SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
¨ˆ
SEQUENCIA DE FIBONACCI
Aspectos matem´ticos
a
Rodrigo Thiago Passos Silva
rodrigotpsilva@gmail.com
A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia de n´meros reais
ue
e
ue
u
dada por

1,



F (n) = Fn = 1,



Fn−1 + Fn−2

num´rica, ou seja, uma fun¸˜o F : N → R
e
ca
se n = 1
se n = 2 .
se n ≥ 3

Em outras palavras, ´ uma seq¨ˆncia cujos dois primeiros termos s˜o iguais a 1 e os demais correspondem
e
ue
a
a
` soma dos dois anteriores. Os primeiros termos da seq¨ˆncia s˜o:
ue
a
F1 = 1

F2 = 1

F3 = 2

F4 = 3

F5 = 5

F6 = 8

F7 = 13

F8 = 21.

Observemos agora que
F1 = 1 = F3 − 1
F1 + F2 = 2 = F4 − 1
F1 + F2 + F3 = 4 = F5 − 1
F1 + F2 + F3 + F4 = 7 = F6 − 1
F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1.
n

Fi = Fn+2 − 1 .

Portanto, conjecturemos que
i=1

Demonstra¸˜o
ca
´ a
Utilizaremos o Princ´
ıpio da Indu¸ao Matem´tica. E f´cil observar que a propriedade conjecturada ´
c˜
a
e
1

Fi = 1 e F1+2 − 1 = F3 − 1 = 2 − 1 = 1.

v´lida para n = 1 pois
a
i=1

k

Fi = Fk+2 − 1 queremos

Supondo que a propriedade ´ v´lida para n = k, ou seja, que ´ verdade P (k) :
e a
e
i=1
k+1

Fi = Fk+3 − 1 ´ v´lida.
e a

mostrar que P (k + 1) :
i=1

Somando-se Fk+1 em ambos os lados da igualdade assumida como hip´tese temos
o
k

Fi + Fk+1 = Fk+2 + Fk+1 − 1.
i=1
k+1

O lado esquerdo equivale a

Fi e, como o termo posterior na seq¨ˆncia de Fibonacci ´ dado pela soma
ue
e
i=1
k+1

dos dois anteriores, o lado direito equivale a Fk+3 − 1. Assim, concluimos que

Fi = Fk+3 − 1 como
i=1

quer´
ıamos demonstrar.

1
Agora, observemos a soma dos termos da seq¨ˆncia de ´
ue
ındice ´
ımpar
n=1
n=2
n=3

F1 = 1 = F2
F1 + F3 = 3 = F4

F1 + F3 + F5 = 8 = F6 .

n

Conjecturemos, ent˜o, que
a

F2i−1 = F2n .
i=1

Demonstra¸˜o
ca
1

A propriedade conjecturada ´ v´lida para n = 1 pois
e a

F2i−1 = F1 = 1 e F2n = 1.
i=1
k

Supomos que ela ´ v´lida tamb´m para n = k, ou seja, que
e a
e

F2i−1 = F2k ´ verdadeiro. Somando-se o
e
i=1

termo F2k+1 em ambos os lados da hip´tese indutiva obtemos
o
k

F2i−1 + F2k+1 = F2k + F2k+1 .
i=1

Ultilizando-se racioc´
ınio an´logo ao da demonstra¸ao anterior conclu´
a
c˜
ımos que a igualdade acima ´ igual
e
a
k+1

F2i−1 = F2k+2 = F2(k+1) .
i=1

Da´ conclu´
ı
ımos que se a propriedade ´ v´lida para n = k ´ tamb´m v´lida para n = k + 1. Portanto, pelo
e a
e
e
a
princ´
ıpio da indu¸˜o matem´tica, ´ v´lida para todo n > 1.
ca
a
e a

Podemos observar tamb´m o comportamento da soma dos termos da seq¨ˆncia de ´
e
ue
ındice par
n=1
n=2
n=3

F2 = 1 = F3 − 1
F2 + F4 = 4 = F5 − 1

F2 + F4 + F6 = 12 = F7 − 1.

n

F2i = F2n+1 − 1 .

Logo, podemos conjecturar que
i=1

Demonstra¸˜o
ca
Tomemos a soma dos termos da seq¨ˆncia de Fibonacci at´ o 2n-´simo termo. Temos
ue
e
e
2n

Fi = F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n = F2n+2 − 1.
i=1

Tomemos a soma dos termos ´
ımpares da seq¨ˆncia de Fibonacci at´ o termo de ´
ue
e
ındice 2n − 1 (i.e., os n
primeiros ´
ımpares). Temos
n

F2i−1 = F1 + F3 + F5 + · · · + F2n−1 = F2n .
i=1

2
Subtraindo a segunda equa¸˜o da primeira obtemos
ca
(F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n ) − (F1 + F3 + F5 + · · · + F2n−1 ) = (F2n+2 − 1) − F2n
que ´ igual a
e

n

F2i = F2 + F4 + · · · + F2n = F2n+1 − 1
i=1

pois F2n+2 = F2n+1 + F2n .
Analogamente ` anterior, esta propriedade pode ser tamb´m demonstrada pelo Princ´
a
e
ıpio da Indu¸˜o
ca
Matem´tica. Deixo-a a cargo do leitor.
a

A pr´xima propriedade a ser demonstrada refere-se ` limita¸˜o superior de todos os termos da seq¨ˆncia
o
a
ca
ue
n
7
em fun¸˜o de n. A propriedade afirma que Fn <
ca
.
4
Demonstra¸˜o
ca
2
A propriedade ´ v´lida para n = 1 e n = 2 pois F1 = 1 < 7 e F2 = 1 < 7 = 49 .
e a
4
4
16
Utilizemos ent˜o o “Princ´
a
ıpio da Indu¸ao Forte”. Supomos que a propriedade ´ verdadeira para n ∈
c˜
e
7 k
e Fk−1 <
{1, 2, 3, · · · , k − 1, k}. Neste caso, utilizaremos (assumamos que ´ verdade) que Fk <
e
4
7 k−1
para concluir que
4
Fk+1 = Fk + Fk−1 <

7
4

k

+

7
4

k−1

=

Isto n˜o prova a propriedade. Mas, como
a

Fk+1 <

11
4

7
4

7
4

7
4

k−1

11
49
<
=
4
16
k−1

<

7
4

+

7
4

7
4
2

k−1

=

7
4

k−1

7
+1
4

=

11
4

7
4

k−1

.

2

ent˜o
a
7
4

k−1

=

7
4

k+1

,

como quer´
ıamos demonstrar.

Por fim, demonstremos a f´rmula geral da seq¨ˆncia de Fibonacci, conhecida por F´rmula de Binet, que
o
ue
o
´ dada por
e
√ n
√ n
1
1+ 5
1
1− 5
Fn = √
−√
.
2
2
5
5
Demonstra¸˜o
ca
Para n = 1 temos

√
√
1+ 5
1
1− 5
−√
=
2
2
5
√
√
1+ 5 1− 5
1 √
−
= √ 5 = 1 = F1 .
2
2
5

1
√
5
1
√
5

Logo a propriedade ´ verdadeira para n = 1. Supondo que a propriedade ´ tamb´m v´lida para n ∈
e
e
e
a
{1, 2, 3, · · · , k − 1, k} queremos mostrar que ´ v´lida tamb´m para n = k + 1. Sabemos que, por hip´tese,
e a
e
o
3
√

√

k

√

k

√

k−1

k−1

1
1
1
1
que Fk = √5 1+2 5 − √5 1−2 5
e Fk−1 = √5 1+2 5
− √5 1−2 5
. Sabemos tamb´m, pela
e
defini¸˜o da seq¨ˆncia de Fibonacci que Fk+1 = Fk + Fk−1 para k ≥ 2. Ent˜o,
ca
ue
a

Fk+1 = Fk + Fk−1
Fk+1

Fk+1

1
=√
5

√
1+ 5
2

1
=√
5

√
1+ 5
2
Fk+1

k

Fk+1

√
1+ 5
2

1
=√
5

k

√
1+ 5
2

Fk+1

√
1− 5
2

1
−√
5

√
1− 5
2

1
−√
5

1
=√
5

k

1
=√
5

k

k

√
1+ 5
2

1
+√
5

√
1+ 5
2

1
+√
5
k

k−1

√
1+ 5
2

−1

1
−√
5
1
−√
5

2
√
1+
1+ 5

1
−√
5

√
1− 5
2

k

√
1+ 5
2

1
−√
5

√
1− 5
2

k

1
−√
5

√
1− 5
2

√
1− 5
2
√
1− 5
2

k−1

k

√
1− 5
2

−1

k+1

k

√
1+ 5
2

k+1

1+

2
√
1− 5

√
1− 5
2

Logo, pelo “Princ´
ıpio da Indu¸ao Matem´tica Forte”, a propriedade ´ v´lida para todo n ≥ 1.
c˜
a
e a
√
1+ 5
O n´mero irracional ϕ =
u
´ conhecido como raz˜o aurea ou n´mero de ouro. Utilizando este
e
a ´
u
2
n´mero, podemos reescrever a F´rmula de Binet.
u
o
Observe que
√ −1
√
2
1− 5
1+ 5
−1
√ =
.
(−ϕ) = −
=−
2
2
1+ 5
Logo,
Fn =

ϕn − (−ϕ)−n
√
.
5

4

Mais conteúdo relacionado

Mais procurados

Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios wilkerfilipel
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesslidericardinho
 
Gases perfeitos questões resolvidas - termologia
Gases perfeitos   questões resolvidas - termologiaGases perfeitos   questões resolvidas - termologia
Gases perfeitos questões resolvidas - termologiaDrica Salles
 
Cotangente, cossecante e secante
Cotangente, cossecante e secante Cotangente, cossecante e secante
Cotangente, cossecante e secante Edson Marcos Silva
 
Limites - Matemática
Limites - MatemáticaLimites - Matemática
Limites - MatemáticaMatheus Ramos
 
Física 2 Ramalho (testes propostos)
Física 2 Ramalho (testes propostos)Física 2 Ramalho (testes propostos)
Física 2 Ramalho (testes propostos)Guilherme Fernando
 
Período Sensório-Motor
 Período Sensório-Motor Período Sensório-Motor
Período Sensório-MotorIara Benvindo
 
Grandeza Física e Medições
Grandeza Física e MediçõesGrandeza Física e Medições
Grandeza Física e Mediçõeseufisica
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesRodolfo Almeida
 
movimentos de projéteis
movimentos de projéteismovimentos de projéteis
movimentos de projéteisRui Foles
 
Funcões Injetora, Sobrejetora e Bijetora
Funcões Injetora, Sobrejetora e BijetoraFuncões Injetora, Sobrejetora e Bijetora
Funcões Injetora, Sobrejetora e BijetoraCleiton Cunha
 

Mais procurados (20)

07 tabela-de-derivadas-e-integrais
07 tabela-de-derivadas-e-integrais07 tabela-de-derivadas-e-integrais
07 tabela-de-derivadas-e-integrais
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslineares
 
Teorias Cognitivas de aprendizagem
Teorias Cognitivas de aprendizagem Teorias Cognitivas de aprendizagem
Teorias Cognitivas de aprendizagem
 
Aula 02 Cálculo de limites - Conceitos Básicos
Aula 02   Cálculo de limites - Conceitos BásicosAula 02   Cálculo de limites - Conceitos Básicos
Aula 02 Cálculo de limites - Conceitos Básicos
 
Gases perfeitos questões resolvidas - termologia
Gases perfeitos   questões resolvidas - termologiaGases perfeitos   questões resolvidas - termologia
Gases perfeitos questões resolvidas - termologia
 
Mudança de fase
Mudança de faseMudança de fase
Mudança de fase
 
Cotangente, cossecante e secante
Cotangente, cossecante e secante Cotangente, cossecante e secante
Cotangente, cossecante e secante
 
Limites - Matemática
Limites - MatemáticaLimites - Matemática
Limites - Matemática
 
Relatorio de fisica.
Relatorio de fisica.Relatorio de fisica.
Relatorio de fisica.
 
Física 2 Ramalho (testes propostos)
Física 2 Ramalho (testes propostos)Física 2 Ramalho (testes propostos)
Física 2 Ramalho (testes propostos)
 
Sequencias
SequenciasSequencias
Sequencias
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Período Sensório-Motor
 Período Sensório-Motor Período Sensório-Motor
Período Sensório-Motor
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Grandeza Física e Medições
Grandeza Física e MediçõesGrandeza Física e Medições
Grandeza Física e Medições
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funções
 
Operações com intervalos
Operações com intervalosOperações com intervalos
Operações com intervalos
 
movimentos de projéteis
movimentos de projéteismovimentos de projéteis
movimentos de projéteis
 
Funcões Injetora, Sobrejetora e Bijetora
Funcões Injetora, Sobrejetora e BijetoraFuncões Injetora, Sobrejetora e Bijetora
Funcões Injetora, Sobrejetora e Bijetora
 

Destaque

Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Rodrigo Thiago Passos Silva
 
Necessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaNecessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaRodrigo Thiago Passos Silva
 

Destaque (20)

Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?
 
Identidade de Euler - Demonstração
Identidade de Euler - DemonstraçãoIdentidade de Euler - Demonstração
Identidade de Euler - Demonstração
 
Cálculo do imposto de renda
Cálculo do imposto de rendaCálculo do imposto de renda
Cálculo do imposto de renda
 
Redes de Primeira Ordem
Redes de Primeira OrdemRedes de Primeira Ordem
Redes de Primeira Ordem
 
Por que "menos com menos dá mais"?
Por que "menos com menos dá mais"?Por que "menos com menos dá mais"?
Por que "menos com menos dá mais"?
 
1 = 0,999...
1 = 0,999...1 = 0,999...
1 = 0,999...
 
Demonstração da equação de Bhaskara
Demonstração da equação de BhaskaraDemonstração da equação de Bhaskara
Demonstração da equação de Bhaskara
 
Tensão média e tensão eficaz
Tensão média e tensão eficazTensão média e tensão eficaz
Tensão média e tensão eficaz
 
Necessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaNecessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de Vinhaça
 
Apresentação - TCC - Eletronica
Apresentação -  TCC - EletronicaApresentação -  TCC - Eletronica
Apresentação - TCC - Eletronica
 
Petróleos ultra-pesados
Petróleos ultra-pesadosPetróleos ultra-pesados
Petróleos ultra-pesados
 
Esboço - Gráfico de Função
Esboço - Gráfico de FunçãoEsboço - Gráfico de Função
Esboço - Gráfico de Função
 
Sensor de Campo Magnético
Sensor de Campo MagnéticoSensor de Campo Magnético
Sensor de Campo Magnético
 
Questões - Bases Matemáticas
Questões - Bases MatemáticasQuestões - Bases Matemáticas
Questões - Bases Matemáticas
 
Resumo - Álgebra Linear
Resumo - Álgebra LinearResumo - Álgebra Linear
Resumo - Álgebra Linear
 
Lista 2 - Geometria Analítica
Lista 2  - Geometria AnalíticaLista 2  - Geometria Analítica
Lista 2 - Geometria Analítica
 
Relatório - Desenho e Projeto
Relatório - Desenho e ProjetoRelatório - Desenho e Projeto
Relatório - Desenho e Projeto
 
TCC - Eletrônica
TCC - Eletrônica TCC - Eletrônica
TCC - Eletrônica
 
Lista 3 - Bases Matemáticas - Indução
Lista 3  - Bases Matemáticas - InduçãoLista 3  - Bases Matemáticas - Indução
Lista 3 - Bases Matemáticas - Indução
 
Newton e Leibniz
Newton e LeibnizNewton e Leibniz
Newton e Leibniz
 

Mais de Rodrigo Thiago Passos Silva (14)

Recompra de Energia - Demonstração
Recompra de Energia - DemonstraçãoRecompra de Energia - Demonstração
Recompra de Energia - Demonstração
 
Exercício sobre Pré-Imagem
Exercício sobre Pré-ImagemExercício sobre Pré-Imagem
Exercício sobre Pré-Imagem
 
Demonstração - Propriedade de módulo
Demonstração - Propriedade de móduloDemonstração - Propriedade de módulo
Demonstração - Propriedade de módulo
 
Petróleos ultra-pesados - Apresentação
Petróleos ultra-pesados - ApresentaçãoPetróleos ultra-pesados - Apresentação
Petróleos ultra-pesados - Apresentação
 
Exercício - Torre de Resfriamento - Termodinâmica
Exercício - Torre de Resfriamento - TermodinâmicaExercício - Torre de Resfriamento - Termodinâmica
Exercício - Torre de Resfriamento - Termodinâmica
 
Demonstração do binômio de Newton
Demonstração do binômio de NewtonDemonstração do binômio de Newton
Demonstração do binômio de Newton
 
Formulário - Estatística
Formulário - EstatísticaFormulário - Estatística
Formulário - Estatística
 
Limite de função de duas variáveis
Limite de função de duas variáveisLimite de função de duas variáveis
Limite de função de duas variáveis
 
Exercícios de Geometria Analítica
Exercícios de Geometria AnalíticaExercícios de Geometria Analítica
Exercícios de Geometria Analítica
 
1+1=2
1+1=21+1=2
1+1=2
 
Lista 4 - Resolução
Lista 4 - ResoluçãoLista 4 - Resolução
Lista 4 - Resolução
 
Lista 3 - Geometria Analítica
Lista 3   - Geometria AnalíticaLista 3   - Geometria Analítica
Lista 3 - Geometria Analítica
 
Matriz inversa
Matriz inversaMatriz inversa
Matriz inversa
 
Apresentação - Desenho e Projeto
Apresentação - Desenho e ProjetoApresentação - Desenho e Projeto
Apresentação - Desenho e Projeto
 

Último

Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Ilda Bicacro
 
Ficha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFicha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFtimaMoreira35
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxTainTorres4
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptx
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptxPLANOS E EIXOS DO CORPO HUMANO.educacao física pptx
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptxSamiraMiresVieiradeM
 
Libras Jogo da memória em LIBRAS Memoria
Libras Jogo da memória em LIBRAS MemoriaLibras Jogo da memória em LIBRAS Memoria
Libras Jogo da memória em LIBRAS Memorialgrecchi
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números Mary Alvarenga
 
o ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfo ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfCamillaBrito19
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...azulassessoria9
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?AnabelaGuerreiro7
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfMárcio Azevedo
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamentalAntônia marta Silvestre da Silva
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManuais Formação
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxLuizHenriquedeAlmeid6
 

Último (20)

Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!Rota das Ribeiras Camp, Projeto Nós Propomos!
Rota das Ribeiras Camp, Projeto Nós Propomos!
 
Ficha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdfFicha de trabalho com palavras- simples e complexas.pdf
Ficha de trabalho com palavras- simples e complexas.pdf
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptx
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptxPLANOS E EIXOS DO CORPO HUMANO.educacao física pptx
PLANOS E EIXOS DO CORPO HUMANO.educacao física pptx
 
Libras Jogo da memória em LIBRAS Memoria
Libras Jogo da memória em LIBRAS MemoriaLibras Jogo da memória em LIBRAS Memoria
Libras Jogo da memória em LIBRAS Memoria
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números
 
o ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdfo ciclo do contato Jorge Ponciano Ribeiro.pdf
o ciclo do contato Jorge Ponciano Ribeiro.pdf
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...Considere a seguinte situação fictícia:  Durante uma reunião de equipe em uma...
Considere a seguinte situação fictícia: Durante uma reunião de equipe em uma...
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdf
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
2° ano_PLANO_DE_CURSO em PDF referente ao 2° ano do Ensino fundamental
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envio
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
 

Demonstração da fórmula de Binet para a sequência de Fibonacci

  • 1. ¨ˆ SEQUENCIA DE FIBONACCI Aspectos matem´ticos a Rodrigo Thiago Passos Silva rodrigotpsilva@gmail.com A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia de n´meros reais ue e ue u dada por  1,    F (n) = Fn = 1,    Fn−1 + Fn−2 num´rica, ou seja, uma fun¸˜o F : N → R e ca se n = 1 se n = 2 . se n ≥ 3 Em outras palavras, ´ uma seq¨ˆncia cujos dois primeiros termos s˜o iguais a 1 e os demais correspondem e ue a a ` soma dos dois anteriores. Os primeiros termos da seq¨ˆncia s˜o: ue a F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21. Observemos agora que F1 = 1 = F3 − 1 F1 + F2 = 2 = F4 − 1 F1 + F2 + F3 = 4 = F5 − 1 F1 + F2 + F3 + F4 = 7 = F6 − 1 F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1. n Fi = Fn+2 − 1 . Portanto, conjecturemos que i=1 Demonstra¸˜o ca ´ a Utilizaremos o Princ´ ıpio da Indu¸ao Matem´tica. E f´cil observar que a propriedade conjecturada ´ c˜ a e 1 Fi = 1 e F1+2 − 1 = F3 − 1 = 2 − 1 = 1. v´lida para n = 1 pois a i=1 k Fi = Fk+2 − 1 queremos Supondo que a propriedade ´ v´lida para n = k, ou seja, que ´ verdade P (k) : e a e i=1 k+1 Fi = Fk+3 − 1 ´ v´lida. e a mostrar que P (k + 1) : i=1 Somando-se Fk+1 em ambos os lados da igualdade assumida como hip´tese temos o k Fi + Fk+1 = Fk+2 + Fk+1 − 1. i=1 k+1 O lado esquerdo equivale a Fi e, como o termo posterior na seq¨ˆncia de Fibonacci ´ dado pela soma ue e i=1 k+1 dos dois anteriores, o lado direito equivale a Fk+3 − 1. Assim, concluimos que Fi = Fk+3 − 1 como i=1 quer´ ıamos demonstrar. 1
  • 2. Agora, observemos a soma dos termos da seq¨ˆncia de ´ ue ındice ´ ımpar n=1 n=2 n=3 F1 = 1 = F2 F1 + F3 = 3 = F4 F1 + F3 + F5 = 8 = F6 . n Conjecturemos, ent˜o, que a F2i−1 = F2n . i=1 Demonstra¸˜o ca 1 A propriedade conjecturada ´ v´lida para n = 1 pois e a F2i−1 = F1 = 1 e F2n = 1. i=1 k Supomos que ela ´ v´lida tamb´m para n = k, ou seja, que e a e F2i−1 = F2k ´ verdadeiro. Somando-se o e i=1 termo F2k+1 em ambos os lados da hip´tese indutiva obtemos o k F2i−1 + F2k+1 = F2k + F2k+1 . i=1 Ultilizando-se racioc´ ınio an´logo ao da demonstra¸ao anterior conclu´ a c˜ ımos que a igualdade acima ´ igual e a k+1 F2i−1 = F2k+2 = F2(k+1) . i=1 Da´ conclu´ ı ımos que se a propriedade ´ v´lida para n = k ´ tamb´m v´lida para n = k + 1. Portanto, pelo e a e e a princ´ ıpio da indu¸˜o matem´tica, ´ v´lida para todo n > 1. ca a e a Podemos observar tamb´m o comportamento da soma dos termos da seq¨ˆncia de ´ e ue ındice par n=1 n=2 n=3 F2 = 1 = F3 − 1 F2 + F4 = 4 = F5 − 1 F2 + F4 + F6 = 12 = F7 − 1. n F2i = F2n+1 − 1 . Logo, podemos conjecturar que i=1 Demonstra¸˜o ca Tomemos a soma dos termos da seq¨ˆncia de Fibonacci at´ o 2n-´simo termo. Temos ue e e 2n Fi = F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n = F2n+2 − 1. i=1 Tomemos a soma dos termos ´ ımpares da seq¨ˆncia de Fibonacci at´ o termo de ´ ue e ındice 2n − 1 (i.e., os n primeiros ´ ımpares). Temos n F2i−1 = F1 + F3 + F5 + · · · + F2n−1 = F2n . i=1 2
  • 3. Subtraindo a segunda equa¸˜o da primeira obtemos ca (F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n ) − (F1 + F3 + F5 + · · · + F2n−1 ) = (F2n+2 − 1) − F2n que ´ igual a e n F2i = F2 + F4 + · · · + F2n = F2n+1 − 1 i=1 pois F2n+2 = F2n+1 + F2n . Analogamente ` anterior, esta propriedade pode ser tamb´m demonstrada pelo Princ´ a e ıpio da Indu¸˜o ca Matem´tica. Deixo-a a cargo do leitor. a A pr´xima propriedade a ser demonstrada refere-se ` limita¸˜o superior de todos os termos da seq¨ˆncia o a ca ue n 7 em fun¸˜o de n. A propriedade afirma que Fn < ca . 4 Demonstra¸˜o ca 2 A propriedade ´ v´lida para n = 1 e n = 2 pois F1 = 1 < 7 e F2 = 1 < 7 = 49 . e a 4 4 16 Utilizemos ent˜o o “Princ´ a ıpio da Indu¸ao Forte”. Supomos que a propriedade ´ verdadeira para n ∈ c˜ e 7 k e Fk−1 < {1, 2, 3, · · · , k − 1, k}. Neste caso, utilizaremos (assumamos que ´ verdade) que Fk < e 4 7 k−1 para concluir que 4 Fk+1 = Fk + Fk−1 < 7 4 k + 7 4 k−1 = Isto n˜o prova a propriedade. Mas, como a Fk+1 < 11 4 7 4 7 4 7 4 k−1 11 49 < = 4 16 k−1 < 7 4 + 7 4 7 4 2 k−1 = 7 4 k−1 7 +1 4 = 11 4 7 4 k−1 . 2 ent˜o a 7 4 k−1 = 7 4 k+1 , como quer´ ıamos demonstrar. Por fim, demonstremos a f´rmula geral da seq¨ˆncia de Fibonacci, conhecida por F´rmula de Binet, que o ue o ´ dada por e √ n √ n 1 1+ 5 1 1− 5 Fn = √ −√ . 2 2 5 5 Demonstra¸˜o ca Para n = 1 temos √ √ 1+ 5 1 1− 5 −√ = 2 2 5 √ √ 1+ 5 1− 5 1 √ − = √ 5 = 1 = F1 . 2 2 5 1 √ 5 1 √ 5 Logo a propriedade ´ verdadeira para n = 1. Supondo que a propriedade ´ tamb´m v´lida para n ∈ e e e a {1, 2, 3, · · · , k − 1, k} queremos mostrar que ´ v´lida tamb´m para n = k + 1. Sabemos que, por hip´tese, e a e o 3
  • 4. √ √ k √ k √ k−1 k−1 1 1 1 1 que Fk = √5 1+2 5 − √5 1−2 5 e Fk−1 = √5 1+2 5 − √5 1−2 5 . Sabemos tamb´m, pela e defini¸˜o da seq¨ˆncia de Fibonacci que Fk+1 = Fk + Fk−1 para k ≥ 2. Ent˜o, ca ue a Fk+1 = Fk + Fk−1 Fk+1 Fk+1 1 =√ 5 √ 1+ 5 2 1 =√ 5 √ 1+ 5 2 Fk+1 k Fk+1 √ 1+ 5 2 1 =√ 5 k √ 1+ 5 2 Fk+1 √ 1− 5 2 1 −√ 5 √ 1− 5 2 1 −√ 5 1 =√ 5 k 1 =√ 5 k k √ 1+ 5 2 1 +√ 5 √ 1+ 5 2 1 +√ 5 k k−1 √ 1+ 5 2 −1 1 −√ 5 1 −√ 5 2 √ 1+ 1+ 5 1 −√ 5 √ 1− 5 2 k √ 1+ 5 2 1 −√ 5 √ 1− 5 2 k 1 −√ 5 √ 1− 5 2 √ 1− 5 2 √ 1− 5 2 k−1 k √ 1− 5 2 −1 k+1 k √ 1+ 5 2 k+1 1+ 2 √ 1− 5 √ 1− 5 2 Logo, pelo “Princ´ ıpio da Indu¸ao Matem´tica Forte”, a propriedade ´ v´lida para todo n ≥ 1. c˜ a e a √ 1+ 5 O n´mero irracional ϕ = u ´ conhecido como raz˜o aurea ou n´mero de ouro. Utilizando este e a ´ u 2 n´mero, podemos reescrever a F´rmula de Binet. u o Observe que √ −1 √ 2 1− 5 1+ 5 −1 √ = . (−ϕ) = − =− 2 2 1+ 5 Logo, Fn = ϕn − (−ϕ)−n √ . 5 4