SlideShare a Scribd company logo
1 of 32
‘FOURIER
SERIES’
&
‘ITS APPLICATION’
Made By :-
VENKATESH DUBEY (120150119125)
SMIT JOSHI (120150119027)
GUIDED BY: -
Prof. K.K.Pokar
* CONTENTS *
 FOURIER SERIES.
 APPLICATION OF FOURIER SERIES :-
 FORCED OSCILLATION.
 APPROXIMATION BY TRIGNOMETRIC
POLYNOMIALS.
JOSEPH FOURIER
(Founder of Fourier series)
PLAY
FOURIER SERIES, which is an infinite series representation of such
functions in terms of ‘sine’ and ‘cosine’ terms, is useful here.
Thus, FOURIER SERIES, are in certain sense, more UNIVERSAL than
TAYLOR’s SERIES as it applies to all continuous, periodic functions
and also to the functions which are discontinuous in their values
and derivatives. FOURIER SERIES a very powerful method to solve
ordinary and partial differential equation, particularly with
periodic functions appearing as non-homogenous terms.
As we know that TAYLOR SERIES representation of functions are
valid only for those functions which are continuous and
differentiable. But there are many discontinuous periodic
function which requires to express in terms of an infinite series
containing ‘sine’ and ‘cosine’ terms.
Fourier series make use of the orthogonality relationships
of the sine and cosine functions.
FOURIER SERIES can be generally written as,
Where,
……… (1.1)
……… (1.2)
……… (1.3)
BASIS FORMULAE OF FOURIER SERIES
The Fourier series of a periodic function ƒ(x) with period 2п is
defined as the trigonometric series with the coefficient a0, an
and bn, known as FOURIER COEFFICIENTS, determined by
formulae (1.1), (1.2) and (1.3).
The individual terms in Fourier Series are known as
HARMONICS.
Every function ƒ(x) of period 2п satisfying following conditions
known as DIRICHLET’S CONDITIONS, can be expressed in
the form of Fourier series.
EXAMPLE:
sin-1x, we can say that the function sin-1x cant be
expressed as Fourier series as it is not a single valued
function.
tanx, also in the interval (0,2п) cannot be
expressed as a Fourier Series because it is infinite at x=
п/2.
CONDITIONS :-
1. ƒ(x) is bounded and single value.
( A function ƒ(x) is called single valued if each point
in the domain, it has unique value in the range.)
2. ƒ(x) has at most, a finite no. of maxima and minima in
the interval.
3. ƒ(x) has at most, a finite no. of discontinuities in the
interval.
Fourier series for EVEN and ODD functions
If function ƒ(x) is an even periodic function with the period
2L (–L ≤ x ≤ L), then ƒ(x)cos(nпx/L) is even while ƒ(x)sin(nпx/L)
is odd.
Thus the Fourier series expansion of an even periodic
function ƒ(x) with period 2L (–L ≤ x ≤ L) is given by,
L
nx
a
a
xf
n
n

cos
2
)(
1
0




dxxf
L
a
L

0
0 )(
2
Where,
,2,1cos)(
2
0
  ndx
L
xn
xf
L
a
L
n

0nb
EVEN FUNCTIONS
If function ƒ(x) is an even periodic function with the period
2L (–L ≤ x ≤ L), then ƒ(x)cos(nпx/L) is even while ƒ(x)sin(nпx/L) is
odd.
Thus the Fourier series expansion of an odd periodic function
ƒ(x) with period 2L (–L ≤ x ≤ L) is given by,
)sin()(
1 L
xn
bxf
n
n





Where,
,2,1sin)(
2
0
  ndx
L
xn
xf
L
b
L
n

ODD FUNCTIONS
Examples..
Question.: Find the fourier series of f(x) = x2+x , - ≤ x ≤.
Solution.: The fourier series of ƒ(x) is given by,
Using above,
dxxfa 



)(
1
0
dxxx



)(
1 2


 







23
1 23
xx







2323
1 22 33

 0
3
3
2
a

nxdxxfan cos)(
1




Now,
nxdxxx cos)(
1 2




2
22
22
32
2
)1(4
)1(
)12(
)1(
)12(
1
cos
)12(
cos
)12(
1
sin
)2(
cos
)12(
sin
)(
1
n
nn
n
n
n
n
n
nx
n
nx
x
n
nx
xx
n
nn







 





















 





 


















 
n
n
nn
n
nx
n
nx
x
n
nx
xx
n
n
nn
)1(2
)1(
)1(
)(
)1(
)(1
cos
)2(
sin
)12(
cos
)(
1
22
22
32
2

















































nxdxxx sin)(
1 2




nxdxxfbn sin)(
1




Now,
Hence fourier series of, f(x) = x2+x,








 



1
2
2
2
sin
)1(2
cos
)1(4
3 n
nn
nx
n
nx
n
xx

APPLICATIONS
OF
FOURIER SERIES
1. Forced Oscillation
Consider a mass-spring system as before, where we have a
mass m on a spring with spring
constant k, with damping c, and a force F(t) applied to the
mass.
Suppose the forcing function F(t) is 2L-periodic for some
L > 0.
The equation that governs this
particular setup is
The general solution consists of the
complementary solution xc, which
solves the associated
homogeneous equation mx” + cx’ + kx = 0, and a particular
solution of (1) we call xp.
mx”(t) + cx’(t) + kx(t) = F(t)
For c > 0,
the complementary solution xc will decay as time goes by.
Therefore, we are mostly interested in a
particular solution xp that does not decay and is periodic with
the same period as F(t). We call this
particular solution the steady periodic solution and we write it
as xsp as before. What will be new in
this section is that we consider an arbitrary forcing function
F(t) instead of a simple cosine.
For simplicity, let us suppose that c = 0. The problem with c >
0 is very similar. The equation
mx” + kx = 0
has the general solution,
x(t) = A cos(ωt) + B sin(ωt);
Where,
Any solution to mx”(t) + kx(t) = F(t) is of the form
A cos(ωt) + B sin(ωt) + xsp.
The steady periodic solution xsp has the same period as F(t).
In the spirit of the last section and the idea of undetermined
coecients we first write,
Then we write a proposed steady periodic solution x as,
where an and bn are unknowns. We plug x into the deferential
equation and solve for an and bn in terms of cn and dn.
2. Heat equation
Heat on an insulated wire
Let us first study the heat equation. Suppose that we have a wire
(or a thin metal rod) of length L that is insulated except at the
endpoints. Let “x” denote the position along the wire and let “t”
denote time. See Figure,
Let u(x; t) denote the temperature at point x at time t. The
equation governing this setup is the so-called one-dimensional
heat equation:
where k > 0 is a constant (the thermal conductivity of the
material). That is, the change in heat at a
specific point is proportional to the second derivative of the heat
along the wire. This makes sense; if at a fixed t the graph of the
heat distribution has a maximum (the graph is concave down),
then heat flows away from the maximum. And vice-versa.
Where,
T
x
tA
Q
k



We will generally use a more convenient notation for partial
derivatives. We will write ut instead of δu/δt , and we will write
uxx instead of δ2u/δx2 With this notation the heat equation
becomes,
ut = k.uxx
For the heat equation, we must also have some boundary
conditions. We assume that the ends of the wire are either
exposed and touching some body of constant heat, or the ends
are insulated. For example, if the ends of the wire are kept at
temperature 0, then we must have the conditions.
u(0; t) = 0 and u(X; t) = 0
The Method of Separation of Variables
Let us divide the partial differential equation shown earlier by the
positive number σ, define κ/σ ≡ α and rename α f(x, t) as f (x, t)
again. Then we have,
We begin with the homogeneous case f(x, t) ≡ 0. To implement
the method of separation of variables we write
T(x, t) = z(t) y(x), thus expressing T(x, t) as the product of a
function of t and a function of x. Using ̇z to denote dz/dt and y’,
y” to denote dy/dx, d2y/dx2, respectively, we obtain,
Assuming z(t), y(x) are non-zero, we then have,
Since the left hand side is a constant with respect to x and the
right hand side is a constant with respect to t, both sides
must, in fact, be constant. It turns out that constant should be
taken to be non-positive, so we indicate it as −ω2; thus,
and we then have two ordinary differential equations ,
We first deal with the second equation, writing it as,
The general solution of this equation takes the form ,
y(x) = c cosωx + d sinωx.
Since we want y(x) to be periodic with period L the choices for ω
are,
The choice k= 0 is only useful for the cosine; cos0 = 1. Indexing
the coefficients c, d to correspond to the indicated choices of ω,
we have solutions for the y equation in the forms,
C0 = constant.
Now, for each indicated choice ω=2πk/L the z equation takes
the form,
Which has the general solution,
Absorbing the constant c appearing here into the earlier ck, dk
we have solutions of the homogeneous partial differential
equation in the form, T (x, t) = c0
Since we are working at this point with a linear homogeneous
equation, any linear combination of these solutions will also be
a solution. This means we can represent a whole family of
solutions, involving an infinite number of parameters, in the
form,
It should be noted that this expression is a representation of T
(x, t) in the form of a Fourier series with coefficients depending
on the time, t:
Where,
The coefficients ck(t), dk(t), k= 1,2,3,···in the above representation
of T(x, t) remain undetermined, of course, to precisely the extent
that the constants ck, dk remain undetermined. In order to obtain
definite values for these coefficients it is necessary to use the
initial temperature distribution T0(x). This function has a Fourier
series representation,
Where,
To obtain agreement at t= 0 between our Fourier series
representation of T(x,0) and this Fourier series representation
of T0(x) we require, since
exp(−α4π2k2 / L2 .0)= 1,
c0=a0, ck=ak, dk=bk, k= 1,2,3,···
Thus we have, in fact, the heat equation,
Where, a0, ak, bk, k= 1,2,3,··· are Fourier coefficients of initial
temperature distribution T0 (x).
!!!…THE END…!!!
Fourier series

More Related Content

What's hot

Fourier Series - Engineering Mathematics
Fourier Series -  Engineering MathematicsFourier Series -  Engineering Mathematics
Fourier Series - Engineering MathematicsMd Sadequl Islam
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 
the fourier series
the fourier seriesthe fourier series
the fourier seriessafi al amu
 
Application of fourier series
Application of fourier seriesApplication of fourier series
Application of fourier seriesGirish Dhareshwar
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transformKrishna Jangid
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformationWasim Shah
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Properties of fourier transform
Properties of fourier transformProperties of fourier transform
Properties of fourier transformNisarg Amin
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsJayanshu Gundaniya
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformskalung0313
 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.isratzerin6
 

What's hot (20)

Fourier Series - Engineering Mathematics
Fourier Series -  Engineering MathematicsFourier Series -  Engineering Mathematics
Fourier Series - Engineering Mathematics
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
 
Application of fourier series
Application of fourier seriesApplication of fourier series
Application of fourier series
 
Fourier series
Fourier series Fourier series
Fourier series
 
Z Transform
Z TransformZ Transform
Z Transform
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformation
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Properties of fourier transform
Properties of fourier transformProperties of fourier transform
Properties of fourier transform
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.
 

Viewers also liked

Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
CM3 - Transformée de Fourier
CM3 - Transformée de FourierCM3 - Transformée de Fourier
CM3 - Transformée de FourierPierre Maréchal
 
Lamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleLamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleAsmae Lamini
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierMehdi Maroun
 
fourier series
fourier seriesfourier series
fourier series8laddu8
 
chap3 numerisation_des_signaux
chap3 numerisation_des_signauxchap3 numerisation_des_signaux
chap3 numerisation_des_signauxBAKKOURY Jamila
 
Ener1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriqueEner1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriquePierre Maréchal
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentationelliehood
 

Viewers also liked (13)

Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Les Séries de Fourier
Les Séries de FourierLes Séries de Fourier
Les Séries de Fourier
 
CM3 - Transformée de Fourier
CM3 - Transformée de FourierCM3 - Transformée de Fourier
CM3 - Transformée de Fourier
 
Lamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleLamini&farsane traitement de_signale
Lamini&farsane traitement de_signale
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
fourier series
fourier seriesfourier series
fourier series
 
Séries de Fourier
Séries de FourierSéries de Fourier
Séries de Fourier
 
chap3 numerisation_des_signaux
chap3 numerisation_des_signauxchap3 numerisation_des_signaux
chap3 numerisation_des_signaux
 
CM4 - Transformée en z
CM4 - Transformée en zCM4 - Transformée en z
CM4 - Transformée en z
 
Ener1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriqueEner1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électrique
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentation
 

Similar to Fourier series

Similar to Fourier series (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptx
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Clarke fourier theory(62s)
Clarke   fourier theory(62s)Clarke   fourier theory(62s)
Clarke fourier theory(62s)
 
The wave equation
The wave equationThe wave equation
The wave equation
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Notes pde pt3
Notes pde pt3Notes pde pt3
Notes pde pt3
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
Laplace
LaplaceLaplace
Laplace
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
lecture_6_-_fourier_series_0.pdf
lecture_6_-_fourier_series_0.pdflecture_6_-_fourier_series_0.pdf
lecture_6_-_fourier_series_0.pdf
 
senior seminar
senior seminarsenior seminar
senior seminar
 
presentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptxpresentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptx
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
Lec1 Ocsillation and Waves
Lec1 Ocsillation and WavesLec1 Ocsillation and Waves
Lec1 Ocsillation and Waves
 
160280102001 c1 aem
160280102001 c1 aem160280102001 c1 aem
160280102001 c1 aem
 
Statistica theromodynamics
Statistica theromodynamicsStatistica theromodynamics
Statistica theromodynamics
 
Engwavefunction
EngwavefunctionEngwavefunction
Engwavefunction
 

More from kishor pokar

Vectors space definition with axiom classification
Vectors space definition with axiom classificationVectors space definition with axiom classification
Vectors space definition with axiom classificationkishor pokar
 
system of linear equations by Diler
system of linear equations by Dilersystem of linear equations by Diler
system of linear equations by Dilerkishor pokar
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
Basics of derivative with help of tangents and secants
Basics of derivative with help of tangents and secantsBasics of derivative with help of tangents and secants
Basics of derivative with help of tangents and secantskishor pokar
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equationkishor pokar
 

More from kishor pokar (11)

Vectors space definition with axiom classification
Vectors space definition with axiom classificationVectors space definition with axiom classification
Vectors space definition with axiom classification
 
system of linear equations by Diler
system of linear equations by Dilersystem of linear equations by Diler
system of linear equations by Diler
 
Echelon forms
Echelon formsEchelon forms
Echelon forms
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Secant method
Secant methodSecant method
Secant method
 
Bisection method
Bisection methodBisection method
Bisection method
 
Limit
LimitLimit
Limit
 
Basics of derivative with help of tangents and secants
Basics of derivative with help of tangents and secantsBasics of derivative with help of tangents and secants
Basics of derivative with help of tangents and secants
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 

Recently uploaded

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 

Fourier series

  • 1. ‘FOURIER SERIES’ & ‘ITS APPLICATION’ Made By :- VENKATESH DUBEY (120150119125) SMIT JOSHI (120150119027) GUIDED BY: - Prof. K.K.Pokar
  • 2. * CONTENTS *  FOURIER SERIES.  APPLICATION OF FOURIER SERIES :-  FORCED OSCILLATION.  APPROXIMATION BY TRIGNOMETRIC POLYNOMIALS.
  • 3. JOSEPH FOURIER (Founder of Fourier series) PLAY
  • 4. FOURIER SERIES, which is an infinite series representation of such functions in terms of ‘sine’ and ‘cosine’ terms, is useful here. Thus, FOURIER SERIES, are in certain sense, more UNIVERSAL than TAYLOR’s SERIES as it applies to all continuous, periodic functions and also to the functions which are discontinuous in their values and derivatives. FOURIER SERIES a very powerful method to solve ordinary and partial differential equation, particularly with periodic functions appearing as non-homogenous terms. As we know that TAYLOR SERIES representation of functions are valid only for those functions which are continuous and differentiable. But there are many discontinuous periodic function which requires to express in terms of an infinite series containing ‘sine’ and ‘cosine’ terms.
  • 5.
  • 6. Fourier series make use of the orthogonality relationships of the sine and cosine functions. FOURIER SERIES can be generally written as, Where, ……… (1.1) ……… (1.2) ……… (1.3)
  • 7. BASIS FORMULAE OF FOURIER SERIES The Fourier series of a periodic function ƒ(x) with period 2п is defined as the trigonometric series with the coefficient a0, an and bn, known as FOURIER COEFFICIENTS, determined by formulae (1.1), (1.2) and (1.3). The individual terms in Fourier Series are known as HARMONICS. Every function ƒ(x) of period 2п satisfying following conditions known as DIRICHLET’S CONDITIONS, can be expressed in the form of Fourier series.
  • 8. EXAMPLE: sin-1x, we can say that the function sin-1x cant be expressed as Fourier series as it is not a single valued function. tanx, also in the interval (0,2п) cannot be expressed as a Fourier Series because it is infinite at x= п/2. CONDITIONS :- 1. ƒ(x) is bounded and single value. ( A function ƒ(x) is called single valued if each point in the domain, it has unique value in the range.) 2. ƒ(x) has at most, a finite no. of maxima and minima in the interval. 3. ƒ(x) has at most, a finite no. of discontinuities in the interval.
  • 9. Fourier series for EVEN and ODD functions If function ƒ(x) is an even periodic function with the period 2L (–L ≤ x ≤ L), then ƒ(x)cos(nпx/L) is even while ƒ(x)sin(nпx/L) is odd. Thus the Fourier series expansion of an even periodic function ƒ(x) with period 2L (–L ≤ x ≤ L) is given by, L nx a a xf n n  cos 2 )( 1 0     dxxf L a L  0 0 )( 2 Where, ,2,1cos)( 2 0   ndx L xn xf L a L n  0nb EVEN FUNCTIONS
  • 10. If function ƒ(x) is an even periodic function with the period 2L (–L ≤ x ≤ L), then ƒ(x)cos(nпx/L) is even while ƒ(x)sin(nпx/L) is odd. Thus the Fourier series expansion of an odd periodic function ƒ(x) with period 2L (–L ≤ x ≤ L) is given by, )sin()( 1 L xn bxf n n      Where, ,2,1sin)( 2 0   ndx L xn xf L b L n  ODD FUNCTIONS
  • 11. Examples.. Question.: Find the fourier series of f(x) = x2+x , - ≤ x ≤. Solution.: The fourier series of ƒ(x) is given by, Using above, dxxfa     )( 1 0 dxxx    )( 1 2            23 1 23 xx
  • 12.        2323 1 22 33   0 3 3 2 a  nxdxxfan cos)( 1     Now, nxdxxx cos)( 1 2     2 22 22 32 2 )1(4 )1( )12( )1( )12( 1 cos )12( cos )12( 1 sin )2( cos )12( sin )( 1 n nn n n n n n nx n nx x n nx xx n nn                                                         
  • 16. Consider a mass-spring system as before, where we have a mass m on a spring with spring constant k, with damping c, and a force F(t) applied to the mass. Suppose the forcing function F(t) is 2L-periodic for some L > 0. The equation that governs this particular setup is The general solution consists of the complementary solution xc, which solves the associated homogeneous equation mx” + cx’ + kx = 0, and a particular solution of (1) we call xp. mx”(t) + cx’(t) + kx(t) = F(t)
  • 17. For c > 0, the complementary solution xc will decay as time goes by. Therefore, we are mostly interested in a particular solution xp that does not decay and is periodic with the same period as F(t). We call this particular solution the steady periodic solution and we write it as xsp as before. What will be new in this section is that we consider an arbitrary forcing function F(t) instead of a simple cosine. For simplicity, let us suppose that c = 0. The problem with c > 0 is very similar. The equation mx” + kx = 0 has the general solution, x(t) = A cos(ωt) + B sin(ωt); Where,
  • 18. Any solution to mx”(t) + kx(t) = F(t) is of the form A cos(ωt) + B sin(ωt) + xsp. The steady periodic solution xsp has the same period as F(t). In the spirit of the last section and the idea of undetermined coecients we first write, Then we write a proposed steady periodic solution x as, where an and bn are unknowns. We plug x into the deferential equation and solve for an and bn in terms of cn and dn.
  • 20. Heat on an insulated wire Let us first study the heat equation. Suppose that we have a wire (or a thin metal rod) of length L that is insulated except at the endpoints. Let “x” denote the position along the wire and let “t” denote time. See Figure,
  • 21. Let u(x; t) denote the temperature at point x at time t. The equation governing this setup is the so-called one-dimensional heat equation: where k > 0 is a constant (the thermal conductivity of the material). That is, the change in heat at a specific point is proportional to the second derivative of the heat along the wire. This makes sense; if at a fixed t the graph of the heat distribution has a maximum (the graph is concave down), then heat flows away from the maximum. And vice-versa. Where, T x tA Q k   
  • 22. We will generally use a more convenient notation for partial derivatives. We will write ut instead of δu/δt , and we will write uxx instead of δ2u/δx2 With this notation the heat equation becomes, ut = k.uxx For the heat equation, we must also have some boundary conditions. We assume that the ends of the wire are either exposed and touching some body of constant heat, or the ends are insulated. For example, if the ends of the wire are kept at temperature 0, then we must have the conditions. u(0; t) = 0 and u(X; t) = 0
  • 23. The Method of Separation of Variables Let us divide the partial differential equation shown earlier by the positive number σ, define κ/σ ≡ α and rename α f(x, t) as f (x, t) again. Then we have, We begin with the homogeneous case f(x, t) ≡ 0. To implement the method of separation of variables we write T(x, t) = z(t) y(x), thus expressing T(x, t) as the product of a function of t and a function of x. Using ̇z to denote dz/dt and y’, y” to denote dy/dx, d2y/dx2, respectively, we obtain,
  • 24. Assuming z(t), y(x) are non-zero, we then have, Since the left hand side is a constant with respect to x and the right hand side is a constant with respect to t, both sides must, in fact, be constant. It turns out that constant should be taken to be non-positive, so we indicate it as −ω2; thus,
  • 25. and we then have two ordinary differential equations , We first deal with the second equation, writing it as, The general solution of this equation takes the form , y(x) = c cosωx + d sinωx. Since we want y(x) to be periodic with period L the choices for ω are,
  • 26. The choice k= 0 is only useful for the cosine; cos0 = 1. Indexing the coefficients c, d to correspond to the indicated choices of ω, we have solutions for the y equation in the forms, C0 = constant. Now, for each indicated choice ω=2πk/L the z equation takes the form, Which has the general solution,
  • 27. Absorbing the constant c appearing here into the earlier ck, dk we have solutions of the homogeneous partial differential equation in the form, T (x, t) = c0 Since we are working at this point with a linear homogeneous equation, any linear combination of these solutions will also be a solution. This means we can represent a whole family of solutions, involving an infinite number of parameters, in the form,
  • 28. It should be noted that this expression is a representation of T (x, t) in the form of a Fourier series with coefficients depending on the time, t: Where, The coefficients ck(t), dk(t), k= 1,2,3,···in the above representation of T(x, t) remain undetermined, of course, to precisely the extent that the constants ck, dk remain undetermined. In order to obtain definite values for these coefficients it is necessary to use the initial temperature distribution T0(x). This function has a Fourier series representation,
  • 29. Where, To obtain agreement at t= 0 between our Fourier series representation of T(x,0) and this Fourier series representation of T0(x) we require, since exp(−α4π2k2 / L2 .0)= 1, c0=a0, ck=ak, dk=bk, k= 1,2,3,···
  • 30. Thus we have, in fact, the heat equation, Where, a0, ak, bk, k= 1,2,3,··· are Fourier coefficients of initial temperature distribution T0 (x).