As modest stilln s
and h ility; B t when he bla t of war b ows in our
ears, Then …
Once more unto the breach, dear friends, once more;
Or close the wall up with our English dead! In peace
there's nothing so becomes a man, As modest stillness
and humility; But when the blast of war blows in our
ears, Then…
R E D U D A N C Y
Purposely shortened TXT
How r u 2day
Want 2 go 4 a drink @ 8 2nigt
Get a curry 2 ?
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
R E D U D A N C Y
Image Paradox and More
T E L E G R A P H
Connecting every empire
T E L E G R A P H
T i t a n i c 1 9 1 2 w i re l e s s
T E L E G R A P H
W W I I M i l i t a r y - N a va l
F re q u e n c y s e l e c t i ve f a d i n g
T h e r m a l + s p e c t ra l n o i s e
L o w l e ve l i n t e r f e re n c e
T E L E G R A P H
WWII Telex in use ~1986
D e v e l o p e d t o m e e t t h e n e e d
f o r s p e e d + m o re a c c u ra c y +
m o re a n d m o re t ra f f i c
M o d e r n e r a B L I N K I N G
Admiral Jeremiah Denton Blinks T-O-R-T-U-R-E using Morse Code as P.O.W.
S E M A P H O R E
M o d e r n e ra A l d i s L a m p
WW1 & WWII
Ship - Ship
Ship - Shore
Aircraft - Aircraft
Ship - Aircraft
+++
Still in use
S E M A P H O R E
C o m m e r c i a l A i r l i n e r - ATC
S P E E C H R A D I O
F o r m a l i s e d o p e ra t i o n s / p ro c e d u re s
a n d m e s s a g e s e t s c o m p e n s a t e f o r
p o o r s i g n a l s t re n g t h , i n t e r f e re n c e
n o i s e , a n d t i re d n e s s + +
M e s s a g e s a re g e n e ra l l y b o u n d e d
a n d m o s t i m p o r t a n t l y e x p e c t e d + +
B i r d S t r i k e E m e r g e n c y
S P E E C H R A D I O
C a p t a i n C h e s l e y S u l l e n b u r g e r
l a n d s C a c t u s 1 5 4 9 i n t h e N Y
H u d s o n R i ve r 1 5 / 0 1 / 0 9
Re a l c o c k p i t t a p e s - f l i g h t
s i m u l a t i o n
M i l i t a r y A i r c r a f t C o m b a t
S P E E C H R A D I O
M i l i t a r y H F S S B C h a n n e l
S P E E C H R A D I O
In the hierarchy to wisdom
Information theory studies the transmission,
processing, extraction & utilisation of information.
The case of communications over a noisy channel
first detailed in the 1948 paper by Claude Shannon
C = B.T. log2(1+ S/N)
Wisdom
Knowledge
Information
Data
Noise
Human activity: Government, Services
Commerce, Industry, Farming, Society,
Education, Research, Development
Continually analysed, filtered,
rationalised, published
Created by all human/machine/
network activities 365 x 24
Meaning and implications
abstracted
Making the best decisions
possible based on all our
accumulated knowledge
models & experiences
I N F O R M A T I O N
Describe, define & quantify
I N F O R M A T I O N
Bits
Bytes
Bauds
Signal
Noise
Coding
Storage
Decoding
Bandwidth
Processing
Encryption
Decryption
Interference
Transmission
+++++
Bits
Bytes
Bauds
Signal
Noise
Coding
Bandwidth
Transmission
Describe, define & quantify
I N F O R M A T I O N
Two States = 1; 0Bits = Binary Digits =
Bytes = Collection of Bits = Typically an 8 Bit Byte
Bauds = Signalling element rate = or = Bit Rate
For reasons associated with matching
the transmission channel / medium
and/or dealing with noise and/or
sources of interfer
I N F O R M A T I O N
Claude Shannon Original
Claude Elwood Shannon
1916 – 2001) mathematician, electrical engineer,
and cryptographer at Bell Labs
Work on cryptography 1940 to 1945 - to prove
SIGSALY coding linking the U.S. President with
Winston Churchill by HF radio-telephone could
not be broken
Founded information theory during the same
period with a landmark paper,
A Mathematical Theory of Communication, 1948
E N T R 0 P Y
A measure of order
Order implies less information
Disorder implies a lot of information
Expected messages implies less information
Unexpected messages implies more information
Less Ordered
Greater Entropy
More Information
More Ordered
Lower Entropy
Less Information
The basic of what we mean
I N F O R M A T I O N
y
x
The basics of what we mean
I N F O R M A T I O N
y
x
Information = x;y;white
The basic of what we mean
I N F O R M A T I O N
y
x
Information = x;y;white; (dot colour, size, location)
The basic of what we mean
I N F O R M A T I O N
y
x
Information = x;y;white; (dots, colours, sizes, locations)
The basic of what we mean
I N F O R M A T I O N
y
x
Info= x;y;colourgrad; (shapes, colours, sizes, locations)
Fundamental relationship
I N F O R M A T I O N
Complexity
Information
Units ??
Units ??
What are the Law(s) and/or
relationship(s) defining
the shape of this line?
Information = f(complexity)
Channel
Copper Wire
Optical Fibre
Wireless
Receiver
Demodulation
Decoding
Error Correction
Transmitter
Coding
Modulation
Degraders
Noise
Interference
Channel Variations
Reflections
Describe, define & quantify
I N F O R M A T I O N
Sent Bit
Stream
Recovered
Bit Stream
Signal Distorted
Signal
Transmission
information movement
A B
Signal
+
Noise
S/N
Ratio
Error
Rate
????
Error
Rate
????
Spectrum
of Stream
Dictionary definition - basic
I N F O R M A T I O N
noun [mass noun]

1 facts provided or learned about something or someone: a vital piece of information.

• [count noun] Law a charge lodged with a magistrates' court: the tenant may lay an
information against his landlord.

2 what is conveyed or represented by a particular arrangement or sequence of things:
genetically transmitted information.

• Computing data as processed, stored, or transmitted by a computer.

• (in information theory) a mathematical quantity expressing the probability of occurrence of a
particular sequence of symbols, impulses, etc., as against that of alternative sequences.

ORIGIN

late Middle English (also in the sense ‘formation of the mind, teaching’), via Old French from
Latin informatio(n-), from the verb informare (see inform).
T h i s i s t h e ke r n e l o f w h a t we
h a ve t o u n d e r s t a n d a n d w h y
w e n e e d a t h e o r y a n d
d i m e n s i o n e d m o d e l
Describe, define & quantify
I N F O R M A T I O N
Storage
Magnetic
Optical
Thermal
Decoding
Error Correction
Coding
Modulation
Degraders
Noise
Interference
Natural Decay
Data In
Recovered
Data OutSignal Distorted
Signal
Conditioning
information storage
A B
Error
Rate
????
Describe, define & quantify
I N F O R M A T I O N
Channel
Copper Wire
Optical Fibre
Wireless
Receiver
Demodulation
Decoding
Error Correction
Transmitter
Coding
Modulation
Degraders
Noise
Interference
Channel Variations
Reflections
Bit
Stream
In
Recovered
Bit StreamSignal Distorted
Signal
Transmission
information movement
A B
Signal
+
Noise
S/N
Ratio
Error
Rate
????
Error
Rate
????
Of an Info Source
E N T R O P Y
All information theory analysis assumes binary (Base 2) as the foundation level and is then
expanded to the more complex Ternary…’M’ary telecom, computing and storage up to and
including analogue systems such as AM, FM, SSB wireless, all forms of imagery, languages
including atomic interactions.
Based on the probability mass function* of each symbol, the Shannon Entropy (bits/symbol)
is given by:
*PMF gives the probability that a discrete random variable is exactly = to some value: it is a primary means of defining a discrete probability distribution
PMF differs from a probability density function (pdf) which is associated with continuous rather than discrete random variables; the probability density
function must be integrated over an interval to yield a probability
Where = the occurrence probability of the -th symbol
Information Source
E N T R O P Y
The entropy of a discrete random bit stream (or discrete variable X) is a measure of the
uncertainty when only its distribution is known:
It is maximised when all bits are equiprobable: p(x) = 1/n; giving H(X) = log(n)
where = probability of a head; and = probability of a tail
An easily digested example is the tossing of a fair coin:
Then:
Notice that -log (p) = log (1/p) and by convention Limit -p.log(p) = 0 as p approaches 0
Information Source
E N T R O P Y
The entropy of a discrete random bit stream (or discrete variable X) is a measure of the
uncertainty when only its distribution is known:
It is maximised when all bits are equiprobable: p(x) = 1/n; giving H(X) = log(n)
where = probability of a head; and = probability of a tail
An easily digested example is the tossing of a fair coin:
Then:
Notice that -log (p) = log (1/p) and by convention Limit -p.log(p) = 0 as p approaches 0
Information Source
E N T R O P Y
Plotting the entropy of a binary case with a range of bit probabilities using this formula:
Coin with Tails
on both sides
…illustrates the importance of = 1/2
Another way of looking at this would be
gambling with biased coins:
Coin with Heads
on both sidesFair Coin
Mutual Information
E N T R O P Y
A measure of the information obtained about one signal by observing another
Used to maximise the information shared between transmitted and received signals
The mutual information of X relative to Y is given by:
This is an important property in the fields of complex modulation, coding and encryption
T e l e c o m m u n i c a t i o n
I N F O R M A T I O N
1138 × 1364 - atlantic-cable.com
A p r i m a r y d r i v e r > 1 0 0 y e a r s
o v e r t a k e n b y c o m p u t i n g , A I
r o b o t i c s , b i o l o g y . . m a t e r i a l s
How many bit/s ??
C A P I C I T Y
Channel
Copper Wire
Optical Fibre
Wireless
Receiver
Demodulation
Decoding
Error Correction
Transmitter
Coding
Modulation
Degraders
Noise
Interference
Channel Variations
Reflections
Bit
Stream
In
Recovered
Bit StreamSignal Distorted
Signal
Transmission
information movement
A B
Signal
+
Noise
S/N
Ratio
Error
Rate
????
Error
Rate
????
If it is wrong
D E M O I
L o s s y c o d i n g
D E M O 2
L o w / N o S i g n a l
D E M O 3
S/ N Analogue
D E M O 4
L o g O u t G OTO L I V E A P P S 1
Transmission/Storage upper bound
S H A N N O N L I M I T
The Shannon - Hartley Law was not originally derived as detailed below; they
took a far more probabilistic and complex path. For our ease of understanding
we assume an easier/engineering approach/route that definitely upsets purists!
Let us assume some time series analogue electrical signal accompanied by
random noise in the form:
Signal = vs(t) and Noise = vn(t)
In power terms this becomes:
Signal Power = Vs/R = S and Noise Power = Vn/R = N2 2
Where: V= rms value of v; and R = a dissipating resistive load
Transmission/Storage upper bound
S H A N N O N L I M I T
It is also assumed that the: Signal = vs(t) and Noise = vn(t) are statically
independent - ie knowing something about one gives you no idea about
the other - they are mathematically orthogonal.
We now assume a quantisation if the signal into symbols or numbers
based on the relative rms values such that:
Which, with a little mathematical juggling becomes:
Transmission/Storage upper bound
S H A N N O N L I M I T
It is also assumed that the: Signal = vs(t) and Noise = vn(t) are statically
independent - ie knowing something about one gives you no idea about
the other - they are mathematically orthogonal.
We now assume a quantisation if the signal into symbols or numbers
based on the relative rms values such that:
Which, with a little mathematical juggling becomes:
Transmission/Storage upper bound
S H A N N O N L I M I T
Rearranging further, this becomes:
If we now make M - b Bit measurements in a time T, the amount of information
bits collected will be :
Now the Sampling Theorem tells us that the highest practical rate M/T is:
Transmission/Storage upper bound
S H A N N O N L I M I T
And just a little more rearranging gets us to the ‘bottom line’:
This is the fastest rate information (an upper bound) that can be transmitted
over a given channel
So the maximum amount of information that can be transported in a given
time T over this channel is:
I = B.T
bits/second
bits
S/N dB
BW Hz
Duration
T seconds
I = B.T log2(1 + k.S/N)
I ~ B.T.K.S/NdB
vv
Transmission/Storage upper bound
S H A N N O N L I M I T
The same information
t r a n s m i t t e d o v e r a
channel in three different
modes using S/N, BW and
T as variable factors
S/N dB
Duration
T seconds
BW Hz
Transmission/Storage upper bound
S H A N N O N L I M I T
The same information
t r a n s m i t t e d o v e r a
channel in three different
modes using S/N, BW and
T as variable factors
Transmission/Storage noise impact
E R R O R R A T E - S / N
Suppose we transmit a
binary signal of two
voltage levels
The received signal will
have picked up thermal
and other forms of noise
y(t) = the bit stream
n(t) = the additive noise
Transmission/Storage noise impact
E R R O R R A T E - S / N
Suppose we transmit a
binary signal represented
by two voltage levels
The received signal will
have picked up thermal
and other forms of noise
y(t) = the bit stream
n(t) = the additive noise
Transmission/Storage noise impact
E R R O R R A T E - S / N
P1 = 0.5
P0 = 0.50
1
0
1 P1 = ?
P0 = ?
Transmission/Storage noise impact
E R R O R R A T E - S / N
≠
E R R O R S
Decisions
E R R O R S
Decisions
E R R O R S
Decisions
E R R O R S
Decisions
Upper bound/Limit
S H R N N N O N
A London cenral city location
R E A L I T Y W I F I
T
seconds
S + N
Power
B = 22MHz
S/ N Analogue
D E M O 4
L o g O u t G OTO L I V E A P P S 2
Any further questions
cochrane.org.uk
or thoughts ??

More Related Content

Similar to Demystifying Information Theory

Aristotle's Storytelling Framework for the Web
Aristotle's Storytelling Framework for the WebAristotle's Storytelling Framework for the Web
Aristotle's Storytelling Framework for the WebJeroen van Geel
 
Qurtzpeople Bio
Qurtzpeople BioQurtzpeople Bio
Qurtzpeople Biorafilevin
 
PENANG CLAN JETTIES
PENANG CLAN JETTIES PENANG CLAN JETTIES
PENANG CLAN JETTIES Jamie Lee
 
Get set network_toolkit_general_final
Get set network_toolkit_general_finalGet set network_toolkit_general_final
Get set network_toolkit_general_finalsblakebexhill
 
The Power of Story in Attraction Design
The Power of Story in Attraction DesignThe Power of Story in Attraction Design
The Power of Story in Attraction DesignJack Rouse Associates
 
Introduction
IntroductionIntroduction
IntroductionECRD IN
 
Focus on story, don't be seduced by sexy tools: How journalists can create gr...
Focus on story, don't be seduced by sexy tools: How journalists can create gr...Focus on story, don't be seduced by sexy tools: How journalists can create gr...
Focus on story, don't be seduced by sexy tools: How journalists can create gr...Mirko Lorenz
 
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Cocoselul Inaripat
 
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Cocoselul Inaripat
 
Why can't we all just get along? [Bettakultcha]
Why can't we all just get along? [Bettakultcha]Why can't we all just get along? [Bettakultcha]
Why can't we all just get along? [Bettakultcha]Cormac Lawler
 
Presentacion dfg
Presentacion dfgPresentacion dfg
Presentacion dfgismaelmego
 

Similar to Demystifying Information Theory (20)

Voip realities and realisations
Voip realities and realisations Voip realities and realisations
Voip realities and realisations
 
Aristotle's Storytelling Framework for the Web
Aristotle's Storytelling Framework for the WebAristotle's Storytelling Framework for the Web
Aristotle's Storytelling Framework for the Web
 
Cyber Security - Thinking Like The Enemy
Cyber Security - Thinking Like The EnemyCyber Security - Thinking Like The Enemy
Cyber Security - Thinking Like The Enemy
 
Quartpeople Bio
Quartpeople BioQuartpeople Bio
Quartpeople Bio
 
Qurtzpeople Bio
Qurtzpeople BioQurtzpeople Bio
Qurtzpeople Bio
 
PENANG CLAN JETTIES
PENANG CLAN JETTIES PENANG CLAN JETTIES
PENANG CLAN JETTIES
 
Get set network_toolkit_general_final
Get set network_toolkit_general_finalGet set network_toolkit_general_final
Get set network_toolkit_general_final
 
The Power of Story in Attraction Design
The Power of Story in Attraction DesignThe Power of Story in Attraction Design
The Power of Story in Attraction Design
 
Introduction
IntroductionIntroduction
Introduction
 
Introduction2
Introduction2Introduction2
Introduction2
 
Focus on story, don't be seduced by sexy tools: How journalists can create gr...
Focus on story, don't be seduced by sexy tools: How journalists can create gr...Focus on story, don't be seduced by sexy tools: How journalists can create gr...
Focus on story, don't be seduced by sexy tools: How journalists can create gr...
 
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
 
Doc.61
Doc.61Doc.61
Doc.61
 
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
Plaintiff's m otio n to supplem en t m otion to com pel second reouest for pr...
 
Doc.61
Doc.61Doc.61
Doc.61
 
Why can't we all just get along? [Bettakultcha]
Why can't we all just get along? [Bettakultcha]Why can't we all just get along? [Bettakultcha]
Why can't we all just get along? [Bettakultcha]
 
85 main
85 main85 main
85 main
 
85 main
85 main85 main
85 main
 
Tecno
TecnoTecno
Tecno
 
Presentacion dfg
Presentacion dfgPresentacion dfg
Presentacion dfg
 

More from University of Hertfordshire

More from University of Hertfordshire (20)

The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Future Telecoms Challenges & Opportunities
Future Telecoms Challenges & OpportunitiesFuture Telecoms Challenges & Opportunities
Future Telecoms Challenges & Opportunities
 
Thermodynamics - Laws Embracing Our Universe
Thermodynamics -  Laws Embracing Our UniverseThermodynamics -  Laws Embracing Our Universe
Thermodynamics - Laws Embracing Our Universe
 
Applied Science - Engineering Systems
Applied Science - Engineering SystemsApplied Science - Engineering Systems
Applied Science - Engineering Systems
 
IoT Yet to Come
IoT Yet to ComeIoT Yet to Come
IoT Yet to Come
 
The Scientific Meme
The Scientific Meme The Scientific Meme
The Scientific Meme
 
Uncanny Valley and Human Destiny
Uncanny Valley and Human DestinyUncanny Valley and Human Destiny
Uncanny Valley and Human Destiny
 
Resurgence of Technology Driven Change
Resurgence of Technology Driven ChangeResurgence of Technology Driven Change
Resurgence of Technology Driven Change
 
Society 5.0: A Vital Symbiosis
Society 5.0: A Vital SymbiosisSociety 5.0: A Vital Symbiosis
Society 5.0: A Vital Symbiosis
 
Cyber Portents and Precursors
Cyber Portents and PrecursorsCyber Portents and Precursors
Cyber Portents and Precursors
 
Technology Overlords Or A Symbiosis ?
Technology Overlords Or A Symbiosis ?Technology Overlords Or A Symbiosis ?
Technology Overlords Or A Symbiosis ?
 
THE FUTURE OF MOBILE NETWORKS
THE FUTURE OF MOBILE NETWORKS THE FUTURE OF MOBILE NETWORKS
THE FUTURE OF MOBILE NETWORKS
 
Quantifying Machine Intelligence Mathematically
Quantifying Machine Intelligence MathematicallyQuantifying Machine Intelligence Mathematically
Quantifying Machine Intelligence Mathematically
 
Technologies That Will Change Everything
Technologies That Will Change EverythingTechnologies That Will Change Everything
Technologies That Will Change Everything
 
Society 5.0 Redefined
Society 5.0 RedefinedSociety 5.0 Redefined
Society 5.0 Redefined
 
The Future WorkScape
The Future WorkScapeThe Future WorkScape
The Future WorkScape
 
Engineering Reliability and Resilience
Engineering Reliability and ResilienceEngineering Reliability and Resilience
Engineering Reliability and Resilience
 
Smart Materials and Structures
Smart Materials and StructuresSmart Materials and Structures
Smart Materials and Structures
 
TRUTH, SITUATION, & CONTEXT AWARENESS
TRUTH, SITUATION, & CONTEXT AWARENESSTRUTH, SITUATION, & CONTEXT AWARENESS
TRUTH, SITUATION, & CONTEXT AWARENESS
 
The Scientific Method
The Scientific MethodThe Scientific Method
The Scientific Method
 

Recently uploaded

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 

Recently uploaded (20)

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Demystifying Information Theory

  • 1. Looking at the way our methods and systems of communication have evolved by nature, nurture and design so we may operate effectively in the best and the worst of conditions. Supported by mathematical analysis reinforced by practical demonstrations Demystifying Information Theory The ‘glue’ that binds life and the universe into a coherent matrix
  • 2. I N F O R M A T I O N T H E O R Y Origin: Claude E. Shannon in 1948 "A Mathematical Theory of Communication” Genetic: Lossless (Zip)/Lossy(MP3) data compression/coding for info transmission/ storage Extended: Linguistics, human perception, and the understanding of black holes ++ Entropy: Quantifies the amount of uncertainty involved in any form of information Measures: Relative entropy, mutual information, channel capacity, bandwidth, S/N, bit errors Intersections: Maths, statistics, computer science, electronics, physics, chemistry, neurobiology Applicability: Statistical inference, natural language processing, cryptography, neurobiology, evolution/function of molecular codes, thermal physics, quantum computing, linguistics, plagiarism detection, pattern recognition, anomaly detection, source coding, channel coding, algorithmic complexity theory, cosmology, security, +++ all forms of communications from electronic, optical, paper, biological +++ Quantification, data storage, and communication
  • 3. Communication I N F O R M A T I O N Actions Gestures Facial Expression Body Langage Pheromones Grunts - Noises Spoken Language Shouting Waving Fires Smoke Flags Drums Horns Mirrors Runners Riders Pigeons Semaphore Storage Paintings Carvings Stories Songs Dance Drama Talley Sticks Clay Tablets Animal Skins Bamboo Strips Paper Books Libraries Mechanisms Speed/content limited; most suited to localised applications in largely c o n t a i n e d s o c i e t i e s w i t h l i t t l e movement of goods and people….best thought of as ‘human scale’ systems 480 × 432 - sunreed.com
  • 4. Computing Power G R 0 W T H 216 × 162 - sphinxbazaar.com 480 × 432 - sunreed.com E x p o n e n t i a l l y m o r e p r o c e s s i n g p o w e r, ( a n d m o r e r e c e n t l y ) i n t e l l i g e n c e , f o r e x p o n e n t i a l l y l e s s : c o s t , p h y s i c a l s p a c e , e n e r g y , m a t e r i a l … f u n d a m e n t a l l y i m p o s s i b l e w i t h o u t a s o l i d u n d e r s t a n d i n g o f i n f o t h e o r y
  • 5. D a t a S t o r a g e 480 × 432 - sunreed.com G R 0 W T H E x p o n e n t i a l l y m o r e d a t a c r e a t e d a n d s t o r e d f o r e x p o n e n t i a l l y l e s s : c o s t , p h y s i c a l s p a c e , e n e r g y , m a t e r i a l … a l l f u n d a m e n t a l l y i m p o s s i b l e w i t h o u t a s o l i d u n d e r s t a n d i n g o f i n f o r m a t i o n ( t h e o r y )
  • 6. Communication G R 0 W T H E x p o n e n t i a l l y m o r e d e v i c e s a n d p r o d u c t s o n - l i n e f o r e x p o n e n t i a l l y l e s s / i t e m : c o s t , p h y s i c a l s p a c e , e n e r g y , m a t e r i a l … a l l g e n e r a t i n g m o r e c o n n e c t i o n s a n d t r a f f i c … f u n d a m e n t a l l y i m p o s s i b l e w i t h o u t i n f o r m a t i o n t h e o r y
  • 7. The ~10m limit of humans I N F O R M A T I O N Conversation - Eye Contact Facial Expressions - Pheromones Body Language - Privacy At about 1m all forms of human communication work extremely well
  • 8. The ~10m limit of humans I N F O R M A T I O N As we physically move apart all forms of human communication progressively degrade and we lose clarity and privacy Our technologies have only recently (~100 years)closed this gap across the planet The information storage story is very similar - from stories, song and dance to IT over 1000s of years - IT ~ 50 years
  • 9. V e r y e a r l y i n s i g h t i n t o i n f o r m a t i o n “ T h e m o s t i m p o r t a n t m e s s a g e i s t h e l e a s t e x p e c t e d o n e ” Petronius (c. 27 – 66 AD) was a Roman writer of the Neronian age; a noted satirist. He is identified with C. Petronius Arbiter, but the manuscript text of the Satyricon calls himTitus Petronius. Satyricon is his sole surviving work. First quoted at me when I was a student in the 1970s but I have never been able to validate, but just like Confucius, Arbiter is credited with hundreds of undocumented quotes of this nature. P E T R O N I U S A R B I T E R
  • 10. Victory/Nelson/Trafalgar 1805 England expects every man to do his duty At sea the ships are rolling, the wind is blowing, it may be raining, sleeting, snowing, and it might be dull, overcast, stormy, or night time! Very limited message sets Slow rate of communication High probability of error Can be read by the enemy ? Needs coding for secrecy British Navy 1653 & on S E M A P H O R E
  • 11. S E M A P H O R E Chappe - Napoleonic War - 1791 England expects every man to do his duty Lille to Paris communication with towers every 12 - 25 km about an hour for 150km provided all the operators were alert/awake/not indisposed! ~10 words/minute Wide ranger of message sets Slow rate of communication High probability of error Can be read by the enemy ? Needs coding for secrecy 820 × 540 - commons.wikimedia.org 170 × 231 - en.wikipedia.org 1790 & on
  • 12. S E M A P H O R E Surrey - Napoleonic War - 1822 England expects every man to do his duty Wide ranger of message sets Slow rate of communication High probability of error Can be read by the enemy ? Needs coding for secrecy Portsmouth to London comms with towers every 12 - 25 km about an hour for 150km provided all the operators were alert/awake/not indisposed! ~10 words/minute 1790 & on
  • 13. S E M A P H O R E Modern times USA and UK engineers combined the heliotrope surveying instrument (1821 Carl Friedrich Gauss) and Morse code for signalling. Henry C. Mance, working for UK government’s Persian Gulf Telegraph Department in Karachi, perfected (1869) the wireless communications apparatus he dubbed the heliograph. In 1875 Mance’s device was approved for use by the British-Indian Army. ~20 words/minute HelioGraph - Ancient China - Modern Wars ~1822
  • 14. R A I L W A Y S Changed everything T h e h i g h s p e e d transportation of people and goods a t a n i n h u m a n s p e e d a n d s c a l e demanded faster i n f o r m a t i o n transport Railway Networks demanded faster telecommunications than all train traffic Nationwide standard time was required for the first time in mankind’s history Timetables Safety Signalling Scheduling Control Orchestration
  • 15. T E L E G R A P H Saw a dash dot bubble 1837 & on
  • 16. T E L E G R A P H I N V E N T E D Railways = new industry Standardised, and very simple signalling format used to ensure high efficiency and a low error rate
  • 17. A collaboration resulting in an iconic result Vail refined the prototype produced by Morse, who retained all the patents. The ‘story’ is that; by visiting a printers and counting the number off occurrences of each letter ‘e’ was found to be dominant and so was assigned the smallest element - one dot; ‘i’ was next and was assigned two dots, and then ‘t’ with dash…and so on. M O R S G E / V A I L C O D E
  • 18. A collaboration resulting in an iconic result The efficiency of the symbol and code relationship can be gaged from the above tree with less signal space used for the most common letters and most allocated to the rarest incidences Q, Y, Z M O R S G E / V A I L C O D E . .. … …. - -- --- -..- -- -.--..
  • 19. Extended to other languages/character sets All other language adaptations lead to significant inefficiencies ! M O R S G E / V A I L C O D E Chinese Russian Japanese
  • 20. A path resulting in a transformative result C H A R A C T E R S E T S A n e v o l u t i o n t o w a r d f l e x i b i l i t y d i s a m b i g u a t i o n , a d a p t a b i l i t y , r e d u n d a n c y , reasonable efficiency, clarity, g l o b a l s t a n d a r d i s a t i o n o f c h a r a c t e r f o r m a t , s p e l l i n g and phraseology
  • 21. The transmission, processing, extraction, and utilisation of information I love thee to the depth and breadth and height My soul can reach 106783428576210048898337213498501 R E D U D A N C Y In character sets & fonts
  • 22. R E D U D A N C Y Readable with missing bits O ce m re unto th bre h, dear frie s, once m re; Or close the wa l up ith our En sh dead! In peace the 's nothing so beco s a an, As modest stilln s and h ility; B t when he bla t of war b ows in our ears, Then … Once more unto the breach, dear friends, once more; Or close the wall up with our English dead! In peace there's nothing so becomes a man, As modest stillness and humility; But when the blast of war blows in our ears, Then…
  • 23. R E D U D A N C Y Purposely shortened TXT How r u 2day Want 2 go 4 a drink @ 8 2nigt Get a curry 2 ?
  • 24. R E D U D A N C Y Image Paradox and More
  • 25. R E D U D A N C Y Image Paradox and More
  • 26. R E D U D A N C Y Image Paradox and More
  • 27. R E D U D A N C Y Image Paradox and More
  • 28. R E D U D A N C Y Image Paradox and More
  • 29. R E D U D A N C Y Image Paradox and More
  • 30. R E D U D A N C Y Image Paradox and More
  • 31. R E D U D A N C Y Image Paradox and More
  • 32. R E D U D A N C Y Image Paradox and More
  • 33. R E D U D A N C Y Image Paradox and More
  • 34. R E D U D A N C Y Image Paradox and More
  • 35. R E D U D A N C Y Image Paradox and More
  • 36. R E D U D A N C Y Image Paradox and More
  • 37. R E D U D A N C Y Image Paradox and More
  • 38. R E D U D A N C Y Image Paradox and More
  • 39. T E L E G R A P H Connecting every empire
  • 40. T E L E G R A P H T i t a n i c 1 9 1 2 w i re l e s s
  • 41. T E L E G R A P H W W I I M i l i t a r y - N a va l F re q u e n c y s e l e c t i ve f a d i n g T h e r m a l + s p e c t ra l n o i s e L o w l e ve l i n t e r f e re n c e
  • 42. T E L E G R A P H WWII Telex in use ~1986 D e v e l o p e d t o m e e t t h e n e e d f o r s p e e d + m o re a c c u ra c y + m o re a n d m o re t ra f f i c
  • 43. M o d e r n e r a B L I N K I N G Admiral Jeremiah Denton Blinks T-O-R-T-U-R-E using Morse Code as P.O.W. S E M A P H O R E
  • 44. M o d e r n e ra A l d i s L a m p WW1 & WWII Ship - Ship Ship - Shore Aircraft - Aircraft Ship - Aircraft +++ Still in use S E M A P H O R E
  • 45. C o m m e r c i a l A i r l i n e r - ATC S P E E C H R A D I O F o r m a l i s e d o p e ra t i o n s / p ro c e d u re s a n d m e s s a g e s e t s c o m p e n s a t e f o r p o o r s i g n a l s t re n g t h , i n t e r f e re n c e n o i s e , a n d t i re d n e s s + + M e s s a g e s a re g e n e ra l l y b o u n d e d a n d m o s t i m p o r t a n t l y e x p e c t e d + +
  • 46. B i r d S t r i k e E m e r g e n c y S P E E C H R A D I O C a p t a i n C h e s l e y S u l l e n b u r g e r l a n d s C a c t u s 1 5 4 9 i n t h e N Y H u d s o n R i ve r 1 5 / 0 1 / 0 9 Re a l c o c k p i t t a p e s - f l i g h t s i m u l a t i o n
  • 47. M i l i t a r y A i r c r a f t C o m b a t S P E E C H R A D I O
  • 48. M i l i t a r y H F S S B C h a n n e l S P E E C H R A D I O
  • 49. In the hierarchy to wisdom Information theory studies the transmission, processing, extraction & utilisation of information. The case of communications over a noisy channel first detailed in the 1948 paper by Claude Shannon C = B.T. log2(1+ S/N) Wisdom Knowledge Information Data Noise Human activity: Government, Services Commerce, Industry, Farming, Society, Education, Research, Development Continually analysed, filtered, rationalised, published Created by all human/machine/ network activities 365 x 24 Meaning and implications abstracted Making the best decisions possible based on all our accumulated knowledge models & experiences I N F O R M A T I O N
  • 50. Describe, define & quantify I N F O R M A T I O N Bits Bytes Bauds Signal Noise Coding Storage Decoding Bandwidth Processing Encryption Decryption Interference Transmission +++++ Bits Bytes Bauds Signal Noise Coding Bandwidth Transmission
  • 51. Describe, define & quantify I N F O R M A T I O N Two States = 1; 0Bits = Binary Digits = Bytes = Collection of Bits = Typically an 8 Bit Byte Bauds = Signalling element rate = or = Bit Rate For reasons associated with matching the transmission channel / medium and/or dealing with noise and/or sources of interfer
  • 52. I N F O R M A T I O N Claude Shannon Original Claude Elwood Shannon 1916 – 2001) mathematician, electrical engineer, and cryptographer at Bell Labs Work on cryptography 1940 to 1945 - to prove SIGSALY coding linking the U.S. President with Winston Churchill by HF radio-telephone could not be broken Founded information theory during the same period with a landmark paper, A Mathematical Theory of Communication, 1948
  • 53. E N T R 0 P Y A measure of order Order implies less information Disorder implies a lot of information Expected messages implies less information Unexpected messages implies more information Less Ordered Greater Entropy More Information More Ordered Lower Entropy Less Information
  • 54. The basic of what we mean I N F O R M A T I O N y x
  • 55. The basics of what we mean I N F O R M A T I O N y x Information = x;y;white
  • 56. The basic of what we mean I N F O R M A T I O N y x Information = x;y;white; (dot colour, size, location)
  • 57. The basic of what we mean I N F O R M A T I O N y x Information = x;y;white; (dots, colours, sizes, locations)
  • 58. The basic of what we mean I N F O R M A T I O N y x Info= x;y;colourgrad; (shapes, colours, sizes, locations)
  • 59. Fundamental relationship I N F O R M A T I O N Complexity Information Units ?? Units ?? What are the Law(s) and/or relationship(s) defining the shape of this line? Information = f(complexity)
  • 60. Channel Copper Wire Optical Fibre Wireless Receiver Demodulation Decoding Error Correction Transmitter Coding Modulation Degraders Noise Interference Channel Variations Reflections Describe, define & quantify I N F O R M A T I O N Sent Bit Stream Recovered Bit Stream Signal Distorted Signal Transmission information movement A B Signal + Noise S/N Ratio Error Rate ???? Error Rate ???? Spectrum of Stream
  • 61. Dictionary definition - basic I N F O R M A T I O N noun [mass noun] 1 facts provided or learned about something or someone: a vital piece of information. • [count noun] Law a charge lodged with a magistrates' court: the tenant may lay an information against his landlord. 2 what is conveyed or represented by a particular arrangement or sequence of things: genetically transmitted information. • Computing data as processed, stored, or transmitted by a computer. • (in information theory) a mathematical quantity expressing the probability of occurrence of a particular sequence of symbols, impulses, etc., as against that of alternative sequences. ORIGIN late Middle English (also in the sense ‘formation of the mind, teaching’), via Old French from Latin informatio(n-), from the verb informare (see inform). T h i s i s t h e ke r n e l o f w h a t we h a ve t o u n d e r s t a n d a n d w h y w e n e e d a t h e o r y a n d d i m e n s i o n e d m o d e l
  • 62. Describe, define & quantify I N F O R M A T I O N Storage Magnetic Optical Thermal Decoding Error Correction Coding Modulation Degraders Noise Interference Natural Decay Data In Recovered Data OutSignal Distorted Signal Conditioning information storage A B Error Rate ????
  • 63. Describe, define & quantify I N F O R M A T I O N Channel Copper Wire Optical Fibre Wireless Receiver Demodulation Decoding Error Correction Transmitter Coding Modulation Degraders Noise Interference Channel Variations Reflections Bit Stream In Recovered Bit StreamSignal Distorted Signal Transmission information movement A B Signal + Noise S/N Ratio Error Rate ???? Error Rate ????
  • 64. Of an Info Source E N T R O P Y All information theory analysis assumes binary (Base 2) as the foundation level and is then expanded to the more complex Ternary…’M’ary telecom, computing and storage up to and including analogue systems such as AM, FM, SSB wireless, all forms of imagery, languages including atomic interactions. Based on the probability mass function* of each symbol, the Shannon Entropy (bits/symbol) is given by: *PMF gives the probability that a discrete random variable is exactly = to some value: it is a primary means of defining a discrete probability distribution PMF differs from a probability density function (pdf) which is associated with continuous rather than discrete random variables; the probability density function must be integrated over an interval to yield a probability Where = the occurrence probability of the -th symbol
  • 65. Information Source E N T R O P Y The entropy of a discrete random bit stream (or discrete variable X) is a measure of the uncertainty when only its distribution is known: It is maximised when all bits are equiprobable: p(x) = 1/n; giving H(X) = log(n) where = probability of a head; and = probability of a tail An easily digested example is the tossing of a fair coin: Then: Notice that -log (p) = log (1/p) and by convention Limit -p.log(p) = 0 as p approaches 0
  • 66. Information Source E N T R O P Y The entropy of a discrete random bit stream (or discrete variable X) is a measure of the uncertainty when only its distribution is known: It is maximised when all bits are equiprobable: p(x) = 1/n; giving H(X) = log(n) where = probability of a head; and = probability of a tail An easily digested example is the tossing of a fair coin: Then: Notice that -log (p) = log (1/p) and by convention Limit -p.log(p) = 0 as p approaches 0
  • 67. Information Source E N T R O P Y Plotting the entropy of a binary case with a range of bit probabilities using this formula: Coin with Tails on both sides …illustrates the importance of = 1/2 Another way of looking at this would be gambling with biased coins: Coin with Heads on both sidesFair Coin
  • 68. Mutual Information E N T R O P Y A measure of the information obtained about one signal by observing another Used to maximise the information shared between transmitted and received signals The mutual information of X relative to Y is given by: This is an important property in the fields of complex modulation, coding and encryption
  • 69. T e l e c o m m u n i c a t i o n I N F O R M A T I O N 1138 × 1364 - atlantic-cable.com A p r i m a r y d r i v e r > 1 0 0 y e a r s o v e r t a k e n b y c o m p u t i n g , A I r o b o t i c s , b i o l o g y . . m a t e r i a l s
  • 70. How many bit/s ?? C A P I C I T Y Channel Copper Wire Optical Fibre Wireless Receiver Demodulation Decoding Error Correction Transmitter Coding Modulation Degraders Noise Interference Channel Variations Reflections Bit Stream In Recovered Bit StreamSignal Distorted Signal Transmission information movement A B Signal + Noise S/N Ratio Error Rate ???? Error Rate ????
  • 71. If it is wrong D E M O I
  • 72. L o s s y c o d i n g D E M O 2
  • 73. L o w / N o S i g n a l D E M O 3
  • 74. S/ N Analogue D E M O 4 L o g O u t G OTO L I V E A P P S 1
  • 75. Transmission/Storage upper bound S H A N N O N L I M I T The Shannon - Hartley Law was not originally derived as detailed below; they took a far more probabilistic and complex path. For our ease of understanding we assume an easier/engineering approach/route that definitely upsets purists! Let us assume some time series analogue electrical signal accompanied by random noise in the form: Signal = vs(t) and Noise = vn(t) In power terms this becomes: Signal Power = Vs/R = S and Noise Power = Vn/R = N2 2 Where: V= rms value of v; and R = a dissipating resistive load
  • 76. Transmission/Storage upper bound S H A N N O N L I M I T It is also assumed that the: Signal = vs(t) and Noise = vn(t) are statically independent - ie knowing something about one gives you no idea about the other - they are mathematically orthogonal. We now assume a quantisation if the signal into symbols or numbers based on the relative rms values such that: Which, with a little mathematical juggling becomes:
  • 77. Transmission/Storage upper bound S H A N N O N L I M I T It is also assumed that the: Signal = vs(t) and Noise = vn(t) are statically independent - ie knowing something about one gives you no idea about the other - they are mathematically orthogonal. We now assume a quantisation if the signal into symbols or numbers based on the relative rms values such that: Which, with a little mathematical juggling becomes:
  • 78. Transmission/Storage upper bound S H A N N O N L I M I T Rearranging further, this becomes: If we now make M - b Bit measurements in a time T, the amount of information bits collected will be : Now the Sampling Theorem tells us that the highest practical rate M/T is:
  • 79. Transmission/Storage upper bound S H A N N O N L I M I T And just a little more rearranging gets us to the ‘bottom line’: This is the fastest rate information (an upper bound) that can be transmitted over a given channel So the maximum amount of information that can be transported in a given time T over this channel is: I = B.T bits/second bits
  • 80. S/N dB BW Hz Duration T seconds I = B.T log2(1 + k.S/N) I ~ B.T.K.S/NdB vv Transmission/Storage upper bound S H A N N O N L I M I T
  • 81. The same information t r a n s m i t t e d o v e r a channel in three different modes using S/N, BW and T as variable factors S/N dB Duration T seconds BW Hz Transmission/Storage upper bound S H A N N O N L I M I T
  • 82. The same information t r a n s m i t t e d o v e r a channel in three different modes using S/N, BW and T as variable factors Transmission/Storage noise impact E R R O R R A T E - S / N Suppose we transmit a binary signal of two voltage levels The received signal will have picked up thermal and other forms of noise y(t) = the bit stream n(t) = the additive noise
  • 83. Transmission/Storage noise impact E R R O R R A T E - S / N Suppose we transmit a binary signal represented by two voltage levels The received signal will have picked up thermal and other forms of noise y(t) = the bit stream n(t) = the additive noise
  • 84. Transmission/Storage noise impact E R R O R R A T E - S / N P1 = 0.5 P0 = 0.50 1 0 1 P1 = ? P0 = ?
  • 85. Transmission/Storage noise impact E R R O R R A T E - S / N
  • 86. ≠ E R R O R S Decisions
  • 87. E R R O R S Decisions
  • 88. E R R O R S Decisions
  • 89. E R R O R S Decisions
  • 90. Upper bound/Limit S H R N N N O N
  • 91. A London cenral city location R E A L I T Y W I F I T seconds S + N Power B = 22MHz
  • 92. S/ N Analogue D E M O 4 L o g O u t G OTO L I V E A P P S 2