SlideShare a Scribd company logo
1 of 62
Hybrid inorganic/organic semiconductor structures
for opto-electronics
Norbert Koch
Institut für Physik & IRIS Adlershof
Humboldt-Universität zu Berlin
Helmholtz Zentrum Berlin
für Materialien und Energie GmbH
Collaborations & Acknowledgements
Financial Support:
SFB 951 "HIOS" (DFG)
EC (GENIUS, iSwitch, UHMob)
@ HZB
Jie Ma
Ahmed Mansour
Thorsten Schultz
@ HU
Patrick Amsalem
Dominique Lungwitz
Andreas Opitz
Soohyung Park
Maryline Ralaiarisoa
Qiang Wang
Qiankun Wang
Rongbin Wang
Xiaomin Xu
Fengshuo Zu
NUS
Goki Eda
Ziyu Qin
KAUST
Lain-Jong Li
Arrej Aljarb
IMS / UVSOR
Satoshi Kera
HU Berlin
Emil List-Kratochvil
Sylke Blumstengel
Stefan Hecht
Georgia Tech
Seth Marder
Stephen Barlow
Princeton U
Antoine Kahn
U Strasbourg
Paolo Samorí
Electronic and optoelectronic devices:
Functional elements for information processing and display
switch
Source Drain
Gate
Gate insulator
Organic channel VDS
VG
light emission
energy conversion
memory
sensor
Societal relevance of opto-electronics
these depend on electronic & optoelectronic devices
 transistor
 diode
 LED
 PV
 capacitor
 sensor
biotechnology – services – energy
health & food – information & communication
mobility – nanotechnology – photonics
production – security – material science
(Stories from the
future 2030)
biotechnology – services – energy
health & food – information & communication
mobility – nanotechnology – photonics
production – security – material science
 faster
 multifunctional
 energy efficient
 low cost
 large area & flexible
 more & everywhere
these depend on electronic & optoelectronic devices
 transistor
 diode
 LED
 PV
 capacitor
 sensor
(Stories from the
future 2030)
Societal relevance of opto-electronics
Electronics & Optoelectronics
material components: dielectrics – semiconductors – conductors
devices are multicomponent structures: omnipresent interfaces
modern transparent OLED stack
Yanko
Design
defined & controlled by bulk & interface charge density distribution
"The interface is the device", Herbert Kroemer, Nobel Lecture 2000
"The interface is still the device", Editorial, Nature Materials 2012
"charge density @ interfaces", every pertinent major conference 2019+
few nm
The mission: Understand interface phenomena
& develop methods for energy level management
for all relevant present, emerging, future
electronic materials & applications
inorganic & organic semiconductors, oxides, carbon
allotropes, 2D semiconductors, perovskites, …
cathode
anode organic
material
EF
hn
EF
Evac
U-  


VB (HOMO)
CB (LUMO)
SE
U - (1 - 2)
Electrode semiconductor contacts:
Charge injection / extraction efficiency
hn







Tk
ATj
B
barrierinjectioncharge
exp2
Injection-limited current:
electron injection barrier (EIB)
hole injection barrier (HIB)
 minimize ohmic losses
CB
VB
Heterojunction energy levels found in literature
Evac
CB/LUMO
VB/HOMO
vacuum level alignment
no charge carriers
Evac
interface dipole
maybe charge carriers
Evac
band bending
certainly charge carriers
? ?
Direct & inverse photoelectron spectroscopy
Challenge: adapt IPES, UPS, XPS
to the special requirements of emerging semiconductors
chemical environment
stoichiometry
electron
affinity
band structure
Fermi level
ionization energy
work function
Today's menu
Organic semiconductors
Fermi level pinning
operando energy level switching
bulk doping
Organic/inorganic hybrids
light emission
photovoltaic cell
Perovskites
surface states & impact on level alignment
2D semiconductors
exciton binding energy
doping with molecular acceptors
Interfacial Fermi level pinning
Ideal Schottky contact (no interface states) and band
bending
EF
electrostat. potential = 0 (Evac)
EF
-
-
-
-
++ ++
EA IE
m
eVbi
s
width of depletion region W
W
𝑾 =
𝟐𝜺 𝒓 𝜺 𝟎 𝑽 𝒃𝒊
𝒆𝑵 intrinsic carrier density for Eg = 2 eV:  3×104 cm-3  W > cm
low "doping" concentration  1014-16 cm-3  W  µm
Clean/undoped organic semiconductors:
device thickness << W
EF
-
-
-
-
++ ++
eVbi
W
organic layer thickness in devices  100 nm << µm depletion layer width W
- seemingly flat band conditions
- EF not representative of bulk semiconductor Fermi level
- electrical contact dictates position of EF in semiconductor
- charges induced by contact dominate (e.g., Fermi level pinning)
EF
W
Ishii, Hayashi, Ito, Washizu, Sugi, Kimura, Niwano, Ouchi, Seki, phys. stat. sol. (a) 201, 1075 (2004)
"Intrinsic" Fermi level pinning:
organic semiconductors at electrodes
d
dE
S
gap
F

Weak electronic coupling:
S  1 (Schottky-Mott limit)
Braun, Salaneck, Fahlman, Adv. Mater. (2009)
Strong electronic coupling:
0 < S < 1
Vazquez, Flores, Kahn, Org. Electron. (2007)
• crit for Fermi-level pinning: sample dependent
 molecular orientation (IE, EA) Duhm, et al., Nat. Mater. (2008)
 gap states & DOS Bussolotti, et al., Phys. Rev. Lett. (2013)
Oehzelt, Koch, Heimel, Nat. Commun. (2014)
•  above/below crit beneficial for ohmic contact formation
Electrode work function tuning with molecular agents:
donor/acceptor interlayers
 changes due to molecule-metal charge transfer induced dipoles µ
Koch, Duhm, Rabe, Vollmer, Johnson, Phys. Rev. Lett. 95 (2005) 237601



0
eN
Helmholtz equation:
µ
N
N N
N
F F
FF
Bröker, et al., Appl. Phys. Lett. 93, 243303 (2008)
µ
N
N
donors
acceptors
-tuning of electrode / semiconductor surfaces
with molecular agents
work function of
metals, oxides, semiconductors:
2.2 eV ̶ 6.5 eV
 beyond crit for most
semiconductors
Koch, et al., Phys. Rev. Lett. 95, 237601 (2005)
Heimel, et al., Nat. Chem. 5, 187 (2013)
Schlesinger, et al., Nat. Commun. 6, 6754 (2015)
Schultz, et al., Phys. Rev. B 93, 125309 (2016)
Akaike, et al., Adv. Funct. Mater. 26, 2493 (2016)
N
N
pristine
materials
w/ molecular
acceptors
w/ molecular
donors
Photochromic molecules: towards multi-
functionality & operando energy level switching
photochromic diarylethene (DAE) derivatives
• open & closed forms have different energy levels
• must match energy levels of other components
• must switch in the solid with high yield
LUMO level switching in/out of resonance
with polymer electron transport levels
Mosciatti, del Rosso, Herder, Frisch, Koch, Hecht, Orgiu, Samorì, Adv. Mater. 28 (2016) 6606
Wang, Frisch, Herder, Hecht, Koch, ChemPhysChem 18 (2017) 717
Wang, et al., Adv. Funct. Mater 28 (2018) 1800716
Optically switchable n-type OFET
Mosciatti, del Rosso, Herder, Frisch, Koch, Hecht, Orgiu, Samorì, Adv. Mater. 28 (2016) 6606
photochromic diarylethenes (DAE)
as source/drain - polymer interlayer
OFET can be addressed:
- electrically
- optically
 multifunctional
Molecular acceptors/donors for
bulk doping of organic semiconductors
• two mechanisms of doping
– Ion Pair (IPA) formation
– Charge Transfer Complex (CPX) formation
• n-type doping “beyond thermodynamic limit”
 conductivity increases by several orders of magnitude
 increased carrier mobility
Pfeiffer, Fritz, Blochwitz, Nollau, Plönnigs, Beyer, Leo
Advances in Solid State Physics, 39, 77 (1999)
Gao, Kahn, Appl. Phys. Lett. 79, 4040 (2001)
Olthof, Mehraeen, Mohapatra, Barlow, Coropceanu, Bredas, Marder, Kahn,
Phys. Rev. Lett. 109, 176601 (2012)
Lu, Blakesley, Himmelberger, Pingel, Frisch, Lieberwirth, Salzmann, Oehzelt, Di Pietro,
Salleo, Koch, Neher, Nat. Commun., 4, 1588 (2013)
Ion pair (IPA) formation:
diagnostic spectral features
CN
CN
F F
FF
NC
NC
S
n
electronic transitions:
F4TCNQ anion
P3HT cation (polaron)
vibrations:
C≡N stretch indicative
of charge transfer
amount (d = 1)
Salzmann, Oehzelt, Heimel, Koch, Acc. Chem. Res. 49 (2016) 370
Charge transfer complex (CPX) formation:
diagnostic spectral features
electronic transitions:
no ion absorptions
CPX absorption
vibrations:
C≡N stretch indicative
of charge transfer
d < 1
CN
CN
F F
FF
NC
NC
Salzmann, Oehzelt, Heimel, Koch, Acc. Chem. Res. 49 (2016) 370
Doping efficiency: IPA vs. CPX
IPA (strong dopant) CPXIPA (weak dopant)
hole density: IPA (strong) > IPA (weak) > CPX
 avoid CPX formation
hole
density
Salzmann, Oehzelt, Heimel, Koch,
Acc. Chem. Res. 49 (2016) 370
140 15
0.6
Méndez, et al., Nat. Commun. 6 (2015) 8560
Méndez, et al., Angew. Chem. 125 (2013) 7905
Challenge: n-type doping of organic semiconductors
n-type doping of organic electron transport materials
Challenge:
• good donor = extremely low ionization energy (< 2.2 eV for many materials)
• most donors (dopants) not air-stable
monomer oxidation
(not available/air stable)
dimer oxidation
oxidation/reduction potentials:
just mixing dopant dimer and POPy2 will not result in doping
Doping by photo-activation:
POPy2 and [RuCp*Mes]2 thin films
Lin, Wegner, Lee, Fusella, Zhang, Moudgil, Rand, Barlow, Marder, Koch, Kahn, Nature Mater. 16 (2017) 1209
 orders of magnitude
conductivity (s) increase
only upon light irradiation
 saturation s depends on
light energy
 stable s for > year
1 year
Light energy dependence of doping photoactivation
Lin, Wegner, Lee, Fusella, Zhang, Moudgil, Rand, Barlow, Marder, Koch, Kahn, Nature Mater. 16 (2017) 1209
absorption
charge transfer
absorption / ET
ET
back-reaction
thermodynamically
prevented
inorganic semiconductors
 highest purity levels
 high excitation density
 high carrier mobility
Hybrid materials: synergy rationale
• combine & take advantage of individual material strengths
• compensate weaknesses
• new opto-electronic properties via hybridization
conjugated organic materials
 tunable energy range
 strong light-matter coupling
 high frequency response
Inorganic/organic semiconductor heterojunctions
energy level alignment determines function
 molecular interlayers for energy level tuning
1. molecular layer with built-in dipole
2. donor/acceptor molecules
One targeted function of a hybrid:
energy transfer & radiative emission
requirements:
•spectral matching for energy transfer
•type-I energy level alignment
Inorganic/organic semiconductor level tuning
"intrinsic" type-II alignment "perfect" type-I alignment
ad donor
interlayer
Schlesinger, Bianchi, Blumstengel, Christodoulou, Ovsyannikov, Kobin, Moudgil, Barlow, Hecht,
Marder, Henneberger, Koch, Nat. Commun. 6 (2015) 6754
Functionality of hybrid structure
with tuned energy levels
PL emission from L4P-sp3 in hybrid
overall PL yield from 5% to 35%
• type I: charge transfer
• type II: energy transfer
Schlesinger, Bianchi, Blumstengel, Christodoulou, Ovsyannikov, Kobin, Moudgil, Barlow, Hecht,
Marder, Henneberger, Koch, Nat. Commun. 6 (2015) 6754
2.8 2.9 3.0 3.1 3.2 3.3
PLIntensity
Energy (eV)
Polymer-induced inversion layer
in n-Si
• high  polymer (PEDOT:PSS) induces band bending in n-Si
• band bending magnitude depends on polymer formulation
 inversion layer in n-Si, “spontaneous pn-junction”
SO3H SO3
H SO3
H SO3HSO3
-SO3
-
O OO OO O
S
S
S
S
S
S
O O O O O O
( )
m
( )
n
2 +
PEDOT:PSS/n-Si solar cells
4.5%
3.0%
2.3%
10.2%
Wang, Wang, Wu, Zhai, Yang, Sun, Duhm, Koch, submitted
highest PCE:
- good polymer wetting
- strong induced inversion
- high polymer conductivity
- Si passivation
metal halide perovskites for photovoltaic cells & …
Hybrid inorganic/organic perovskite solar cells
PCE > 25%
Hybrid inorganic/organic perovskite solar cells
Kojima, et al., JACS 131 (2009) 6050
Im, et al., Nanoscale 3 (2011) 4088
Lee, et al., Science 338 (2012) 643
ABX3
A = cation(s), B = Pb, X = Cl, I
orthorhombic tetragonal cubic
Korshunova, et al., Phys. Status Solidi B 253 (2016) 1907
?Methylammonium (MA)
EF
VBM
CBM
Surface photovoltage of perovskite thin films
in dark:
• surface states partially empty
• EF pinned to DoSS at surface
• surface band bending (downwards)
surface appears n-type while bulk is  intrinsic
• significant density of surface states (DoSS) close to the conduction band edge
• bulk Fermi level  midgap
under illumination:
• photo-generated charges
• electrons fill empty DoSS
• bands flatten at surface
flat band conditions give bulk EF
Zu, Amsalem, Salzmann, Wang, Ralaiarisoa, Kowarik, Duhm, Koch, Adv. Opt. Mater. 5 (2017) 1700139
DoSS
DoSS
Surface photovoltage induced by UV in UPS
Caution: UV light used to photo-emit electrons in UPS causes SPV!
Zu, Wolff, Ralaiarisoa, Amsalem, Neher, Koch, ACS Appl. Mater. Interfaces 11, 21578 (2019)
Controlling DoSS (Pb0 defects) by light
before illumination:
• only Pb2+
• "clean" gap
after illumination:
• substantial Pb0
• clear gap states up to EF
white light induces metallic Pb precipitates in perovskites
Zu, Amsalem, Salzmann, Wang, Ralaiarisoa, Kowarik, Duhm, Koch, Adv. Opt. Mater. 5 (2017) 1700139
DoSS determines level alignment
with electron transport materials
Zu, Amsalem, Ralaiarisoa, Schultz, Schlesinger, Koch, ACS Appl. Mater. Interfaces 9 (2017) 41546
 electron trapping
in perovskite
 good for electron
transport
 flat bands
2D semiconductors …
2D semiconductors for inorganic/organic hybrids
transition metal dichalcogenides (TMDCs): defined structure & robust
monolayer: direct semiconductor  strong light-matter coupling
from: Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)
Exciton binding energy
• TMDC monolayers: excitonic semiconductors
• reduced dielectric screening in 2D
• screening depends on dielectric environment
• optical excitations below band gap
Eb,exc
Exciton binding energy Eb,exc = band gap – exciton energy
images from: Wang, Chernikov, Glazov, Heinz, Rev. Mod. Phys. 90, 021001 (2018)
Exciton binding energy determination
𝑬 𝒃,𝒆𝒙𝒄
(𝒏)
=
𝝁𝒆 𝟒
𝟐ℏ 𝟐 𝜺 𝒆𝒇𝒇
(𝒏)
𝒏 − 𝟏 𝟐 𝟐
indirect from fitting exciton energies to modified Rydberg series:
challenges: • observation of excitons n > 1
• only from fitting 𝜺 𝒆𝒇𝒇
(𝒏)
Chernikov, et al., Phys. Rev. Lett. 113, 076802 (2014)
direct: single-particle band gap from direct and inverse photoelectron spectroscopy (PES, IPES)
exciton (n = 1) energy (absorption/reflectance)
Eb,exc = band gap – exciton energy
Eb,exc
Challenges of PES/IPES on TMDC monolayers
*Xu, Schultz, Qin, Severin, Haas, Shen, Kirchhof, Opitz, Koch, Bolotin, Rabe, Eda, Koch, Adv. Mater. 30, 1803748 (2018)
• insulating substrates
single crystal grain coalesced but azimuthally disordered grains*
(CVD-grown 2D powders)
direct gap at K
• angle-resolved (I)PES of 2D powders !
ARPES on WSe2 monolayer 2D powder on HOPG
single crystal
Brillouin zone (BZ)
azimuthally averaged
2D powder “BZ”
ARPES data
calculated band
structure along
Γ-K-M (path 1)
Γ-M-Γ (path 2)
• ARPES seemingly shows band dispersion along high-symmetry directions
• why?
seen before for HOPG (assigned to Van Hove singularities in density of states):
Zhou, Gweon, Spataru, Graf, Lee, Louie, Lanzara, Phys. Rev. B 71, 161403 (2005)
TMDCs: selective photoemission intensity in BZ
I E, kr ~ N E, kr =
δE
Δφ ∙ kr
φ=0
2𝜋
1
|𝛻φE kr, φ |
𝛻φE(kr, φ) → 0
photoemission intensity for N grains
with j randomized orientation
calculated valence band
energy map
1
|𝛻φE kr, φ |
high photoemission intensity when
azimuthal integration:
only Γ-K and Γ-M have high intensity at each kr
Park, Schultz, Han, Aljarb, Xu, Beyer, Ovsyannikov, Li, Meissner, Yamaguchi, Kera, Amsalem, Koch,
Commun. Phys. 2, 68 (2019)
ARPES from TMDC monolayer 2D powders
• band dispersion determination in most relevant directions
• on insulating substrates (SiO2, sapphire, …)
Park, Schultz, Han, Aljarb, Xu, Beyer, Ovsyannikov, Li, Meissner, Yamaguchi, Kera, Amsalem, Koch,
Commun. Phys. 2, 68 (2019)
Exciton binding energy determination
direct: single-particle band gap from direct and inverse photoelectron spectroscopy (PES, IPES)
exciton (n = 1) energy (absorption/reflectance)
Eb,exc = band gap – exciton energy
Eb,exc
Angle-resolved PES & IPES to derive band gap Eg
MoS2 WSe2
on sapphire
(r = 11.5)
on Au
(r = )
• both TMDC monolayers direct semiconductors at K-point
• substantial Eg reduction on Au vs. sapphire
Optical gap (exciton energy) Eexc from reflectivity
• small changes of Eexc depending on substrate r
Park, Mutz, Schultz, Blumstengel, Han, Aljarb, Li, List-Kratochvil, Amsalem, Koch, 2D Mater. 5 (2018) 025003
Exciton binding energy Eb,exc dependence on dielectric
environment
• Eg and Eb,exc depend strongly on substrate r (single charges)
• Eexc depends weakly on r (coupled e-h pair)
Park, Mutz, Schultz, Blumstengel, Han, Aljarb, Li, List-Kratochvil, Amsalem, Koch, 2D Mater. 5 (2018) 025003
Eb,exc 240 meV  90 meV 240 meV  140 meV
Controlling charge density in TMDC monolayer:
doping with molecular electron acceptors
following concept for work function tuning of electrodes & 3D semiconductors*:
 strong molecular electron acceptor captures an electron
 hole remains in TMDC monolayer  p-type doping (EF shifts towards valence band)
* Schlesinger, et al., Nat. Commun. 6, 6754 (2015); Koch, et al., Phys. Rev. Lett. 95, 237601 (2005)
F6TCNNQ

F6TCNNQ / MoS2 / Au
 work function increase
 no valence band shift towards EF
 no MoS2 core level shift
 no substrate core level shift
electron transfer to F6TCNNQ but no doping?
F6TCNNQ / MoS2 / HOPG
 work function increase
 valence band shifts towards EF
 MoS2 core level shifts like VB
 no substrate core level shift
electron transfer & doping ?
F6TCNNQ / MoS2 / sapphire
 work function increase
 2x larger valence band shift towards EF
 MoS2 core level shift similar VB
 substrate core level shift!
stronger electron transfer & doping?
sapphire involved ?
BUT:
IE of MoS2 (> 6.2 eV) much higher
than EA of F6TCNNQ (5.6 eV)
 charge transfer uphill?
Evidence for MoS2 gap states & F6TCNNQ anions
bare MoS2: gap states just below EF (only on sapphire); source of electrons
with acceptors: F6TCNNQ anion features for all substrates
Park, Schultz, Xu, Wegner, Aljarb, Han, Li, Tung, Amsalem, Koch, Commun. Phys. 2, 109 (2019)
3 substrate-dependent charge transfer mechanisms
Park, Schultz, Xu, Wegner, Aljarb, Han, Li, Tung, Amsalem, Koch, Commun. Phys. 2, 109 (2019)
Bruix, et al., Phys. Rev. B
93, 165422 (2016)
Organic semiconductors & hybrids
 electrode-induced Fermi level pinning enables
ohmic contacts to (almost) any semiconductor
 multifunctional devices
with photochromic molecules
 n-doping beyond thermodynamic limit
Perovskites
 surface states impact level alignment,
and must be controlled
2D semiconductors
 exciton binding energy
& doping mechanisms
depend on dielectric environment
 enhanced or novel functionality
Conclusions

More Related Content

What's hot

Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
David David
 
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
Dr. Mohammad Aminul Islam
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio Presentation
Ricardo Vidrio
 

What's hot (20)

Transition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific researchTransition metal dichalcogenide NPs, recent advances in scientific research
Transition metal dichalcogenide NPs, recent advances in scientific research
 
Ellipsometry- non destructive measuring method
Ellipsometry- non destructive measuring methodEllipsometry- non destructive measuring method
Ellipsometry- non destructive measuring method
 
2 d materials
2 d materials2 d materials
2 d materials
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
 
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
 
MoS2
MoS2MoS2
MoS2
 
Photoluminescence Spectroscopy for studying Electron-Hole pair recombination ...
Photoluminescence Spectroscopy for studying Electron-Hole pair recombination ...Photoluminescence Spectroscopy for studying Electron-Hole pair recombination ...
Photoluminescence Spectroscopy for studying Electron-Hole pair recombination ...
 
Dielectric Material and properties
Dielectric Material and propertiesDielectric Material and properties
Dielectric Material and properties
 
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
 
Perovskite
PerovskitePerovskite
Perovskite
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopy
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio Presentation
 
Mxenes presentation.pptx
Mxenes presentation.pptxMxenes presentation.pptx
Mxenes presentation.pptx
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Optical Properties of Solids
Optical Properties of SolidsOptical Properties of Solids
Optical Properties of Solids
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Dye sensitised solar cell
Dye sensitised solar cellDye sensitised solar cell
Dye sensitised solar cell
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 

Similar to Hybrid inorganic/organic semiconductor structures for opto-electronics.

Bin Sun_CV20160217
Bin Sun_CV20160217Bin Sun_CV20160217
Bin Sun_CV20160217
Bin Sun
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
minkayj
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
ECEatUtah
 
Synthesis of HTTP-MOFs on HOPG Poster
Synthesis of HTTP-MOFs on HOPG PosterSynthesis of HTTP-MOFs on HOPG Poster
Synthesis of HTTP-MOFs on HOPG Poster
Alice Hsu
 
UROP Symposium
UROP SymposiumUROP Symposium
UROP Symposium
mnnguyen19
 

Similar to Hybrid inorganic/organic semiconductor structures for opto-electronics. (20)

Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017
 
1EU-ISMET, Alessandro carmona
1EU-ISMET, Alessandro carmona1EU-ISMET, Alessandro carmona
1EU-ISMET, Alessandro carmona
 
Arranging atoms one by one the way we want them
Arranging atoms one by one the way we want themArranging atoms one by one the way we want them
Arranging atoms one by one the way we want them
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 
C2CP41712J.pdf
C2CP41712J.pdfC2CP41712J.pdf
C2CP41712J.pdf
 
Bin Sun_CV20160217
Bin Sun_CV20160217Bin Sun_CV20160217
Bin Sun_CV20160217
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
2EU-ISMET, Alessandro Carmona
 2EU-ISMET, Alessandro Carmona 2EU-ISMET, Alessandro Carmona
2EU-ISMET, Alessandro Carmona
 
Synthesis of HTTP-MOFs on HOPG Poster
Synthesis of HTTP-MOFs on HOPG PosterSynthesis of HTTP-MOFs on HOPG Poster
Synthesis of HTTP-MOFs on HOPG Poster
 
The Versatility of Mesoscopic Solar Cells.
The Versatility of Mesoscopic Solar Cells.The Versatility of Mesoscopic Solar Cells.
The Versatility of Mesoscopic Solar Cells.
 
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
 
Organic Light Emitting Diods
Organic Light Emitting DiodsOrganic Light Emitting Diods
Organic Light Emitting Diods
 
December Highlights
December HighlightsDecember Highlights
December Highlights
 
synthesis of semiconducting polymers for possible application in [autosaved]
synthesis of semiconducting polymers for possible application in [autosaved]synthesis of semiconducting polymers for possible application in [autosaved]
synthesis of semiconducting polymers for possible application in [autosaved]
 
EMRS Meeting 2017
EMRS Meeting 2017EMRS Meeting 2017
EMRS Meeting 2017
 
ASP-Lecture-KadriDiallo.pdf
ASP-Lecture-KadriDiallo.pdfASP-Lecture-KadriDiallo.pdf
ASP-Lecture-KadriDiallo.pdf
 
Organic Field Effect Transistor
Organic Field Effect TransistorOrganic Field Effect Transistor
Organic Field Effect Transistor
 
Bio-Molecular Engineering is the Future of Molecular Biology
Bio-Molecular Engineering is the Future of Molecular BiologyBio-Molecular Engineering is the Future of Molecular Biology
Bio-Molecular Engineering is the Future of Molecular Biology
 
UROP Symposium
UROP SymposiumUROP Symposium
UROP Symposium
 

More from Sociedade Brasileira de Pesquisa em Materiais

More from Sociedade Brasileira de Pesquisa em Materiais (20)

Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.
 
Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.
 
Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.
 
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
 
Watching flowers through a silicon glass.
Watching flowers through a silicon glass.Watching flowers through a silicon glass.
Watching flowers through a silicon glass.
 
Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.
 
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation."XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
 
XVIII B-MRS Meeting
XVIII B-MRS MeetingXVIII B-MRS Meeting
XVIII B-MRS Meeting
 
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
 
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
 
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
 
Materials for a Better Future.
Materials for a Better Future.Materials for a Better Future.
Materials for a Better Future.
 
Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.
 
How to promote your article?
How to promote your article?How to promote your article?
How to promote your article?
 
How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,
 
New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.
 
XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.
 
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
 
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
 

Recently uploaded

Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 

Recently uploaded (20)

Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 

Hybrid inorganic/organic semiconductor structures for opto-electronics.

  • 1. Hybrid inorganic/organic semiconductor structures for opto-electronics Norbert Koch Institut für Physik & IRIS Adlershof Humboldt-Universität zu Berlin Helmholtz Zentrum Berlin für Materialien und Energie GmbH
  • 2. Collaborations & Acknowledgements Financial Support: SFB 951 "HIOS" (DFG) EC (GENIUS, iSwitch, UHMob) @ HZB Jie Ma Ahmed Mansour Thorsten Schultz @ HU Patrick Amsalem Dominique Lungwitz Andreas Opitz Soohyung Park Maryline Ralaiarisoa Qiang Wang Qiankun Wang Rongbin Wang Xiaomin Xu Fengshuo Zu NUS Goki Eda Ziyu Qin KAUST Lain-Jong Li Arrej Aljarb IMS / UVSOR Satoshi Kera HU Berlin Emil List-Kratochvil Sylke Blumstengel Stefan Hecht Georgia Tech Seth Marder Stephen Barlow Princeton U Antoine Kahn U Strasbourg Paolo Samorí
  • 3. Electronic and optoelectronic devices: Functional elements for information processing and display switch Source Drain Gate Gate insulator Organic channel VDS VG light emission energy conversion memory sensor
  • 4. Societal relevance of opto-electronics these depend on electronic & optoelectronic devices  transistor  diode  LED  PV  capacitor  sensor biotechnology – services – energy health & food – information & communication mobility – nanotechnology – photonics production – security – material science (Stories from the future 2030)
  • 5. biotechnology – services – energy health & food – information & communication mobility – nanotechnology – photonics production – security – material science  faster  multifunctional  energy efficient  low cost  large area & flexible  more & everywhere these depend on electronic & optoelectronic devices  transistor  diode  LED  PV  capacitor  sensor (Stories from the future 2030) Societal relevance of opto-electronics
  • 6. Electronics & Optoelectronics material components: dielectrics – semiconductors – conductors devices are multicomponent structures: omnipresent interfaces modern transparent OLED stack Yanko Design defined & controlled by bulk & interface charge density distribution "The interface is the device", Herbert Kroemer, Nobel Lecture 2000 "The interface is still the device", Editorial, Nature Materials 2012 "charge density @ interfaces", every pertinent major conference 2019+ few nm
  • 7. The mission: Understand interface phenomena & develop methods for energy level management for all relevant present, emerging, future electronic materials & applications inorganic & organic semiconductors, oxides, carbon allotropes, 2D semiconductors, perovskites, …
  • 8. cathode anode organic material EF hn EF Evac U-     VB (HOMO) CB (LUMO) SE U - (1 - 2) Electrode semiconductor contacts: Charge injection / extraction efficiency hn        Tk ATj B barrierinjectioncharge exp2 Injection-limited current: electron injection barrier (EIB) hole injection barrier (HIB)  minimize ohmic losses CB VB
  • 9. Heterojunction energy levels found in literature Evac CB/LUMO VB/HOMO vacuum level alignment no charge carriers Evac interface dipole maybe charge carriers Evac band bending certainly charge carriers ? ?
  • 10. Direct & inverse photoelectron spectroscopy Challenge: adapt IPES, UPS, XPS to the special requirements of emerging semiconductors chemical environment stoichiometry electron affinity band structure Fermi level ionization energy work function
  • 11. Today's menu Organic semiconductors Fermi level pinning operando energy level switching bulk doping Organic/inorganic hybrids light emission photovoltaic cell Perovskites surface states & impact on level alignment 2D semiconductors exciton binding energy doping with molecular acceptors
  • 13. Ideal Schottky contact (no interface states) and band bending EF electrostat. potential = 0 (Evac) EF - - - - ++ ++ EA IE m eVbi s width of depletion region W W 𝑾 = 𝟐𝜺 𝒓 𝜺 𝟎 𝑽 𝒃𝒊 𝒆𝑵 intrinsic carrier density for Eg = 2 eV:  3×104 cm-3  W > cm low "doping" concentration  1014-16 cm-3  W  µm
  • 14. Clean/undoped organic semiconductors: device thickness << W EF - - - - ++ ++ eVbi W organic layer thickness in devices  100 nm << µm depletion layer width W - seemingly flat band conditions - EF not representative of bulk semiconductor Fermi level - electrical contact dictates position of EF in semiconductor - charges induced by contact dominate (e.g., Fermi level pinning) EF W Ishii, Hayashi, Ito, Washizu, Sugi, Kimura, Niwano, Ouchi, Seki, phys. stat. sol. (a) 201, 1075 (2004)
  • 15. "Intrinsic" Fermi level pinning: organic semiconductors at electrodes d dE S gap F  Weak electronic coupling: S  1 (Schottky-Mott limit) Braun, Salaneck, Fahlman, Adv. Mater. (2009) Strong electronic coupling: 0 < S < 1 Vazquez, Flores, Kahn, Org. Electron. (2007) • crit for Fermi-level pinning: sample dependent  molecular orientation (IE, EA) Duhm, et al., Nat. Mater. (2008)  gap states & DOS Bussolotti, et al., Phys. Rev. Lett. (2013) Oehzelt, Koch, Heimel, Nat. Commun. (2014) •  above/below crit beneficial for ohmic contact formation
  • 16. Electrode work function tuning with molecular agents: donor/acceptor interlayers  changes due to molecule-metal charge transfer induced dipoles µ Koch, Duhm, Rabe, Vollmer, Johnson, Phys. Rev. Lett. 95 (2005) 237601    0 eN Helmholtz equation: µ N N N N F F FF Bröker, et al., Appl. Phys. Lett. 93, 243303 (2008) µ N N donors acceptors
  • 17. -tuning of electrode / semiconductor surfaces with molecular agents work function of metals, oxides, semiconductors: 2.2 eV ̶ 6.5 eV  beyond crit for most semiconductors Koch, et al., Phys. Rev. Lett. 95, 237601 (2005) Heimel, et al., Nat. Chem. 5, 187 (2013) Schlesinger, et al., Nat. Commun. 6, 6754 (2015) Schultz, et al., Phys. Rev. B 93, 125309 (2016) Akaike, et al., Adv. Funct. Mater. 26, 2493 (2016) N N pristine materials w/ molecular acceptors w/ molecular donors
  • 18. Photochromic molecules: towards multi- functionality & operando energy level switching photochromic diarylethene (DAE) derivatives • open & closed forms have different energy levels • must match energy levels of other components • must switch in the solid with high yield
  • 19. LUMO level switching in/out of resonance with polymer electron transport levels Mosciatti, del Rosso, Herder, Frisch, Koch, Hecht, Orgiu, Samorì, Adv. Mater. 28 (2016) 6606 Wang, Frisch, Herder, Hecht, Koch, ChemPhysChem 18 (2017) 717 Wang, et al., Adv. Funct. Mater 28 (2018) 1800716
  • 20. Optically switchable n-type OFET Mosciatti, del Rosso, Herder, Frisch, Koch, Hecht, Orgiu, Samorì, Adv. Mater. 28 (2016) 6606 photochromic diarylethenes (DAE) as source/drain - polymer interlayer OFET can be addressed: - electrically - optically  multifunctional
  • 21. Molecular acceptors/donors for bulk doping of organic semiconductors • two mechanisms of doping – Ion Pair (IPA) formation – Charge Transfer Complex (CPX) formation • n-type doping “beyond thermodynamic limit”  conductivity increases by several orders of magnitude  increased carrier mobility Pfeiffer, Fritz, Blochwitz, Nollau, Plönnigs, Beyer, Leo Advances in Solid State Physics, 39, 77 (1999) Gao, Kahn, Appl. Phys. Lett. 79, 4040 (2001) Olthof, Mehraeen, Mohapatra, Barlow, Coropceanu, Bredas, Marder, Kahn, Phys. Rev. Lett. 109, 176601 (2012) Lu, Blakesley, Himmelberger, Pingel, Frisch, Lieberwirth, Salzmann, Oehzelt, Di Pietro, Salleo, Koch, Neher, Nat. Commun., 4, 1588 (2013)
  • 22. Ion pair (IPA) formation: diagnostic spectral features CN CN F F FF NC NC S n electronic transitions: F4TCNQ anion P3HT cation (polaron) vibrations: C≡N stretch indicative of charge transfer amount (d = 1) Salzmann, Oehzelt, Heimel, Koch, Acc. Chem. Res. 49 (2016) 370
  • 23. Charge transfer complex (CPX) formation: diagnostic spectral features electronic transitions: no ion absorptions CPX absorption vibrations: C≡N stretch indicative of charge transfer d < 1 CN CN F F FF NC NC Salzmann, Oehzelt, Heimel, Koch, Acc. Chem. Res. 49 (2016) 370
  • 24. Doping efficiency: IPA vs. CPX IPA (strong dopant) CPXIPA (weak dopant) hole density: IPA (strong) > IPA (weak) > CPX  avoid CPX formation hole density Salzmann, Oehzelt, Heimel, Koch, Acc. Chem. Res. 49 (2016) 370 140 15 0.6 Méndez, et al., Nat. Commun. 6 (2015) 8560 Méndez, et al., Angew. Chem. 125 (2013) 7905
  • 25. Challenge: n-type doping of organic semiconductors
  • 26. n-type doping of organic electron transport materials Challenge: • good donor = extremely low ionization energy (< 2.2 eV for many materials) • most donors (dopants) not air-stable monomer oxidation (not available/air stable) dimer oxidation oxidation/reduction potentials: just mixing dopant dimer and POPy2 will not result in doping
  • 27. Doping by photo-activation: POPy2 and [RuCp*Mes]2 thin films Lin, Wegner, Lee, Fusella, Zhang, Moudgil, Rand, Barlow, Marder, Koch, Kahn, Nature Mater. 16 (2017) 1209  orders of magnitude conductivity (s) increase only upon light irradiation  saturation s depends on light energy  stable s for > year 1 year
  • 28. Light energy dependence of doping photoactivation Lin, Wegner, Lee, Fusella, Zhang, Moudgil, Rand, Barlow, Marder, Koch, Kahn, Nature Mater. 16 (2017) 1209 absorption charge transfer absorption / ET ET back-reaction thermodynamically prevented
  • 29.
  • 30. inorganic semiconductors  highest purity levels  high excitation density  high carrier mobility Hybrid materials: synergy rationale • combine & take advantage of individual material strengths • compensate weaknesses • new opto-electronic properties via hybridization conjugated organic materials  tunable energy range  strong light-matter coupling  high frequency response
  • 31. Inorganic/organic semiconductor heterojunctions energy level alignment determines function  molecular interlayers for energy level tuning 1. molecular layer with built-in dipole 2. donor/acceptor molecules
  • 32. One targeted function of a hybrid: energy transfer & radiative emission requirements: •spectral matching for energy transfer •type-I energy level alignment
  • 33. Inorganic/organic semiconductor level tuning "intrinsic" type-II alignment "perfect" type-I alignment ad donor interlayer Schlesinger, Bianchi, Blumstengel, Christodoulou, Ovsyannikov, Kobin, Moudgil, Barlow, Hecht, Marder, Henneberger, Koch, Nat. Commun. 6 (2015) 6754
  • 34. Functionality of hybrid structure with tuned energy levels PL emission from L4P-sp3 in hybrid overall PL yield from 5% to 35% • type I: charge transfer • type II: energy transfer Schlesinger, Bianchi, Blumstengel, Christodoulou, Ovsyannikov, Kobin, Moudgil, Barlow, Hecht, Marder, Henneberger, Koch, Nat. Commun. 6 (2015) 6754 2.8 2.9 3.0 3.1 3.2 3.3 PLIntensity Energy (eV)
  • 35. Polymer-induced inversion layer in n-Si • high  polymer (PEDOT:PSS) induces band bending in n-Si • band bending magnitude depends on polymer formulation  inversion layer in n-Si, “spontaneous pn-junction” SO3H SO3 H SO3 H SO3HSO3 -SO3 - O OO OO O S S S S S S O O O O O O ( ) m ( ) n 2 +
  • 36. PEDOT:PSS/n-Si solar cells 4.5% 3.0% 2.3% 10.2% Wang, Wang, Wu, Zhai, Yang, Sun, Duhm, Koch, submitted highest PCE: - good polymer wetting - strong induced inversion - high polymer conductivity - Si passivation
  • 37. metal halide perovskites for photovoltaic cells & …
  • 38. Hybrid inorganic/organic perovskite solar cells PCE > 25%
  • 39. Hybrid inorganic/organic perovskite solar cells Kojima, et al., JACS 131 (2009) 6050 Im, et al., Nanoscale 3 (2011) 4088 Lee, et al., Science 338 (2012) 643 ABX3 A = cation(s), B = Pb, X = Cl, I orthorhombic tetragonal cubic Korshunova, et al., Phys. Status Solidi B 253 (2016) 1907 ?Methylammonium (MA) EF VBM CBM
  • 40. Surface photovoltage of perovskite thin films in dark: • surface states partially empty • EF pinned to DoSS at surface • surface band bending (downwards) surface appears n-type while bulk is  intrinsic • significant density of surface states (DoSS) close to the conduction band edge • bulk Fermi level  midgap under illumination: • photo-generated charges • electrons fill empty DoSS • bands flatten at surface flat band conditions give bulk EF Zu, Amsalem, Salzmann, Wang, Ralaiarisoa, Kowarik, Duhm, Koch, Adv. Opt. Mater. 5 (2017) 1700139 DoSS DoSS
  • 41. Surface photovoltage induced by UV in UPS Caution: UV light used to photo-emit electrons in UPS causes SPV! Zu, Wolff, Ralaiarisoa, Amsalem, Neher, Koch, ACS Appl. Mater. Interfaces 11, 21578 (2019)
  • 42. Controlling DoSS (Pb0 defects) by light before illumination: • only Pb2+ • "clean" gap after illumination: • substantial Pb0 • clear gap states up to EF white light induces metallic Pb precipitates in perovskites Zu, Amsalem, Salzmann, Wang, Ralaiarisoa, Kowarik, Duhm, Koch, Adv. Opt. Mater. 5 (2017) 1700139
  • 43. DoSS determines level alignment with electron transport materials Zu, Amsalem, Ralaiarisoa, Schultz, Schlesinger, Koch, ACS Appl. Mater. Interfaces 9 (2017) 41546  electron trapping in perovskite  good for electron transport  flat bands
  • 45. 2D semiconductors for inorganic/organic hybrids transition metal dichalcogenides (TMDCs): defined structure & robust monolayer: direct semiconductor  strong light-matter coupling from: Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)
  • 46. Exciton binding energy • TMDC monolayers: excitonic semiconductors • reduced dielectric screening in 2D • screening depends on dielectric environment • optical excitations below band gap Eb,exc Exciton binding energy Eb,exc = band gap – exciton energy images from: Wang, Chernikov, Glazov, Heinz, Rev. Mod. Phys. 90, 021001 (2018)
  • 47. Exciton binding energy determination 𝑬 𝒃,𝒆𝒙𝒄 (𝒏) = 𝝁𝒆 𝟒 𝟐ℏ 𝟐 𝜺 𝒆𝒇𝒇 (𝒏) 𝒏 − 𝟏 𝟐 𝟐 indirect from fitting exciton energies to modified Rydberg series: challenges: • observation of excitons n > 1 • only from fitting 𝜺 𝒆𝒇𝒇 (𝒏) Chernikov, et al., Phys. Rev. Lett. 113, 076802 (2014) direct: single-particle band gap from direct and inverse photoelectron spectroscopy (PES, IPES) exciton (n = 1) energy (absorption/reflectance) Eb,exc = band gap – exciton energy Eb,exc
  • 48. Challenges of PES/IPES on TMDC monolayers *Xu, Schultz, Qin, Severin, Haas, Shen, Kirchhof, Opitz, Koch, Bolotin, Rabe, Eda, Koch, Adv. Mater. 30, 1803748 (2018) • insulating substrates single crystal grain coalesced but azimuthally disordered grains* (CVD-grown 2D powders) direct gap at K • angle-resolved (I)PES of 2D powders !
  • 49. ARPES on WSe2 monolayer 2D powder on HOPG single crystal Brillouin zone (BZ) azimuthally averaged 2D powder “BZ” ARPES data calculated band structure along Γ-K-M (path 1) Γ-M-Γ (path 2) • ARPES seemingly shows band dispersion along high-symmetry directions • why? seen before for HOPG (assigned to Van Hove singularities in density of states): Zhou, Gweon, Spataru, Graf, Lee, Louie, Lanzara, Phys. Rev. B 71, 161403 (2005)
  • 50. TMDCs: selective photoemission intensity in BZ I E, kr ~ N E, kr = δE Δφ ∙ kr φ=0 2𝜋 1 |𝛻φE kr, φ | 𝛻φE(kr, φ) → 0 photoemission intensity for N grains with j randomized orientation calculated valence band energy map 1 |𝛻φE kr, φ | high photoemission intensity when azimuthal integration: only Γ-K and Γ-M have high intensity at each kr Park, Schultz, Han, Aljarb, Xu, Beyer, Ovsyannikov, Li, Meissner, Yamaguchi, Kera, Amsalem, Koch, Commun. Phys. 2, 68 (2019)
  • 51. ARPES from TMDC monolayer 2D powders • band dispersion determination in most relevant directions • on insulating substrates (SiO2, sapphire, …) Park, Schultz, Han, Aljarb, Xu, Beyer, Ovsyannikov, Li, Meissner, Yamaguchi, Kera, Amsalem, Koch, Commun. Phys. 2, 68 (2019)
  • 52. Exciton binding energy determination direct: single-particle band gap from direct and inverse photoelectron spectroscopy (PES, IPES) exciton (n = 1) energy (absorption/reflectance) Eb,exc = band gap – exciton energy Eb,exc
  • 53. Angle-resolved PES & IPES to derive band gap Eg MoS2 WSe2 on sapphire (r = 11.5) on Au (r = ) • both TMDC monolayers direct semiconductors at K-point • substantial Eg reduction on Au vs. sapphire
  • 54. Optical gap (exciton energy) Eexc from reflectivity • small changes of Eexc depending on substrate r Park, Mutz, Schultz, Blumstengel, Han, Aljarb, Li, List-Kratochvil, Amsalem, Koch, 2D Mater. 5 (2018) 025003
  • 55. Exciton binding energy Eb,exc dependence on dielectric environment • Eg and Eb,exc depend strongly on substrate r (single charges) • Eexc depends weakly on r (coupled e-h pair) Park, Mutz, Schultz, Blumstengel, Han, Aljarb, Li, List-Kratochvil, Amsalem, Koch, 2D Mater. 5 (2018) 025003 Eb,exc 240 meV  90 meV 240 meV  140 meV
  • 56. Controlling charge density in TMDC monolayer: doping with molecular electron acceptors following concept for work function tuning of electrodes & 3D semiconductors*:  strong molecular electron acceptor captures an electron  hole remains in TMDC monolayer  p-type doping (EF shifts towards valence band) * Schlesinger, et al., Nat. Commun. 6, 6754 (2015); Koch, et al., Phys. Rev. Lett. 95, 237601 (2005) F6TCNNQ 
  • 57. F6TCNNQ / MoS2 / Au  work function increase  no valence band shift towards EF  no MoS2 core level shift  no substrate core level shift electron transfer to F6TCNNQ but no doping?
  • 58. F6TCNNQ / MoS2 / HOPG  work function increase  valence band shifts towards EF  MoS2 core level shifts like VB  no substrate core level shift electron transfer & doping ?
  • 59. F6TCNNQ / MoS2 / sapphire  work function increase  2x larger valence band shift towards EF  MoS2 core level shift similar VB  substrate core level shift! stronger electron transfer & doping? sapphire involved ? BUT: IE of MoS2 (> 6.2 eV) much higher than EA of F6TCNNQ (5.6 eV)  charge transfer uphill?
  • 60. Evidence for MoS2 gap states & F6TCNNQ anions bare MoS2: gap states just below EF (only on sapphire); source of electrons with acceptors: F6TCNNQ anion features for all substrates Park, Schultz, Xu, Wegner, Aljarb, Han, Li, Tung, Amsalem, Koch, Commun. Phys. 2, 109 (2019)
  • 61. 3 substrate-dependent charge transfer mechanisms Park, Schultz, Xu, Wegner, Aljarb, Han, Li, Tung, Amsalem, Koch, Commun. Phys. 2, 109 (2019) Bruix, et al., Phys. Rev. B 93, 165422 (2016)
  • 62. Organic semiconductors & hybrids  electrode-induced Fermi level pinning enables ohmic contacts to (almost) any semiconductor  multifunctional devices with photochromic molecules  n-doping beyond thermodynamic limit Perovskites  surface states impact level alignment, and must be controlled 2D semiconductors  exciton binding energy & doping mechanisms depend on dielectric environment  enhanced or novel functionality Conclusions