SlideShare a Scribd company logo
1 of 119
Download to read offline
Stefano Baroni
Scuola Internazionale Superiore di Studi Avanzati
Trieste — Italy
watching flowers through a silicon glass
multiscale simulation of the color optical properties of natural dyes
keynote talk given at the XVIII meeting of the Brazilian Materials Research Society, Balneário Camboriú, September 22-26, 2019
natural dyes in the food industry
natural dyes in the food industry
☛ global market of 1.45 billion USD in 2009
☛ total production of 50,000 tons / year
alcohols
5%
soft drinks
28%
food
67%
Other
18%
China
8%
Japan
10%
USA
28%
Europe
36%
☛ natural dyes market grown by 35% in the 2005-2009 quinquennium
the food industry is subject to an
increasing global pressure from
customers and lawmakers who
demand a shift towards ingredients
and additives that are perceived as
more natural and, “therefore”, healthier
the Southampton six
In 2007 Research funded by the UK FSA was
published, suggesting that the consumption of
certain mixes of artificial food colours and
preservatives could be linked to attention
deficit and increased hyperactivity in some
children.
Fact Sheet
Box A: The Seven
Southampton Additives
Colours:
Tartrazine (E102)
Quinoline yellow (E104)
Sunset yellow (E110)
Carmoisine (E122)
Ponceau 4R (E124)
Allura red (E129)
Preservative:
Sodium benzoate (E211)
Food additives are chemicals which are found
in the majority of ‘processed’ foods and drinks
consumed in the UK and abroad. They can
be from natural sources or artificially
manufactured. They are used to make food
look and taste more appealing, to maintain
consistency between batches and help
increase the ‘shelf life’ by preventing the food
from going mouldy or stale.
By law, if any additive is present in a product,
it must be listed on the ingredients list on the
packaging of food or drink bought in shops.
Additives can be listed either by name or by
their ‘E number.’ If you buy food at a
restaurant or take away outlet or a bakery you
may not know which additives are present as
the foods are not required to have ingredients
lists.
The chemicals in question are allowed to be
added, but some people say we do not know
enough about all of the health effects that
might be caused by these chemicals. For
instance Tartrazine (E102), has long been
known to cause rashes/skin irritation in a
small number of people, and others such as
Sodium Benzoate (E211) have been linked to
the worsening of asthma conditions. Some
additives that are permitted for use in the UK
and Europe are banned in other countries.
Recently, the UK Government body
responsible for food safety, the Food
Standards Agency (FSA), commissioned a
research project that became known as the
‘Southampton study.’ The Southampton study
demonstrated that mixtures of the seven
Since 2010 an EU-wide compulsory
warning must be put on any food
and drink product that contains any
of these six colours:
“May have an adverse
effect on activity and
attention in children”
natural dyes: the requirements
natural dyes: the requirements
tunable
natural dyes: the requirements
tunable
stable
natural dyes: the requirements
tunable
stable
safe
natural dyes: the requirements
tunable
stable
safe
inexpensive
carotenoids&cur
cuminoids
chlorofylls
flavonoids
carotenoids&cur
cuminoids
chlorofylls
flavonoids
anthocyanins
anthocyanins
anthocyanins
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanins
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
peonin −OCH3 −OH −H −OH
anthocyanins
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
peonin −OCH3 −OH −H −OH
rosinin −OH −OH −H −OCH3
anthocyanins
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
peonin −OCH3 −OH −H −OH
rosinin −OH −OH −H −OCH3
malvin −OCH3 −OH −OCH3 −OH
anthocyanins
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanins
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
peonin −OCH3 −OH −H −OH
rosinin −OH −OH −H −OCH3
malvin −OCH3 −OH −OCH3 −OH
pelargonin −H −OH −OH −OH
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
anthocyanin R3’ R4’ R5’ R7
cyanin −OH −OH −H −OH
peonin −OCH3 −OH −H −OH
rosinin −OH −OH −H −OCH3
malvin −OCH3 −OH −OCH3 −OH
pelargonin −H −OH −OH −OH
delphinin −OH −OH −OCH3 −OH
anthocyanins
B
chromenylium
O
R5
O O
HO
HO
OH
OH
1
2
3
45
6
R7
R3'
R4'
R5'7
8 1'
2'
3'
4'
5'
6'
very little is known of the
molecular mechanisms that
determine the chromatic
properties and the stability of
anthocyanins and the relation
between structure and color
what color is all about
?
what color is all about
what color is all about
what color is all about
what color is all about
anycolor(λ)	=	r(λ)	+	g(λ)	+	b(λ)
450 550 650
λ[nm]
what color is all about
stimulus =
illuminant × transmission × sensitivity
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
stimulus =
illuminant × transmission × sensitivity
what color is all about
!
!"#
!
$"#
!
""#
!
%"#
!
&"#
'()*+,
-./01234(
560.7(589:47;+!"#$
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
stimulus =
illuminant × transmission × sensitivity
what color is all about
!
!"#
!
$"#
!
""#
!
%"#
!
&"#
'()*+,
-./01234(
560.7(589:47;+!"#$
T(x, )
x
absorbing	mediumlight
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
stimulus =
illuminant × transmission × sensitivity
what color is all about
400 500 600 700
κ(λ)
λ[nm]
!
!"#
!
$"#
!
""#
!
%"#
!
&"#
'()*+,
-./01234(
560.7(589:47;+!"#$
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
stimulus =
illuminant × transmission × sensitivity
what color is all about
400 500 600 700
κ(λ)
λ[nm]
!
!"#
!
$"#
!
""#
!
%"#
!
&"#
'()*+,
-./01234(
560.7(589:47;+!"#$
b rg
rgb
λ[nm]
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
S(λ) × e−κ(λ)x
× rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
RGB(x) = S(λ)e−κ(λ)x
rgb(λ)dλ
<latexit sha1_base64="0MdJub8hIxVv1BEW5lJ72Clbakc=">AAADBHicdZJNb9MwGMed8DbKyzo4crGYkDppVGkRbDsgpnGA43jpNqkpleM8Sa06TmY7qJXlK1+BAxc4cOOGuHLiS3CFL4KTFtat45Ec/fV//Pj5+XGigjOlg+Cn51+4eOnylZWrjWvXb9xcba7dOlB5KSn0aM5zeRQRBZwJ6GmmORwVEkgWcTiMxk+r/OFbkIrl4rWeFjDISCpYwijRzhqueY0wI3okMxNqmOj6QCMhtualXXBSCSCsebbo0Slx1p61rcnG45AJ3TBhnenLNBqYoL2zsxm0t6rPw66t26jEvLKtkDu+mGzYf73BvjH3zZnyR5vzZcMxKQpyUjex9r/Y8hzsdBk7sicc8VwMm+sVdOACL4tOO6hjffcJwj8+fP69P2z+CuOclhkITTlRyhCpGeXg6EoFBaFjkkLfSUEyUANTA1h8zzkxTnLpltC4dhcrDMmUmmaR21kP7WyuMs/L9UudbA8ME0WpQdBZo6TkWOe4enscMwlU86kThErmWDEdEUmodn/IqS40iyRLR9o26qHMbo6Xxd+hHHTbnQft7gs3nT00ixV0B91FLdRBW2gXPUf7qIeod+y99z56n/x3/hf/q/9tttX35jW30anwv/8Bvxz/TQ==</latexit>
400 500 600 700
κ(λ)
λ[nm]
what color is all about
!
!"#
!
$"#
!
""#
!
%"#
!
&"#
'()*+,
-./01234(
560.7(589:47;+!"#$
b rg
rgb
λ[nm]
stimulus =
illuminant × transmission × sensitivity
how to predict the color optical
properties of materials?
The fundamental laws necessary for the
mathematical treatment of a large part of physics
and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of
these laws leads to equations that are too
complex to be solved.
The fundamental laws necessary for the
mathematical treatment of a large part of physics
and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of
these laws leads to equations that are too
complex to be solved.
The fundamental laws necessary for the
mathematical treatment of a large part of physics
and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of
these laws leads to equations that are too
complex to be solved.
xxx
were
vKS(r, t) = v (r) + E(t) x +
n(r , t)
|r r |
dr + vxc[n](r, t)
<latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit>
optical spectra from TDDF(p)T
E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
i
⇥ v(r, t)
⇥t
= + vKS(r, t) v(r, t)
n(r, t) =
X
v
| v(r, t)|2
vKS(r, t) = v (r) + E(t) x +
n(r , t)
|r r |
dr + vxc[n](r, t)
<latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit>
optical spectra from TDDF(p)T
E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
i
⇥ v(r, t)
⇥t
= + vKS(r, t) v(r, t)
(t) =
X
v
|⇥v(t)⇥ ⇥v(t)|
hA(t)i = Tr (t)A
n(r, t) =
X
v
| v(r, t)|2
vKS(r, t) = v (r) + E(t) x +
n(r , t)
|r r |
dr + vxc[n](r, t)
<latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit>
i ˙(t) =
⇥
HKS(t), (t)
⇤
optical spectra from TDDF(p)T
E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
i
⇥ v(r, t)
⇥t
= + vKS(r, t) v(r, t)
(t) =
X
v
|⇥v(t)⇥ ⇥v(t)|
hA(t)i = Tr (t)A
n(r, t) =
X
v
| v(r, t)|2
optical spectra from TDDF(p)T
i ˙(t) =
⇥
HKS(t), (t)
⇤
⇢(t) = ⇢ + ⇢0
(t)
HKS(t) = H + E(t)x + V 0
HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit>
i ˙⇢0
= [H ,⇢0
] + [V 0
HXC, ⇢ ] + E[x, ⇢ ] + O E2
<latexit sha1_base64="UrflNFMoCk4WXnGGxHhcghyqoYU=">AAACVXicdZFfaxNBFMVn19rG+KdRH30ZDKGVlrCJgr4IxVLImxVMGthNw+zN3ezQ2dll5q4YlvgJfW/7YSrOJqm0ihcGLr9zhjn3TlwoaSkIrj3/wdbD7Z3Go+bjJ0+f7baevxjZvDSAQ8hVbsaxsKikxiFJUjguDIosVngWXxzX+tk3NFbm+istCpxkYq5lIkGQQ9OWkT+iWU6RSfM9/pGHg/MIpIHDSOOcUqltIQBX6oQf8HC0N60G4+PlYY3W1pqfhN/vkoMoE5SCUNXnZaQwIb5/ct6PjJynxN9MW+1eN1gV/3/TZps6nbZ+uohQZqgJlLA27AUFTSphSILCZTMqLbqYF2KO1WojS95xaMaT3Lijia/oPZ/IrF1ksXPWUe3fWg3/aJ3OHTUsKfkwqaQuSkIN66eSUnHKeb1gPpMGgdSCCwCXuBTkkkAqjAByH9F04we3w/7b3I4/6nd7b7v9L+/aR582i2iwV+w122c99p4dsQE7ZUMG7Ir98na8hnfp3fhb/vba6nubOy/ZvfJ3fwOrRLEm</latexit>
optical spectra from TDDF(p)T
i ˙(t) =
⇥
HKS(t), (t)
⇤
i ˙⇢0
= [H ,⇢0
] + [V 0
HXC(⇢0
), ⇢ ] + E[x, ⇢ ]<latexit sha1_base64="pTDA5FzwGtkMXqir3HJYg+oHIsk=">AAACjXicdVHbTsJAEN3WG+Kt6qMvjYSokZDi/cEL0Rh51ESQpK1kuyywYXvJ7tRImvpBfos/4N+4FDSiYTaTnZw5e2Zmx4s4k2BZn5o+Mzs3v5BbzC8tr6yuGesbDRnGgtA6CXkomh6WlLOA1oEBp81IUOx7nD55/Zth/umFCsnC4BEGEXV93A1YhxEMCmoZ7+zNaYfgiF64c5E4maAtup6bVMpWySqfKT9K7dqzQ5ggpTQjTuW56f50jcZOK6k1b9LdSUpJnZFsulca3qNSSurWfv0NtIyC0svMnB4U0NjuW8aHGo3EPg2AcCylXbEicBMsgBFO07wTSxph0sddmmQdpWZRQW2zEwrlAZgZOsHDvpQD31NMH0NP/s0NwZ9csfgra8fQOXMTFkQx0ICMSnVibkJoDhdjtpmgBPjAxISojmMMqhPSwwITUAvMq/Gt72H/B9/jNw7KlcPywYNVqF6PPyKHttA22kUVdIqqqIbuUR0RzdBOtCutqq/px/q5fjmi6tr4zSaaMP3uC3k2wV8=</latexit>
⇢(t) = ⇢ + ⇢0
(t)
HKS(t) = H + E(t)x + V 0
HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit>
i ˙⇢0
(t) = L ⇢0
(t) + E(t)[x, ⇢ ]<latexit sha1_base64="53gTiYannH8W8U2c3n6tV0dFjzM=">AAACM3icdVDbSgMxEM16t96qPvqyWIoVpWy1YF8EUQQffKhgrdBdS3aatsHshWRWLMv6V/oV/oDok6hv/oPZ2ooXHJgwOedMcmbcUHCFlvVgjIyOjU9MTk1nZmbn5heyi0tnKogksBoEIpDnLlVMcJ/VkKNg56Fk1HMFq7uXBylfv2JS8cA/xV7IHI92fN7mQFFDzWyV39itAG3ZDdYKuL4b2/03G7LjOnGpaG1axYrOcmJ7FLtARXycJDdD+cahPhrXm+n9wgYuwWlmc7qtH+b/RY4MotrM3msDEHnMRxBUqUbJCtGJqUQOgiUZO1IspHBJOyzue0vMvIZaZjuQOn00++gPHfWU6nmuVqau1W8uBb+4fP4b24iwXXFi7ocRMh8+v2pHwsTATNdntrhkgKJnUgDtOKKonUCXSgqo15zR41vDYf8Ww/HPtoql7eLWSTm3tz9YxBRZIaukQEpkh+yRI1IlNQLkjjyRV/Jm3BqPxrPx8ikdMQY9y+RHGO8fZdaokA==</latexit>
(! L)˜⇢0
(!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit>
optical spectra from TDDF(p)T
i ˙(t) =
⇥
HKS(t), (t)
⇤
i ˙⇢0
= [H ,⇢0
] + [V 0
HXC(⇢0
), ⇢ ] + E[x, ⇢ ]<latexit sha1_base64="pTDA5FzwGtkMXqir3HJYg+oHIsk=">AAACjXicdVHbTsJAEN3WG+Kt6qMvjYSokZDi/cEL0Rh51ESQpK1kuyywYXvJ7tRImvpBfos/4N+4FDSiYTaTnZw5e2Zmx4s4k2BZn5o+Mzs3v5BbzC8tr6yuGesbDRnGgtA6CXkomh6WlLOA1oEBp81IUOx7nD55/Zth/umFCsnC4BEGEXV93A1YhxEMCmoZ7+zNaYfgiF64c5E4maAtup6bVMpWySqfKT9K7dqzQ5ggpTQjTuW56f50jcZOK6k1b9LdSUpJnZFsulca3qNSSurWfv0NtIyC0svMnB4U0NjuW8aHGo3EPg2AcCylXbEicBMsgBFO07wTSxph0sddmmQdpWZRQW2zEwrlAZgZOsHDvpQD31NMH0NP/s0NwZ9csfgra8fQOXMTFkQx0ICMSnVibkJoDhdjtpmgBPjAxISojmMMqhPSwwITUAvMq/Gt72H/B9/jNw7KlcPywYNVqF6PPyKHttA22kUVdIqqqIbuUR0RzdBOtCutqq/px/q5fjmi6tr4zSaaMP3uC3k2wV8=</latexit>
⇢(t) = ⇢ + ⇢0
(t)
HKS(t) = H + E(t)x + V 0
HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit>
(! L)˜⇢0
(!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit>
optical spectra from TDDF(p)T
TDDF(p)T: Lanczos’ recursion method
↵(!) = d, (! L) 1
· [x, ⇢ ]<latexit sha1_base64="MGGazuUEfvF59Cuu/aCOAA/rYbM=">AAACtnicjVHLattAFB2pr9R9xGmX3VxqDDY4RkrTxlkUAt1k0UUKdRLwyOZqNJKGjDRiZhRihP4wu6z6N5X8KElLoBcGDufcx7l3wkIKYz3vl+M+efrs+Yudl51Xr9+83e3uvTs3qtSMT5mSSl+GaLgUOZ9aYSW/LDTHLJT8Irz61uoX11wbofKfdlnwIMMkF7FgaBtq0b2jKIsUB1RlPMHhVxqKRMKgoqvWM52EQeWPvVWMvPFnzz/+4jdgzdQ0Q5uGMUT1CDY9YB8eq55sweG9aoYSvtfDebXv10BZpOz/DofZzYjqVM0pE5oFULfmNQwX3d62Ch4HPbKJs0X3lkaKlRnPLZNozMz3ChtUqK1gktcdWhpeILvChFcrazX0GyqCWOnm5RZW7IM8zIxZZmGT2S5p/tZa8o/W799TZ6WNJ0El8qK0PGfrUXEpwSpofxAioTmzcgnIWOO4RNs4YSlqZLb56U6z/vZE8C/Yrn9+MPY/jQ9+HPZOTjeH2CEfyEcyID45IifklJyRKWHOsbNwUke4E3fucjdZp7rOpuY9eRBu8Rvhschi</latexit>
(! L)˜⇢0
(!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit>
optical spectra from TDDF(p)T
L ˜⇢0
= !˜⇢0 Casida’s equations: iterative
diagonalization of large
matrices (DIIS or Davidson)
D. Rocca et al. JCP 128, 154105 (2008)
X. Ge et al. Comp. Phys. Commun. 185, 2080 (2014)
TDDF(p)T: Lanczos’ recursion method
↵(!) = d, (! L) 1
· [x, ⇢ ]<latexit sha1_base64="MGGazuUEfvF59Cuu/aCOAA/rYbM=">AAACtnicjVHLattAFB2pr9R9xGmX3VxqDDY4RkrTxlkUAt1k0UUKdRLwyOZqNJKGjDRiZhRihP4wu6z6N5X8KElLoBcGDufcx7l3wkIKYz3vl+M+efrs+Yudl51Xr9+83e3uvTs3qtSMT5mSSl+GaLgUOZ9aYSW/LDTHLJT8Irz61uoX11wbofKfdlnwIMMkF7FgaBtq0b2jKIsUB1RlPMHhVxqKRMKgoqvWM52EQeWPvVWMvPFnzz/+4jdgzdQ0Q5uGMUT1CDY9YB8eq55sweG9aoYSvtfDebXv10BZpOz/DofZzYjqVM0pE5oFULfmNQwX3d62Ch4HPbKJs0X3lkaKlRnPLZNozMz3ChtUqK1gktcdWhpeILvChFcrazX0GyqCWOnm5RZW7IM8zIxZZmGT2S5p/tZa8o/W799TZ6WNJ0El8qK0PGfrUXEpwSpofxAioTmzcgnIWOO4RNs4YSlqZLb56U6z/vZE8C/Yrn9+MPY/jQ9+HPZOTjeH2CEfyEcyID45IifklJyRKWHOsbNwUke4E3fucjdZp7rOpuY9eRBu8Rvhschi</latexit>
chlorophyll a
C55H72MgN4O
chlorophyll a
400 500 600 700
!
" [nm]
tddft (gga)
expt
chlorophyll a
400 500 600 700
!
" [nm]
tddft (gga)
expt
from chemistry to color
molecular
structure
chemical
composition
from chemistry to color
molecular
structure
chemical
composition	
environmental
conditions
+
from chemistry to color
molecular
structure
chemical
composition	
environmental
conditions
+
electronic
structure
from chemistry to color
molecular
structure
chemical
composition	
environmental
conditions
+
absorption
spectrum
400 500 600 700
λ (nm)
electronic
structure
from chemistry to color
molecular
structure
chemical
composition	
environmental
conditions
+
absorption
spectrum
400 500 600 700
λ (nm)
electronic
structure
=
color
the dance of colors
OHO
OH
O
OH
O O
HO
HO
OH
OH
absorption
wavelength [nm]
450 600 750
the dance of colors
OHO
OH
O
OH
O O
HO
HO
OH
OH
absorption
wavelength [nm]
450 600 750
0 180 1.4
20	ps
↵
1.5
d
the dance of colors
OHO
OH
O
OH
O O
HO
HO
OH
OH
absorption
wavelength [nm]
450 600 750
0 180 1.4
20	ps
↵
1.5
d
the dance of colors
OHO
OH
O
OH
O O
HO
HO
OH
OH
average spectrum & color
absorption
wavelength [nm]
450 600 750
0 180 1.4
20	ps
↵
1.5
d
making sense of it
θ
making sense of it
0 20 40 60
0 20 40 60
✓
θ
making sense of it
θ
φ
optical
gap [eV]
color
θ
φ
θ
why multiscaletime[ps]
time[ps]
angle [deg]angle [deg]
why multiscaletime[ps]
time[ps]
angle [deg]angle [deg]
why multiscaletime[ps]
time[ps]
angle [deg]angle [deg]
long-time dynamics & statistics
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
long-time dynamics & statistics
T1
T2
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
long-time dynamics & statistics
T1
T2
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
long-time dynamics & statistics
T1
T2
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T2
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
long-time dynamics & statistics
¯(!) ⇡
1
T
Z T
0
(!, R(t))dt
=
T1
T
1
T1
Z T1
0
(!, R(t))dt +
T2
T
1
T1
Z T2
0
(!, R(t))dt + · · ·
⇠
X
c
Pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="M91ZgbXW8xPN06crywZthMBesCw=">AAADCXichVJNbxMxEPUuBcry0RSOXKxGrRIVRbsBCS5UkbhwDChpK+Gy8nq9iRV7vbJnq0ar7R/oD+HcG+LKmSuIf4PTbkXTojCSrTfzZp7mWU4KKSyE4W/Pv7N299799QfBw0ePn2y0Np/uW10axsdMS20OE2q5FDkfgwDJDwvDqUokP0hm7xb8wTE3Vuh8BPOCHyk6yUUmGAVXije9AUmoITNaFLRDtOIT2sU7xKVGn2CSGcqqqK5GNSYihzj8PMJLzS+IojBNsupj3YFuNwVMCN7Bb5vRUXwx/FfH5VdKTbJSbTe40umv0un/TwfvEpZqsJfbESuUu0oVMzx05/T0mtOYXVdmq5VxCnGrHfbCi8C3QdSANmpiGLfOSapZqXgOTFJrK2pAMMnrgJSWF5TN6IRXTCVGTKawXKXK2rlKary9WMPe5BbFf3GfSsjeHFUiL0rgufO07bislBg0XvwKnArDGci5A5QZ4fbBbErdk4D7O0HgPEY3Hd0G+/1e9LLX//CqPdhr3K6j52gLdVCEXqMBeo+GaIyY98X74f30fvln/rn/1f922ep7zcwztBT+9z9/fPQR</latexit>
T1
T2
¯(!) ⇠
X
c
pc
1
Tc
Z Tc
0
(!, R(t))dt
<latexit sha1_base64="vsLVGae9qRyObnVbTXfj1X7G4/A=">AAACJ3icbVDPa9swGJXTbsuyH/W64y6iIZDACHZbWI+hvezYlSYNVJn5rMiJiGQb6XMhGP9BO/aP6Lm3sh133nW9T9l8WJI+kHh6Tx9878W5khaD4IfX2Nl99vxF82Xr1es3b/f8d/sjmxWGiyHPVGbGMVihZCqGKFGJcW4E6FiJq3hxtvKvboSxMksvcZmLiYZZKhPJAZ0U+RGLwbAF5Dl0WabFDHqUMiu1uwodcZq7Q1ligJdhVV5GvKJMphgFX+vH/7MfmQacx0l5UXWx16NTjPx20A/+gm6TsCZtUuM88m/ZNOOFFilyBdaWYFByJaoWK6zIgS9gJkquYyNnc1xXQVu71HFFO6s17Ka3Ep/yrgtMTialTPMCReoydZyXFIpiRled0ak0gqNaOgLcSLcP5XNwlaBrttVyGcPNRNtkdNgPj/qHX47bg9M6bZN8IAekS0LyiQzIZ3JOhoSTO/KL/CaP3jfv3nvwvv/72vDqmfdkDd7PP410pTw=</latexit>
conformational analysis
conformational analysis
Conformers population fro
α β
β
conformational analysis
conformational analysis
0.25
1 2 3 4 5 6
0.00
0.05
0.10
0.15
0.20
0.25
0.00
0.05
0.10
0.15
0.20
0.25
conformational analysis
0.00
0.05
0.10
0.15
0.20
0.25
1 2 3 4 5 6
0.00
0.05
0.10
0.15
0.20
0.25
0.00
0.05
0.10
0.15
0.20
0.25
conformational analysis
0.00
0.05
0.10
0.15
0.20
0.25
conformational analysis
pends on
g density
of the de-
order are
he doping
hermore,
hat takes
Hall bar
antitative
. Novoselov,
Phys. 3,
tt. 98,
09 (2007).
(2008).
ev. Lett. 108,
Science 344,
ys. Rev. Lett.
10).
echnol. 7,
technol. 7,
1959–2007
03 (2013).
optical data on monolayer MoS2. This research was supported by the
Kavli Institute at Cornell for Nanoscale Science and the Cornell
Center for Materials Research [National Science Foundation (NSF)
DMR-1120296]. Additional funding was provided by the Air Force
Office of Scientific Research (FA9550-10-1-0410) and the
Nano-Material Technology Development Program through the National
Research Foundation of Korea funded by the Ministry of Science,
ICT and Future Planning (2012M3A7B4049887). Device fabrication
was performed at the Cornell NanoScale Science and Technology
Facility, a member of the National Nanotechnology Infrastructure
Network, which is supported by NSF (grant ECCS-0335765). K.L.M.
acknowledges support from the NSF Integrative Graduate Education
and Research Traineeship program (DGE-0654193) and the NSF
Graduate Research Fellowship Program (DGE-1144153).
SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/344/6191/1489/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S10
References (34–37)
24 December 2013; accepted 23 May 2014
10.1126/science.1250140
MACHINE LEARNING
Clustering by fast search and find of
density peaks
Alex Rodriguez and Alessandro Laio
Cluster analysis is aimed at classifying elements into categories on the basis of their
similarity. Its applications range from astronomy to bioinformatics, bibliometrics, and pattern
recognition. We propose an approach based on the idea that cluster centers are characterized
by a higher density than their neighbors and by a relatively large distance from points with
higher densities.This idea forms the basis of a clustering procedure in which the number of
clusters arises intuitively, outliers are automatically spotted and excluded from the analysis, and
clusters are recognized regardless of their shape and of the dimensionality of the space in which
they are embedded. We demonstrate the power of the algorithm on several test cases.
lustering algorithms attempt to classify tion. This method allows the finding of nonspheri-
onDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.org
he hole side
Lett. 95,
J. W. Kevek
ruitful
rding the
choosing an appropriate threshold can be non-
trivial, a drawback not present in the mean-shift
clustering method (10, 11). There a cluster is de-
fined as a set of points that converge to the same
local maximum of the density distribution func-
where cðxÞ ¼ 1 if x < 0 and cðxÞ ¼ 0 otherwise,
and dc is a cutoff distance. Basically, ri is equal to
the number of points that are closer than dc to
point i. The algorithm is sensitive only to the rel-
ative magnitude of ri in different points, implying
that, for large data sets, the results of the analysis
are robust with respect to the choice of dc.
1 sciencemag.org SCIENCE
SISSA (Scuola Internazionale Superiore di Studi Avanzati),
via Bonomea 265, I-34136 Trieste, Italy.
E-mail: laio@sissa.it (A.L.); alexrod@sissa.it (A.R.)
side, the VHE and the SHE become equivalent on the hole side
owing to the spin-valley coupled valence band.
33. H.-A. Engel, B. I. Halperin, E. I. Rashba, Phys. Rev. Lett. 95,
166605 (2005).
ACKNOWLEDGMENTS
We thank D. C. Ralph for his insightful suggestions and J. W. Kevek
for technical support. We also thank J. Shan for many fruitful
discussions and Y. You for private communications regarding the
choosing an appropriate threshold can be non-
trivial, a drawback not present in the mean-shift
clustering method (10, 11). There a cluster is de-
fined as a set of points that converge to the same
local maximum of the density distribution func-
where c
and dc is
the num
point i. T
ative ma
that, for
are robu
1492 27 JUNE 2014 • VOL 344 ISSUE 6191
SISSA (Scuola Internazionale Superiore di Studi Avanzati),
via Bonomea 265, I-34136 Trieste, Italy.
E-mail: laio@sissa.it (A.L.); alexrod@sissa.it (A.R.)
the multi-scale protocol
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent:
m¨R =
@E
@R
pc =
Tc
T<latexit sha1_base64="STuIG1a7eprxxfFZZ0pJMPslY94=">AAACGXicbVDLSsNAFJ34rPEVdelmsFjcWJIq6KZQEMFlK32BKWEymbRDJw9mJkIJ+RK/wpVrd+LWlQu3+htObBDbelaHc87l3nPdmFEhTfNdW1peWV1bL23om1vbO7vG3n5XRAnHpIMjFvG+iwRhNCQdSSUj/ZgTFLiM9NzxVe737gkXNArbchKTQYCGIfUpRlJJjtEKoO15kUztAMmR68PbDFbq8NT2OcKpHSMuKWLwOvvlf4K2rccOrtSn4baDs7SdOUbZrJo/gIvEKkgZFGg6xqPtRTgJSCgxQ0Kk+R7MSKbbiSAxwmM0JCkOXE6HIzmrokCISeBm8Di/Ssx7ufifd5dI/3KQ0jBOJAmxiijPTxiUEcy/BD3KCZZsogjCnKp7IB4h1VKqX+q66mjNN1ok3VrVOqvWWuflRrNoWwKH4AicAAtcgAa4AU3QARg8gQ/wCb60B+1Ze9Fep9ElrZg5ADPQ3r4BuZOgVw==</latexit>
the multi-scale protocol
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon:
m¨R =
*
@ ˆH
@R
+
µ ¨ = ˆH + ⇤<latexit sha1_base64="tP10NdvYr1bk9WuUTj0+cXmi/Wo=">AAACanicbVFLTsMwEHXCr4RfgRViY1FASIiqLUhlg4TEpgsWgGhBwqiaOE5r1U4i20GqQi/DDTgOd+AQOGkEgjKrN+/NjOeN/URwbRqND8edm19YXKoseyura+sb1c2tno5TRVmXxiJWjz5oJnjEuoYbwR4TxUD6gj34o6tcf3hhSvM4ujfjhD1LGEQ85BSMpfrVN0mCIDYZkWCGfojvJocXJ5gIFhoiIBoIhkmi+ZTBr5iECmhGElCGg8BkCAZ3Jt/EzxhMFB8Mi5aif5oRVc4kHpFp8XQhH17gk+msIj3G5Np6CCDP+tVao94oAs+CZglqqIybfvWdBDFNJYsMFaB1lu9GBZt4JNUsATqCAcuo9IudfrMgtR5Lf4IPcif6r5aT/2lPqQnPnzMeJalhEbUlVgtTgU2M87PjgCtGjRhbAFRxuw+mQ7C3NPZzPM96bP51NAt6rXrztN66Patddkq3FbSL9tARaqI2ukQddIO6iDoVp+60nXPn091yd9zdaanrlD3b6Fe4+19/0Lg6</latexit>
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon;	
3. for	each	CPMD	trajectory	thus	generated,	compute	TDDFpT	
spectra	on	the	fly	≈	1ps	apart,	treaCng	the	solvent	as	a	dielectric	
conCnuum:
the multi-scale protocol
L˜⇢0
n(t) = !n(t)˜⇢0
n(t)
S(!) =
*
X
n
fn(t) ! !n(t)
<latexit sha1_base64="pHAhkVBsNC71sWM+wisODy9r3QU=">AAACgHicbVFdaxNBFJ1dv+r6FfVRKINBTAXTbHxQBKHQPvRBpaJpC05Z7s7e3QydmV1m7goh5Ef55l/pv3E2XYQ03qcz55z7NTdvtPI0mVxF8a3bd+7e27mfPHj46PGTwdNnp75uncSZrHXtznPwqJXFGSnSeN44BJNrPMsvDzv97Bc6r2r7gxYNXhiorCqVBApUNvgjcqyUXVZAc3RvVsIEIEHzz1yQ0gVy4eZ1Zl+PaI9/4qI2WEFmu9e2LkTyfXRtCWahsSShwVY6uHxrMlv2mQVqApGrSvPe/3ajclAc3xNOVXMSbl0ho0SgLf4Nmg2Gk/FkHXwbpD0Ysj5OssFvUdSyNWhJavB+CY6U1LhKROuxAXkJFS6lydddN1kw3i9MvuKvuu/xN7WO/J/2s6Xyw8VS2aYltDJYgla2mlPNu2PwQjmUpBcBgHQqzMPlHBxICidLkrBjenOjbXA6HafvxtNv0+HBcb/tDnvBXrIRS9l7dsCO2QmbMRntRkfRl+hrHMejeD9Or61x1Oc8ZxsRf/wLWcq+zg==</latexit>
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon;	
3. for	each	CPMD	trajectory	thus	generated,	compute	TDDFpT	
spectra	on	the	fly	≈	1ps	apart,	treaCng	the	solvent	as	a	dielectric	
conCnuum:
the multi-scale protocol
L˜⇢0
n(t) = !n(t)˜⇢0
n(t)
S(!) =
*
X
n
fn(t) ! !n(t)
<latexit sha1_base64="pHAhkVBsNC71sWM+wisODy9r3QU=">AAACgHicbVFdaxNBFJ1dv+r6FfVRKINBTAXTbHxQBKHQPvRBpaJpC05Z7s7e3QydmV1m7goh5Ef55l/pv3E2XYQ03qcz55z7NTdvtPI0mVxF8a3bd+7e27mfPHj46PGTwdNnp75uncSZrHXtznPwqJXFGSnSeN44BJNrPMsvDzv97Bc6r2r7gxYNXhiorCqVBApUNvgjcqyUXVZAc3RvVsIEIEHzz1yQ0gVy4eZ1Zl+PaI9/4qI2WEFmu9e2LkTyfXRtCWahsSShwVY6uHxrMlv2mQVqApGrSvPe/3ajclAc3xNOVXMSbl0ho0SgLf4Nmg2Gk/FkHXwbpD0Ysj5OssFvUdSyNWhJavB+CY6U1LhKROuxAXkJFS6lydddN1kw3i9MvuKvuu/xN7WO/J/2s6Xyw8VS2aYltDJYgla2mlPNu2PwQjmUpBcBgHQqzMPlHBxICidLkrBjenOjbXA6HafvxtNv0+HBcb/tDnvBXrIRS9l7dsCO2QmbMRntRkfRl+hrHMejeD9Or61x1Oc8ZxsRf/wLWcq+zg==</latexit>
THE JOURNAL OF CHEMICAL PHYSICS 142, 034111 (2015)
Self-consistent continuum solvation for optical absorption of complex
molecular systems in solution
Iurii Timrov,1
Oliviero Andreussi,2
Alessandro Biancardi,1
Nicola Marzari,3
and Stefano Baroni1,3,a)
1
SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
THE JOURNAL OF CHEMICAL PHYSICS 142, 034111 (2015)
Self-consistent continuum solvation for optical absorption of complex
molecular systems in solution
Iurii Timrov,1
Oliviero Andreussi,2
Alessandro Biancardi,1
Nicola Marzari,3
and Stefano Baroni1,3,a)
THE JOURNAL OF CHEMICAL PHYSICS 142, 034
Self-consistent continuum solvation for optical abs
molecular systems in solution
Iurii Timrov,1
Oliviero Andreussi,2
Alessandro Biancardi,1
Nicola Ma
and Stefano Baroni1,3,a)
1
SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 341
2
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgime
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon;	
3. for	each	CPMD	trajectory	thus	generated,	compute	TDDFpT	
spectra	on	the	fly	≈	1ps	apart,	treaCng	the	solvent	as	a	dielectric	
conCnuum:	
4. average	the	spectra	within	each	conformer	and	over	different	
conformers:
the multi-scale protocol
Sc (!) =
*
X
n
fn(t) ! !n(t)
+
c
S(!) =
X
c
pc Sc (!)
<latexit sha1_base64="zkKEAfazMZ4lqDsDh6IYxkogMsI=">AAACanicbVHNahsxENZu08bdpo2bnkouIm7ALtTYziG5FAK55JiSOAlUYdGOZ9ciknaRZgvG+GX6Bn2cvkMfIrK9pPkbEPqY75uZb6Ss0srTYPA3il9tvH6z2XqbvNt6/2G7/XHn0pe1AxxDqUt3nUmPWlkckyKN15VDaTKNV9ntyZK/+oXOq9Je0KzCGyMLq3IFkkIqbf8WGRbKzgtJU3RfF8l5Cl1RGixkj38XGnMSWtpCIxe+NqnNU9ulHhcT1CRFpgrNG/239dXwgXG8J5wqpiTcqkMKnAuRnP/vv+4JvArnweBEoJ3cW0rbnUF/sAr+HAwb0GFNnKXtP2JSQm3QEmjp/Vw6UqBxkYjaYyXhVhY4B5OtzD3OSuP9zGQLvm/CeP+UWyZf4n7WlB/dzJWtakILQRK4vNacSr58dj5RDoH0LAAJTgU/HKbSSaDwOUkSdhw+3eg5uBz1hwf90Y9R5/i02bbFdtke67IhO2TH7JSdsTGDqBX1o8PoKPoX78Sf4921NI6amk/sUcRf7gAN+7bU</latexit>
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon;	
3. for	each	CPMD	trajectory	thus	generated,	compute	TDDFpT	
spectra	on	the	fly	≈	1ps	apart,	treaCng	the	solvent	as	a	dielectric	
conCnuum:	
4. average	the	spectra	within	each	conformer	and	over	different	
conformers:
the multi-scale protocol
Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Iurii Timrov,†,¶
Marco Micciarelli,†
Marta Rosa,†
Arrigo Calzolari,‡
and Stefano Baroni*,†
†
SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡
CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy
Article
pubs.acs.org/JCTC
Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Iurii Timrov,†,¶
Marco Micciarelli,†
Marta Rosa,†
Arrigo Calzolari,‡
and Stefano Baroni*,†
†
SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡
CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy
ABSTRACT: We introduce a multimodel approach to the
Article
pubs.acs.org/JCTC
ABSTRACT: We introduce a multimodel approach to the
simulation of the optical properties of molecular dyes in
solution, whereby the effects of thermal fluctuations and of
dielectric screening on the absorption spectra are accounted
for by explicit and implicit solvation models, respectively. Ther-
mal effects are treated by averaging the spectra of molecular
configurations generated by an ab initio molecular-dynamics
simulation where solvent molecules are treated explicitly.
Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their
replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by
comparing its predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in
water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the
trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save
considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology
is finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at
strong and intermediate acidity conditions.
1. INTRODUCTION
Modeling the optical properties of molecular dyes in solution has
long relied on a static picture, whereby thermal fluctuations are
thoroughly ignored, either by neglecting the effects of the
environment altogether or by accounting for the dielectric
screening of the solvent through some kind of continuum
solvation model (CSM),1
such as the polarizable continuum model
(PCM),2−6
the conductor-like screening model (COSMO),7−10
or
the (revised) self-consistent continuum solvation (SCCS)
model.11−17
In both cases, the optical spectra are often obtained
at the molecular minimum-energy configuration, as computed
in vacuo or in some effective medium. Nevertheless, recent
studies have shown the importance of thermal fluctuations on the
optical properties of solvated dyes.18−23
Thermal fluctuations are
accurately described in molecular solvation models (MSMs), in
which solvent molecules are treated explicitly, i.e. on the same
atomistic ground as the solute (this approach is often referred to
as explicit solvent model). Some of the previous attempts to
account for thermal fluctuations in the optical properties of
solvated molecules were based on molecular dynamics (MD)
utilizing classical force fields accurately targeted to the specific
system(s) of interest.18,21,22
While this approach is apt to cope
with thermal effects on the optical absorption spectra, its prac-
tical implementation is hampered by the limited transferability of
the available force fields, which would require extensive fitting
and validation procedures for each system to be examined. In one
of our previous works19
we introduced an MSM approach to
simulating the optical properties of solvated dyes where the entire
system (solute plus solvent) is treated quantum mechanically and
let evolve according to ab initio (AI) molecular dynamics,24,25
while absorption spectra are computed on-the-fly using time-
dependent density-functional theory (TDDFT)26,27
and aver-
aged along the trajectory. This naturally accounts for both
thermal and dielectric solvation effects on the optical spectra yet
not requiring any unwieldy system-specific fitting or validation.
When it comes to simulating large systems comprising hundreds
of atoms, however, the deployment of ab initio MSMs is hindered
by the large computational cost of hybrid functionals,28−30,32
particularly when using plane-wave basis sets, as it is common
practice in many applications involving AIMD. In a previous
paper23
we proposed to use a GGA exchange-correlation (XC)
energy functional33
to generate explicit-solvent AIMD trajecto-
ries and a semiempirical morphing procedure, tailored on the gas-
phase B3LYP29
TDDFT spectra of the dye, to correct the GGA
spectra evaluated along the AIMD trajectory. GGA is generally
assumed to be accurate enough for the sake of sampling AIMD
trajectories, in spite of the minor, but not always negligible, dif-
ferences existing between the harmonic frequencies computed
using different functionals.31
As for the morphing procedure
previously proposed, while it proved accurate enough to deal
with global properties of the optical spectra, such as the color
expressed by a given solution, it may not be so when it comes to
predicting individual spectral features.
In this paper we propose an approach to this problem that
combines the advantages of CSMs and MSMs, by applying them
Received: April 24, 2016
Published: July 21, 2016
© 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417
J. Chem. Theory Comput. 2016, 12, 4423−4429
DownloadedviaSISSAonSeptember19,2019at11:44:23(UTC).
Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.
1. esCmate	conformaConal	populaCons	from	long	(>	1μs)	classical	
MD	simulaCons	in	explicit	water	solvent;	
2. for	each	of	the	most	populated	molecular	conformers	thus	
idenCfied,	run	a	10-20	ps	Car-Parrinello	quantum	MD	simulaCon;	
3. for	each	CPMD	trajectory	thus	generated,	compute	TDDFpT	
spectra	on	the	fly	≈	1ps	apart,	treaCng	the	solvent	as	a	dielectric	
conCnuum:	
4. average	the	spectra	within	each	conformer	and	over	different	
conformers:
the multi-scale protocol
Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Iurii Timrov,†,¶
Marco Micciarelli,†
Marta Rosa,†
Arrigo Calzolari,‡
and Stefano Baroni*,†
†
SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡
CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy
Article
pubs.acs.org/JCTC
Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Iurii Timrov,†,¶
Marco Micciarelli,†
Marta Rosa,†
Arrigo Calzolari,‡
and Stefano Baroni*,†
†
SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
‡
CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy
ABSTRACT: We introduce a multimodel approach to the
Article
pubs.acs.org/JCTC
ABSTRACT: We introduce a multimodel approach to the
simulation of the optical properties of molecular dyes in
solution, whereby the effects of thermal fluctuations and of
dielectric screening on the absorption spectra are accounted
for by explicit and implicit solvation models, respectively. Ther-
mal effects are treated by averaging the spectra of molecular
configurations generated by an ab initio molecular-dynamics
simulation where solvent molecules are treated explicitly.
Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their
replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by
comparing its predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in
water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the
trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save
considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology
is finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at
strong and intermediate acidity conditions.
1. INTRODUCTION
Modeling the optical properties of molecular dyes in solution has
long relied on a static picture, whereby thermal fluctuations are
thoroughly ignored, either by neglecting the effects of the
environment altogether or by accounting for the dielectric
screening of the solvent through some kind of continuum
solvation model (CSM),1
such as the polarizable continuum model
(PCM),2−6
the conductor-like screening model (COSMO),7−10
or
the (revised) self-consistent continuum solvation (SCCS)
model.11−17
In both cases, the optical spectra are often obtained
at the molecular minimum-energy configuration, as computed
in vacuo or in some effective medium. Nevertheless, recent
studies have shown the importance of thermal fluctuations on the
optical properties of solvated dyes.18−23
Thermal fluctuations are
accurately described in molecular solvation models (MSMs), in
which solvent molecules are treated explicitly, i.e. on the same
atomistic ground as the solute (this approach is often referred to
as explicit solvent model). Some of the previous attempts to
account for thermal fluctuations in the optical properties of
solvated molecules were based on molecular dynamics (MD)
utilizing classical force fields accurately targeted to the specific
system(s) of interest.18,21,22
While this approach is apt to cope
with thermal effects on the optical absorption spectra, its prac-
tical implementation is hampered by the limited transferability of
the available force fields, which would require extensive fitting
and validation procedures for each system to be examined. In one
of our previous works19
we introduced an MSM approach to
simulating the optical properties of solvated dyes where the entire
system (solute plus solvent) is treated quantum mechanically and
let evolve according to ab initio (AI) molecular dynamics,24,25
while absorption spectra are computed on-the-fly using time-
dependent density-functional theory (TDDFT)26,27
and aver-
aged along the trajectory. This naturally accounts for both
thermal and dielectric solvation effects on the optical spectra yet
not requiring any unwieldy system-specific fitting or validation.
When it comes to simulating large systems comprising hundreds
of atoms, however, the deployment of ab initio MSMs is hindered
by the large computational cost of hybrid functionals,28−30,32
particularly when using plane-wave basis sets, as it is common
practice in many applications involving AIMD. In a previous
paper23
we proposed to use a GGA exchange-correlation (XC)
energy functional33
to generate explicit-solvent AIMD trajecto-
ries and a semiempirical morphing procedure, tailored on the gas-
phase B3LYP29
TDDFT spectra of the dye, to correct the GGA
spectra evaluated along the AIMD trajectory. GGA is generally
assumed to be accurate enough for the sake of sampling AIMD
trajectories, in spite of the minor, but not always negligible, dif-
ferences existing between the harmonic frequencies computed
using different functionals.31
As for the morphing procedure
previously proposed, while it proved accurate enough to deal
with global properties of the optical spectra, such as the color
expressed by a given solution, it may not be so when it comes to
predicting individual spectral features.
In this paper we propose an approach to this problem that
combines the advantages of CSMs and MSMs, by applying them
Received: April 24, 2016
Published: July 21, 2016
© 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417
J. Chem. Theory Comput. 2016, 12, 4423−4429
DownloadedviaSISSAonSeptember19,2019at11:44:23(UTC).
Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.
effects of the environment: acidity
OHO
OH
OH
OH
O O
HO
HO
OH
OH
Cyanidin 3-O-glucoside
OHO
OH
OH
OH
O O
HO
HO
OH
OH
effects of the environment: acidity
+
AH+ flavylium cation
-H+
A - quinoidal base
0
OHO
OH
O
OH
O O
HO
HO
OH
OH
HO
OH
O
OH
O O
HO
HO
OH
OH
OH O
Cc - cis-chalcone
HO
OH
O
HO
O
O
HO
HO
OH
OH
OH
O
Ct - trans-chalcone
OHO
OH
O
OH
O O
HO
HO
OH
OH
OH
B - carbinol
+OH-
0
OHO
OH
OH
OH
O O
HO
HO
OH
OH
effects of the environment: acidity
+
AH+ flavylium cation
-H+
A - quinoidal base
0
OHO
OH
O
OH
O O
HO
HO
OH
OH
HO
OH
O
OH
O O
HO
HO
OH
OH
OH O
Cc - cis-chalcone
HO
OH
O
HO
O
O
HO
HO
OH
OH
OH
O
Ct - trans-chalcone
OHO
OH
O
OH
O O
HO
HO
OH
OH
OH
B - carbinol
+OH-
0
OHO
OH
OH
OH
O O
HO
HO
OH
OH
effects of the environment: acidity
+
AH+ flavylium cation
-H+
A - quinoidal base
0
OHO
OH
O
OH
O O
HO
HO
OH
OH
HO
OH
O
OH
O O
HO
HO
OH
OH
OH O
Cc - cis-chalcone
HO
OH
O
HO
O
O
HO
HO
OH
OH
OH
O
Ct - trans-chalcone
OHO
OH
O
OH
O O
HO
HO
OH
OH
OH
B - carbinol
+OH-
0
OHO
O
O
OH
O O
HO
HO
OH
OH
-
-H+
−
OHO
OH
OH
OH
O O
HO
HO
OH
OH
effects of the environment: acidity
+
AH+ flavylium cation
-H+
A - quinoidal base
0
OHO
OH
O
OH
O O
HO
HO
OH
OH
HO
OH
O
OH
O O
HO
HO
OH
OH
OH O
Cc - cis-chalcone
HO
OH
O
HO
O
O
HO
HO
OH
OH
OH
O
Ct - trans-chalcone
OHO
OH
O
OH
O O
HO
HO
OH
OH
OH
B - carbinol
+OH-
0
?
OHO
O
O
OH
O O
HO
HO
OH
OH
-
-H+
−
?
OHO
OH
OH
OH
O O
HO
HO
OH
OH
+
comparing predictions with experiments
OHO
OH
OH
OH
O O
HO
HO
OH
OH
+
comparing predictions with experiments
450 550 650
λ
experiment
OHO
OH
OH
OH
O O
HO
HO
OH
OH
+
comparing predictions with experiments
450 550 650
λ
experiment
450 550 650
λ
theory
comparing predictions with experiments
OHO
OH
OH
OH
O O
HO
HO
OH
OH
+
OHO
OH
O
OH
O O
HO
HO
OH
OH
0
450 550 650
λ
experiment
comparing predictions with experiments
OHO
OH
OH
OH
O O
HO
HO
OH
OH
+
OHO
OH
O
OH
O O
HO
HO
OH
OH
0
450 550 650
λ
experiment theory
450 550 650
λ
OHO
O
O
OH
O O
HO
HO
OH
OH
-
H5
OO
O
OH
O O
HO
HO
OH
OH
-
OH
H7
comparing predictions with experiments
450 550 650
λ
pH=9
pH=8
pH=7
450 550 650
λ
H7
H5
OHO
O
O
OH
O O
HO
HO
OH
OH
-
H5
OO
O
OH
O O
HO
HO
OH
OH
-
OH
H7
comparing predictions with experiments
450 550 650
λ
pH=9
pH=8
pH=7
450 550 650
λ
H7
H5
pH9
450 550 650
λ
OHO
O
O
OH
O O
HO
HO
OH
OH
-
H5
OO
O
OH
O O
HO
HO
OH
OH
-
OH
H7
comparing predictions with experiments
450 550 650
λ
pH=9
pH=8
pH=7
450 550 650
λ
H7
H5
pH9
450 550 650
λ
Cite this: Phys.Chem.Chem.Phys.,
2019, 21, 8757
Unraveling the molecular mechanisms of color
expression in anthocyanins†
Mariami Rusishvili, ab
Luca Grisanti, ‡a
Sara Laporte, a
Marco Micciarelli, §a
Marta Rosa, ¶a
Rebecca J. Robbins,c
Tom Collins,d
Alessandra Magistrato e
and Stefano Baroni *ae
Anthocyanins are a broad family of natural dyes, increasingly finding application as substitutes for
artificial colorants in the food industry. In spite of their importance and ubiquity, the molecular principles
responsible for their extreme color variability are poorly known. We address these mechanisms by
computer simulations and photoabsorption experiments of cyanidin-3-O-glucoside in water solution, as
a proxy for more complex members of the family. Experimental results are presented in the range of
pH 1–9, accompanied by a comprehensive systematic computational study across relevant charge states
and tautomers. The computed spectra are in excellent agreement with the experiments, providing
unprecedented insight into the complex behavior underlying color expression in these molecules.
Besides confirming the importance of the molecule’s charge state, we also unveil the hitherto unrecognizedReceived 6th February 2019,
PCCP
PAPER
deraCreativeCommonsAttribution3.0UnportedLicence.
View Article Online
View Journal | View Issue
in the quest for a natural blue 1
1. bend the CB bond
2. inhibit deprotonation
at 5
in the quest for a natural blue 1
450 550 650
λ
5
7
1. bend the CB bond
2. inhibit deprotonation
at 5
in the quest for a natural blue 1
in the quest for a natural blue 1
in the quest for a natural blue 1
in the quest for a natural blue 1
θ
φ
θ
φ
θ
predicting tautomeric equilibria and pKa
Cy3G+
predicting tautomeric equilibria and pKa
H+±
Cy3G (4’)Cy3G+
Cy3G (4’)
predicting tautomeric equilibria and pKa
Cy3G+
Cy3G (7)
H+±
predicting tautomeric equilibria and pKa
1 1.2 1.4 1.6 1.8 2
0.2
0.1
0
0.1
0.2
0.3
0.4
3.5
3
2.5
2
1.5
1
0.5
0
kcal/mol
deprotonated at 4' deprotonated at 7
Cy3G (4’) Cy3G (7)
F =
Z 1
0
⌧
@H(⌘)
@⌘
d⌘
<latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit>
predicting tautomeric equilibria and pKa
thermodynamic integration
Cy3G (4’) Cy3G (7)
predicting tautomeric equilibria and pKa
F =
Z 1
0
⌧
@H(⌘)
@⌘
d⌘
<latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit>
Cy3G (4’) Cy3G (7)
1 H
λ=0
no H½ H
½ Hno H
1 H
λ=½ λ=1
F =
Z 1
0
⌧
@H(⌘)
@⌘
d⌘
<latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit>
predicting tautomeric equilibria and pKa
CyG (4’) CyG (7)
0 0.5 1
η
F =
Z 1
0
⌧
@H(⌘)
@⌘
d⌘
<latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit>
predicting tautomeric equilibria and pKa
CyG (4’) CyG (7)
F =
Z 1
0
⌧
@H(⌘)
@⌘
d⌘
<latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit>
predicting tautomeric equilibria and pKa
0 0.5 1
η
0.99 1
CyG (4’) CyG (7)
conclusions
• the color optical properties of anthocyanins depend
sensitively on intramolecular distortions due to either thermal
fluctuations or co-pigmentation
conclusions
• the color optical properties of anthocyanins depend
sensitively on intramolecular distortions due to either thermal
fluctuations or co-pigmentation
• the protomeric state of the negative species also affects the
color, with far-reaching consequences on the bluing effect of
co-pigmenation
conclusions
• the color optical properties of anthocyanins depend
sensitively on intramolecular distortions due to either thermal
fluctuations or co-pigmentation
• the protomeric state of the negative species also affects the
color, with far-reaching consequences on the bluing effect of
co-pigmenation
• molecular simulations have been instrumental in the
identification of a natural substitute for blue 1
conclusions
• the color optical properties of anthocyanins depend
sensitively on intramolecular distortions due to either thermal
fluctuations or co-pigmentation
• the protomeric state of the negative species also affects the
color, with far-reaching consequences on the bluing effect of
co-pigmenation
• molecular simulations have been instrumental in the
identification of a natural substitute for blue 1
• applied research can be fun and instructive for theoretical
physicists as well …
conclusions
Marta
Rosa
Marco
Micciarelli
Alessandro
Laio
Iurii
Timrov
Mariami
Rusishvili
Rebecca
Robbins
Tom
Collins
Luca
Grisanti
Alessandra
Magistrato
Sara
Laporte
thanks to
and to
save the Amazon,
please!
save the Amazon,
please!
http://talks.baroni.me

More Related Content

Similar to Watching flowers through a silicon glass.

Pretty Nasty - Phthalates in European Cosmetic Products
Pretty Nasty - Phthalates in European Cosmetic Products Pretty Nasty - Phthalates in European Cosmetic Products
Pretty Nasty - Phthalates in European Cosmetic Products v2zq
 
Chemical Preservatives and their Effects on Human Beings
Chemical Preservatives and their Effects on Human BeingsChemical Preservatives and their Effects on Human Beings
Chemical Preservatives and their Effects on Human Beingsijtsrd
 
Pretty nasty 프탈레이트 (2005)
Pretty nasty 프탈레이트 (2005) Pretty nasty 프탈레이트 (2005)
Pretty nasty 프탈레이트 (2005) 여성환경연대
 
The organic food market
The organic food marketThe organic food market
The organic food marketLoic Baltyde
 
Colorimetric Sensor for Determination of Allura Red (E129) in Present of Pr...
Colorimetric Sensor for Determination of Allura   Red (E129) in Present of Pr...Colorimetric Sensor for Determination of Allura   Red (E129) in Present of Pr...
Colorimetric Sensor for Determination of Allura Red (E129) in Present of Pr...CrimsonpublishersNTNF
 
Universtity of West Attika, Master, Phenolics
Universtity of West Attika, Master, PhenolicsUniverstity of West Attika, Master, Phenolics
Universtity of West Attika, Master, PhenolicsPanagiotis Arapitsas
 
anthocyanin seminar.1.pptx
anthocyanin seminar.1.pptxanthocyanin seminar.1.pptx
anthocyanin seminar.1.pptxAnjay21
 

Similar to Watching flowers through a silicon glass. (10)

Pretty Nasty - Phthalates in European Cosmetic Products
Pretty Nasty - Phthalates in European Cosmetic Products Pretty Nasty - Phthalates in European Cosmetic Products
Pretty Nasty - Phthalates in European Cosmetic Products
 
synthetic food colours
synthetic food colourssynthetic food colours
synthetic food colours
 
Chemical Preservatives and their Effects on Human Beings
Chemical Preservatives and their Effects on Human BeingsChemical Preservatives and their Effects on Human Beings
Chemical Preservatives and their Effects on Human Beings
 
Pretty nasty 프탈레이트 (2005)
Pretty nasty 프탈레이트 (2005) Pretty nasty 프탈레이트 (2005)
Pretty nasty 프탈레이트 (2005)
 
The organic food market
The organic food marketThe organic food market
The organic food market
 
Phthalates in sambar a gc-ms analysis
Phthalates in sambar   a gc-ms analysisPhthalates in sambar   a gc-ms analysis
Phthalates in sambar a gc-ms analysis
 
Colorimetric Sensor for Determination of Allura Red (E129) in Present of Pr...
Colorimetric Sensor for Determination of Allura   Red (E129) in Present of Pr...Colorimetric Sensor for Determination of Allura   Red (E129) in Present of Pr...
Colorimetric Sensor for Determination of Allura Red (E129) in Present of Pr...
 
Universtity of West Attika, Master, Phenolics
Universtity of West Attika, Master, PhenolicsUniverstity of West Attika, Master, Phenolics
Universtity of West Attika, Master, Phenolics
 
anthocyanin seminar.1.pptx
anthocyanin seminar.1.pptxanthocyanin seminar.1.pptx
anthocyanin seminar.1.pptx
 
Green Tips
Green TipsGreen Tips
Green Tips
 

More from Sociedade Brasileira de Pesquisa em Materiais

More from Sociedade Brasileira de Pesquisa em Materiais (20)

Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.Challenges in Processing of Materials to Reduce Weight of Structural Components.
Challenges in Processing of Materials to Reduce Weight of Structural Components.
 
Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.Bioinspired strategies for bone regeneration.
Bioinspired strategies for bone regeneration.
 
Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.Sirius: The New Brazilian Synchrotron Light Source.
Sirius: The New Brazilian Synchrotron Light Source.
 
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).Tribute to Prof Ivo Alexander Hümmelgen  (26 March 1963 – 1 March 2019).
Tribute to Prof Ivo Alexander Hümmelgen (26 March 1963 – 1 March 2019).
 
Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.
 
Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.Crystallography in Brazil: Origin and Current Perspective.
Crystallography in Brazil: Origin and Current Perspective.
 
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation."XVIII B-MRS Meeting" Closing Ceremony Presentation.
"XVIII B-MRS Meeting" Closing Ceremony Presentation.
 
XVIII B-MRS Meeting
XVIII B-MRS MeetingXVIII B-MRS Meeting
XVIII B-MRS Meeting
 
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
 
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
Polysaccharide Hydrogels: a versatile tool for biomedical and pharmaceutical ...
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
 
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
Soft Magnetic Nanocrystalline Materials for Inductors and Shielding Applicati...
 
Materials for a Better Future.
Materials for a Better Future.Materials for a Better Future.
Materials for a Better Future.
 
Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.Molecular Assembly of Peptide based Materials towards Biomedical Application.
Molecular Assembly of Peptide based Materials towards Biomedical Application.
 
How to promote your article?
How to promote your article?How to promote your article?
How to promote your article?
 
How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,How can academic publishing increase diversity and inclusion,
How can academic publishing increase diversity and inclusion,
 
New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.New Perspectives on Materials Science and Innovation in Brazil.
New Perspectives on Materials Science and Innovation in Brazil.
 
XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.XVI B-MRS Meeting Closing Ceremony Presentation.
XVI B-MRS Meeting Closing Ceremony Presentation.
 
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
Extreme Ultraviolet Litography (EUVL): novel patterning materials, progress a...
 
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
Handling molecular machines by our hands: beyond Nobel Prize and Nanotechnology.
 

Recently uploaded

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 

Recently uploaded (20)

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 

Watching flowers through a silicon glass.

  • 1. Stefano Baroni Scuola Internazionale Superiore di Studi Avanzati Trieste — Italy watching flowers through a silicon glass multiscale simulation of the color optical properties of natural dyes keynote talk given at the XVIII meeting of the Brazilian Materials Research Society, Balneário Camboriú, September 22-26, 2019
  • 2. natural dyes in the food industry
  • 3. natural dyes in the food industry ☛ global market of 1.45 billion USD in 2009 ☛ total production of 50,000 tons / year alcohols 5% soft drinks 28% food 67% Other 18% China 8% Japan 10% USA 28% Europe 36% ☛ natural dyes market grown by 35% in the 2005-2009 quinquennium
  • 4. the food industry is subject to an increasing global pressure from customers and lawmakers who demand a shift towards ingredients and additives that are perceived as more natural and, “therefore”, healthier
  • 5. the Southampton six In 2007 Research funded by the UK FSA was published, suggesting that the consumption of certain mixes of artificial food colours and preservatives could be linked to attention deficit and increased hyperactivity in some children. Fact Sheet Box A: The Seven Southampton Additives Colours: Tartrazine (E102) Quinoline yellow (E104) Sunset yellow (E110) Carmoisine (E122) Ponceau 4R (E124) Allura red (E129) Preservative: Sodium benzoate (E211) Food additives are chemicals which are found in the majority of ‘processed’ foods and drinks consumed in the UK and abroad. They can be from natural sources or artificially manufactured. They are used to make food look and taste more appealing, to maintain consistency between batches and help increase the ‘shelf life’ by preventing the food from going mouldy or stale. By law, if any additive is present in a product, it must be listed on the ingredients list on the packaging of food or drink bought in shops. Additives can be listed either by name or by their ‘E number.’ If you buy food at a restaurant or take away outlet or a bakery you may not know which additives are present as the foods are not required to have ingredients lists. The chemicals in question are allowed to be added, but some people say we do not know enough about all of the health effects that might be caused by these chemicals. For instance Tartrazine (E102), has long been known to cause rashes/skin irritation in a small number of people, and others such as Sodium Benzoate (E211) have been linked to the worsening of asthma conditions. Some additives that are permitted for use in the UK and Europe are banned in other countries. Recently, the UK Government body responsible for food safety, the Food Standards Agency (FSA), commissioned a research project that became known as the ‘Southampton study.’ The Southampton study demonstrated that mixtures of the seven Since 2010 an EU-wide compulsory warning must be put on any food and drink product that contains any of these six colours: “May have an adverse effect on activity and attention in children”
  • 6. natural dyes: the requirements
  • 7. natural dyes: the requirements tunable
  • 8. natural dyes: the requirements tunable stable
  • 9. natural dyes: the requirements tunable stable safe
  • 10. natural dyes: the requirements tunable stable safe inexpensive
  • 15. anthocyanins anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 16. anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH peonin −OCH3 −OH −H −OH anthocyanins B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 17. anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH peonin −OCH3 −OH −H −OH rosinin −OH −OH −H −OCH3 anthocyanins B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 18. anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH peonin −OCH3 −OH −H −OH rosinin −OH −OH −H −OCH3 malvin −OCH3 −OH −OCH3 −OH anthocyanins B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 19. anthocyanins anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH peonin −OCH3 −OH −H −OH rosinin −OH −OH −H −OCH3 malvin −OCH3 −OH −OCH3 −OH pelargonin −H −OH −OH −OH B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 20. anthocyanin R3’ R4’ R5’ R7 cyanin −OH −OH −H −OH peonin −OCH3 −OH −H −OH rosinin −OH −OH −H −OCH3 malvin −OCH3 −OH −OCH3 −OH pelargonin −H −OH −OH −OH delphinin −OH −OH −OCH3 −OH anthocyanins B chromenylium O R5 O O HO HO OH OH 1 2 3 45 6 R7 R3' R4' R5'7 8 1' 2' 3' 4' 5' 6'
  • 21. very little is known of the molecular mechanisms that determine the chromatic properties and the stability of anthocyanins and the relation between structure and color
  • 22. what color is all about ?
  • 23. what color is all about
  • 24. what color is all about
  • 25. what color is all about
  • 26. what color is all about anycolor(λ) = r(λ) + g(λ) + b(λ) 450 550 650 λ[nm]
  • 27. what color is all about stimulus = illuminant × transmission × sensitivity
  • 28. S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit> stimulus = illuminant × transmission × sensitivity what color is all about ! !"# ! $"# ! ""# ! %"# ! &"# '()*+, -./01234( 560.7(589:47;+!"#$
  • 29. S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit> stimulus = illuminant × transmission × sensitivity what color is all about ! !"# ! $"# ! ""# ! %"# ! &"# '()*+, -./01234( 560.7(589:47;+!"#$ T(x, ) x absorbing mediumlight
  • 30. S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit> stimulus = illuminant × transmission × sensitivity what color is all about 400 500 600 700 κ(λ) λ[nm] ! !"# ! $"# ! ""# ! %"# ! &"# '()*+, -./01234( 560.7(589:47;+!"#$ S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
  • 31. S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit> stimulus = illuminant × transmission × sensitivity what color is all about 400 500 600 700 κ(λ) λ[nm] ! !"# ! $"# ! ""# ! %"# ! &"# '()*+, -./01234( 560.7(589:47;+!"#$ b rg rgb λ[nm] S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit> S(λ) × e−κ(λ)x × rgb(λ)<latexit sha1_base64="tRWmyqedvyyoKrRi3CKD2xRQhwQ=">AAACu3icbVHLbhMxFPUMrxJeaSuxgYXVCilIZTQJ6muBVMGGFSqCNJEyIfJ4biYmtmdke1Ajy9/CN/AL/AVbvgTPJIG05UrXujrX59xXWnKmTRz/CsJbt+/cvbd1v/Xg4aPHT9rbOxe6qBSFPi14oYYp0cCZhL5hhsOwVEBEymGQzt/V+cE3UJoV8rNZlDAWJJdsyigxHpq0f9qkERmpPB3bODo9PYij4/o57LlEEDNTAn/qJNxLZuSlayWGCdC4tcpZcF/sq2siRwcrd8mclCX5R79cC6zpiYFL05CtgsxZ5TaQXAFIZ/NNjC6Ih1Ln/opO2vt137E3fDPoRnFj+2d7KPz+9Mfz80n7d5IVtBIgDeVEa0uUYZSD763SUBI6JzmMfCiJ73Rsm8IOv/BIhqeF8i4NbtBNhiVC64VI/c96OH09V4P/y40qMz0ZWybLyoCky0LTimNT4PpkOGMKqOELHxCqmO8V0xlRhBp/2CtVqEgVy2fGtZqlLCfHN4P1Ui56Ufd11Pvot/MWLW0LPUN7qIO66BidoffoHPURDTrBh2AQDMM3IQ2/hnz5NQxWnF10xcLqDwVh3Rc=</latexit>
  • 32. RGB(x) = S(λ)e−κ(λ)x rgb(λ)dλ <latexit sha1_base64="0MdJub8hIxVv1BEW5lJ72Clbakc=">AAADBHicdZJNb9MwGMed8DbKyzo4crGYkDppVGkRbDsgpnGA43jpNqkpleM8Sa06TmY7qJXlK1+BAxc4cOOGuHLiS3CFL4KTFtat45Ec/fV//Pj5+XGigjOlg+Cn51+4eOnylZWrjWvXb9xcba7dOlB5KSn0aM5zeRQRBZwJ6GmmORwVEkgWcTiMxk+r/OFbkIrl4rWeFjDISCpYwijRzhqueY0wI3okMxNqmOj6QCMhtualXXBSCSCsebbo0Slx1p61rcnG45AJ3TBhnenLNBqYoL2zsxm0t6rPw66t26jEvLKtkDu+mGzYf73BvjH3zZnyR5vzZcMxKQpyUjex9r/Y8hzsdBk7sicc8VwMm+sVdOACL4tOO6hjffcJwj8+fP69P2z+CuOclhkITTlRyhCpGeXg6EoFBaFjkkLfSUEyUANTA1h8zzkxTnLpltC4dhcrDMmUmmaR21kP7WyuMs/L9UudbA8ME0WpQdBZo6TkWOe4enscMwlU86kThErmWDEdEUmodn/IqS40iyRLR9o26qHMbo6Xxd+hHHTbnQft7gs3nT00ixV0B91FLdRBW2gXPUf7qIeod+y99z56n/x3/hf/q/9tttX35jW30anwv/8Bvxz/TQ==</latexit> 400 500 600 700 κ(λ) λ[nm] what color is all about ! !"# ! $"# ! ""# ! %"# ! &"# '()*+, -./01234( 560.7(589:47;+!"#$ b rg rgb λ[nm] stimulus = illuminant × transmission × sensitivity
  • 33. how to predict the color optical properties of materials?
  • 34. The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.
  • 35. The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.
  • 36. The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved. xxx were
  • 37. vKS(r, t) = v (r) + E(t) x + n(r , t) |r r | dr + vxc[n](r, t) <latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit> optical spectra from TDDF(p)T E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) i ⇥ v(r, t) ⇥t = + vKS(r, t) v(r, t) n(r, t) = X v | v(r, t)|2
  • 38. vKS(r, t) = v (r) + E(t) x + n(r , t) |r r | dr + vxc[n](r, t) <latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit> optical spectra from TDDF(p)T E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) i ⇥ v(r, t) ⇥t = + vKS(r, t) v(r, t) (t) = X v |⇥v(t)⇥ ⇥v(t)| hA(t)i = Tr (t)A n(r, t) = X v | v(r, t)|2
  • 39. vKS(r, t) = v (r) + E(t) x + n(r , t) |r r | dr + vxc[n](r, t) <latexit sha1_base64="pjmYTD7b28RCuG7Xzh2QlovYgYo=">AAACc3icdVFNa9tAEF2pSZs4beK2x1yGOKY2SYycHtpLS6AUArmktE4ClitW41W8ZLUSuyMTo+iH9tRDf0PuXX8Ikn4MDAzvveENb+JcSUtB8MPzn6ytP322sdnYev5ie6f58tWFzQqDYoCZysxVzK1QUosBSVLiKjeCp7ESl/HNpzl/ORXGykx/o1kuRim/1jKRyMlBUXM2jcqzr1WnDOMETHVIXfgw/R6iNFhjXTiAzx3qhodw68ZQaoIS9Ip+s9gJM2cCd0voyIF3UI1rARw4k1ushnr0wCdqtvq9YFHw/6HFVnUeNX+F4wyLVGhCxa0d9oOcRiU3JFGJqhEWVuQcb/i1KBfBVNB20BiSzLh2Vy/QRzqeWjtLY6dMOU3sn9wc/Bc3LCh5PyqlzgsSGpdGSaGAMpinDGNpBJKaAUd09xac3B044YYjuW802u02TIQRkbQRTURU/6zhUgnqDP4e6lQujnv9t73jL0Hr5OMqnw22y/ZYh/XZO3bCTtk5GzBkP711b9vb8e79XX/P319KfW+185o9Kv/oNx+nuGg=</latexit> i ˙(t) = ⇥ HKS(t), (t) ⇤ optical spectra from TDDF(p)T E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) i ⇥ v(r, t) ⇥t = + vKS(r, t) v(r, t) (t) = X v |⇥v(t)⇥ ⇥v(t)| hA(t)i = Tr (t)A n(r, t) = X v | v(r, t)|2
  • 40. optical spectra from TDDF(p)T i ˙(t) = ⇥ HKS(t), (t) ⇤ ⇢(t) = ⇢ + ⇢0 (t) HKS(t) = H + E(t)x + V 0 HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit> i ˙⇢0 = [H ,⇢0 ] + [V 0 HXC, ⇢ ] + E[x, ⇢ ] + O E2 <latexit sha1_base64="UrflNFMoCk4WXnGGxHhcghyqoYU=">AAACVXicdZFfaxNBFMVn19rG+KdRH30ZDKGVlrCJgr4IxVLImxVMGthNw+zN3ezQ2dll5q4YlvgJfW/7YSrOJqm0ihcGLr9zhjn3TlwoaSkIrj3/wdbD7Z3Go+bjJ0+f7baevxjZvDSAQ8hVbsaxsKikxiFJUjguDIosVngWXxzX+tk3NFbm+istCpxkYq5lIkGQQ9OWkT+iWU6RSfM9/pGHg/MIpIHDSOOcUqltIQBX6oQf8HC0N60G4+PlYY3W1pqfhN/vkoMoE5SCUNXnZaQwIb5/ct6PjJynxN9MW+1eN1gV/3/TZps6nbZ+uohQZqgJlLA27AUFTSphSILCZTMqLbqYF2KO1WojS95xaMaT3Lijia/oPZ/IrF1ksXPWUe3fWg3/aJ3OHTUsKfkwqaQuSkIN66eSUnHKeb1gPpMGgdSCCwCXuBTkkkAqjAByH9F04we3w/7b3I4/6nd7b7v9L+/aR582i2iwV+w122c99p4dsQE7ZUMG7Ir98na8hnfp3fhb/vba6nubOy/ZvfJ3fwOrRLEm</latexit>
  • 41. optical spectra from TDDF(p)T i ˙(t) = ⇥ HKS(t), (t) ⇤ i ˙⇢0 = [H ,⇢0 ] + [V 0 HXC(⇢0 ), ⇢ ] + E[x, ⇢ ]<latexit sha1_base64="pTDA5FzwGtkMXqir3HJYg+oHIsk=">AAACjXicdVHbTsJAEN3WG+Kt6qMvjYSokZDi/cEL0Rh51ESQpK1kuyywYXvJ7tRImvpBfos/4N+4FDSiYTaTnZw5e2Zmx4s4k2BZn5o+Mzs3v5BbzC8tr6yuGesbDRnGgtA6CXkomh6WlLOA1oEBp81IUOx7nD55/Zth/umFCsnC4BEGEXV93A1YhxEMCmoZ7+zNaYfgiF64c5E4maAtup6bVMpWySqfKT9K7dqzQ5ggpTQjTuW56f50jcZOK6k1b9LdSUpJnZFsulca3qNSSurWfv0NtIyC0svMnB4U0NjuW8aHGo3EPg2AcCylXbEicBMsgBFO07wTSxph0sddmmQdpWZRQW2zEwrlAZgZOsHDvpQD31NMH0NP/s0NwZ9csfgra8fQOXMTFkQx0ICMSnVibkJoDhdjtpmgBPjAxISojmMMqhPSwwITUAvMq/Gt72H/B9/jNw7KlcPywYNVqF6PPyKHttA22kUVdIqqqIbuUR0RzdBOtCutqq/px/q5fjmi6tr4zSaaMP3uC3k2wV8=</latexit> ⇢(t) = ⇢ + ⇢0 (t) HKS(t) = H + E(t)x + V 0 HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit> i ˙⇢0 (t) = L ⇢0 (t) + E(t)[x, ⇢ ]<latexit sha1_base64="53gTiYannH8W8U2c3n6tV0dFjzM=">AAACM3icdVDbSgMxEM16t96qPvqyWIoVpWy1YF8EUQQffKhgrdBdS3aatsHshWRWLMv6V/oV/oDok6hv/oPZ2ooXHJgwOedMcmbcUHCFlvVgjIyOjU9MTk1nZmbn5heyi0tnKogksBoEIpDnLlVMcJ/VkKNg56Fk1HMFq7uXBylfv2JS8cA/xV7IHI92fN7mQFFDzWyV39itAG3ZDdYKuL4b2/03G7LjOnGpaG1axYrOcmJ7FLtARXycJDdD+cahPhrXm+n9wgYuwWlmc7qtH+b/RY4MotrM3msDEHnMRxBUqUbJCtGJqUQOgiUZO1IspHBJOyzue0vMvIZaZjuQOn00++gPHfWU6nmuVqau1W8uBb+4fP4b24iwXXFi7ocRMh8+v2pHwsTATNdntrhkgKJnUgDtOKKonUCXSgqo15zR41vDYf8Ww/HPtoql7eLWSTm3tz9YxBRZIaukQEpkh+yRI1IlNQLkjjyRV/Jm3BqPxrPx8ikdMQY9y+RHGO8fZdaokA==</latexit>
  • 42. (! L)˜⇢0 (!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit> optical spectra from TDDF(p)T i ˙(t) = ⇥ HKS(t), (t) ⇤ i ˙⇢0 = [H ,⇢0 ] + [V 0 HXC(⇢0 ), ⇢ ] + E[x, ⇢ ]<latexit sha1_base64="pTDA5FzwGtkMXqir3HJYg+oHIsk=">AAACjXicdVHbTsJAEN3WG+Kt6qMvjYSokZDi/cEL0Rh51ESQpK1kuyywYXvJ7tRImvpBfos/4N+4FDSiYTaTnZw5e2Zmx4s4k2BZn5o+Mzs3v5BbzC8tr6yuGesbDRnGgtA6CXkomh6WlLOA1oEBp81IUOx7nD55/Zth/umFCsnC4BEGEXV93A1YhxEMCmoZ7+zNaYfgiF64c5E4maAtup6bVMpWySqfKT9K7dqzQ5ggpTQjTuW56f50jcZOK6k1b9LdSUpJnZFsulca3qNSSurWfv0NtIyC0svMnB4U0NjuW8aHGo3EPg2AcCylXbEicBMsgBFO07wTSxph0sddmmQdpWZRQW2zEwrlAZgZOsHDvpQD31NMH0NP/s0NwZ9csfgra8fQOXMTFkQx0ICMSnVibkJoDhdjtpmgBPjAxISojmMMqhPSwwITUAvMq/Gt72H/B9/jNw7KlcPywYNVqF6PPyKHttA22kUVdIqqqIbuUR0RzdBOtCutqq/px/q5fjmi6tr4zSaaMP3uC3k2wV8=</latexit> ⇢(t) = ⇢ + ⇢0 (t) HKS(t) = H + E(t)x + V 0 HXC(t)<latexit sha1_base64="wsP3Pew6S0rkAwgxuivZVeMAVVg=">AAACLnicbZDLSgMxFIYz9VbrbdSlm2DRVgplpgp2IxRKoeCmor1Apw6ZNG1DMxeSjFiGPpEbX0UXgoq49THMtLPQ6oHAl/8/h+T8TsCokIbxqqWWlldW19LrmY3Nre0dfXevJfyQY9LEPvN5x0GCMOqRpqSSkU7ACXIdRtrOuBr77TvCBfW9GzkJSM9FQ48OKEZSSbZes/jIz8uT44sYbi1MOS7EmFMitKxM3Y4ur6ezjnpi19TtHhZaOTuqd6qxZ+tZo2jMCv4FM4EsSKph689W38ehSzyJGRKiaxqB7EWIS4oZmWasUJAA4TEakq5CD7lE9KLZulN4pJQ+HPhcHU/CmfpzIkKuEBPXUZ0ukiOx6MXif143lINyL6JeEEri4flDg5BB6cM4O9innGDJJgoQ5lT9FeIR4ghLlXBGhWAurvwXWqWieVosXZ1lK+UkjjQ4AIcgD0xwDiqgDhqgCTB4AE/gDbxrj9qL9qF9zltTWjKzD36V9vUNv82lPg==</latexit>
  • 43. (! L)˜⇢0 (!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit> optical spectra from TDDF(p)T TDDF(p)T: Lanczos’ recursion method ↵(!) = d, (! L) 1 · [x, ⇢ ]<latexit sha1_base64="MGGazuUEfvF59Cuu/aCOAA/rYbM=">AAACtnicjVHLattAFB2pr9R9xGmX3VxqDDY4RkrTxlkUAt1k0UUKdRLwyOZqNJKGjDRiZhRihP4wu6z6N5X8KElLoBcGDufcx7l3wkIKYz3vl+M+efrs+Yudl51Xr9+83e3uvTs3qtSMT5mSSl+GaLgUOZ9aYSW/LDTHLJT8Irz61uoX11wbofKfdlnwIMMkF7FgaBtq0b2jKIsUB1RlPMHhVxqKRMKgoqvWM52EQeWPvVWMvPFnzz/+4jdgzdQ0Q5uGMUT1CDY9YB8eq55sweG9aoYSvtfDebXv10BZpOz/DofZzYjqVM0pE5oFULfmNQwX3d62Ch4HPbKJs0X3lkaKlRnPLZNozMz3ChtUqK1gktcdWhpeILvChFcrazX0GyqCWOnm5RZW7IM8zIxZZmGT2S5p/tZa8o/W799TZ6WNJ0El8qK0PGfrUXEpwSpofxAioTmzcgnIWOO4RNs4YSlqZLb56U6z/vZE8C/Yrn9+MPY/jQ9+HPZOTjeH2CEfyEcyID45IifklJyRKWHOsbNwUke4E3fucjdZp7rOpuY9eRBu8Rvhschi</latexit>
  • 44. (! L)˜⇢0 (!) = ˜E(!)[x, ⇢ ]<latexit sha1_base64="67B+IGz7ii9PUTaSy6tD4IB0is8=">AAACa3icdVFdS9xAFJ2kVu32a61vtQ9Dl1AFXbIq6IsgLYIPfbDQVWGThsndu5vBSSaduRGXsL9T+tzn/oSC2ZgI9uPCwOHcM2funBvnSlry/R+O+2Tp6fLK6rPO8xcvX73urr05t7owgEPQSpvLWFhUMsMhSVJ4mRsUaazwIr76tOhfXKOxUmdfaZZjmIppJicSBFVU1P2+GegUp4Lv8DKo7UZmGofloO/Xte33D1uwX4N5AELxz3O+xQOSaoyBSfSHxmaLHzUsP3mgRjfbC823AKSBMOr2WnP+f9BjTZ1F3Z/BWEORYkaghLWjgZ9TWApDEhTOO0FhMRdwJaZY1j+Yc6+ixnyiTXUy4jX7SCdSa2dpXClTQYn9s7cg/9UbFTQ5DEuZ5QVhBvcPTQrFSfNFunwsDQKpGRcA1byFoGoOSIQRQNUWOp7n8QQNRtJGlGDU7qpTpeK3GfwN2lTOd/uDvf7uF793/LHJZ5VtsPdskw3YATtmp+yMDRmwW/bbWXZWnF/uuvvWfXcvdZ3mzjp7VK53By1PtAY=</latexit> optical spectra from TDDF(p)T L ˜⇢0 = !˜⇢0 Casida’s equations: iterative diagonalization of large matrices (DIIS or Davidson) D. Rocca et al. JCP 128, 154105 (2008) X. Ge et al. Comp. Phys. Commun. 185, 2080 (2014) TDDF(p)T: Lanczos’ recursion method ↵(!) = d, (! L) 1 · [x, ⇢ ]<latexit sha1_base64="MGGazuUEfvF59Cuu/aCOAA/rYbM=">AAACtnicjVHLattAFB2pr9R9xGmX3VxqDDY4RkrTxlkUAt1k0UUKdRLwyOZqNJKGjDRiZhRihP4wu6z6N5X8KElLoBcGDufcx7l3wkIKYz3vl+M+efrs+Yudl51Xr9+83e3uvTs3qtSMT5mSSl+GaLgUOZ9aYSW/LDTHLJT8Irz61uoX11wbofKfdlnwIMMkF7FgaBtq0b2jKIsUB1RlPMHhVxqKRMKgoqvWM52EQeWPvVWMvPFnzz/+4jdgzdQ0Q5uGMUT1CDY9YB8eq55sweG9aoYSvtfDebXv10BZpOz/DofZzYjqVM0pE5oFULfmNQwX3d62Ch4HPbKJs0X3lkaKlRnPLZNozMz3ChtUqK1gktcdWhpeILvChFcrazX0GyqCWOnm5RZW7IM8zIxZZmGT2S5p/tZa8o/W799TZ6WNJ0El8qK0PGfrUXEpwSpofxAioTmzcgnIWOO4RNs4YSlqZLb56U6z/vZE8C/Yrn9+MPY/jQ9+HPZOTjeH2CEfyEcyID45IifklJyRKWHOsbNwUke4E3fucjdZp7rOpuY9eRBu8Rvhschi</latexit>
  • 46. chlorophyll a 400 500 600 700 ! " [nm] tddft (gga) expt
  • 47. chlorophyll a 400 500 600 700 ! " [nm] tddft (gga) expt
  • 48. from chemistry to color molecular structure chemical composition
  • 49. from chemistry to color molecular structure chemical composition environmental conditions +
  • 50. from chemistry to color molecular structure chemical composition environmental conditions + electronic structure
  • 51. from chemistry to color molecular structure chemical composition environmental conditions + absorption spectrum 400 500 600 700 λ (nm) electronic structure
  • 52. from chemistry to color molecular structure chemical composition environmental conditions + absorption spectrum 400 500 600 700 λ (nm) electronic structure = color
  • 53. the dance of colors OHO OH O OH O O HO HO OH OH absorption wavelength [nm] 450 600 750
  • 54. the dance of colors OHO OH O OH O O HO HO OH OH absorption wavelength [nm] 450 600 750 0 180 1.4 20 ps ↵ 1.5 d
  • 55. the dance of colors OHO OH O OH O O HO HO OH OH absorption wavelength [nm] 450 600 750 0 180 1.4 20 ps ↵ 1.5 d
  • 56. the dance of colors OHO OH O OH O O HO HO OH OH average spectrum & color absorption wavelength [nm] 450 600 750 0 180 1.4 20 ps ↵ 1.5 d
  • 58. making sense of it 0 20 40 60 0 20 40 60 ✓ θ
  • 59. making sense of it θ φ optical gap [eV] color θ φ θ
  • 63. long-time dynamics & statistics ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
  • 64. long-time dynamics & statistics T1 T2 ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
  • 65. long-time dynamics & statistics T1 T2 ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit> ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
  • 66. ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit> long-time dynamics & statistics T1 T2 ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit> ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T2 Z T2 0 (!, R(t))dt + · · · ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="8e11Fo3OOvjyqeCgXOX83IFIogU=">AAADSnichVLBbtNAEN24BYqBNoUDSFxWRK0SNYpsUwSXokpcOBaUtJW6wVqv184qXtvaHVdElpH4pP4HP8AfcOaGeukmMSJJqzCH1cyb3ffmrSbIE6HBcX42rI3Ne/cfbD20Hz1+sr3T3H16qrNCMT5gWZKp84BqnoiUD0BAws9zxakMEn4WjD9M+2eXXGmRpX2Y5HwoaZyKSDAKBvJ3G99JQBUZ0zynbZJJHtMO3iemVNlXTCJFWelWZb/CRKTgO1/6eOlyl0gKoyAqP1dt6HRCwITgfXyESzIb7kLFwbB0u07vTdep5nx9f8ZY/WM3wF/+ulircWCvZfdW2b1Fdu9/7PiAsDADPXdCtJDmKKTP7vaU+6zC+NuCHFuUY+vlcAh+s+X0nFng24lbJy1Ux4nfvCJhxgrJU2AJ1bqkCgRLeGWTQvOcsjGNeclkoEQ8gmWUSq0nMqjw3nQMvdqbgnf1LgqI3g1LkeYF8NR42jO9qEgwZHi6VjgUijNIJiahTAkzD2Yjar4EzPLZtvHorjq6nZx6Pfd1z/t02Dp+X7vdQi/RK9RGLnqLjtFHdIIGiDV+WdvWc+uF9cP6bf2xrudXrUb95hlaio3NG5q3CU8=</latexit>
  • 67. long-time dynamics & statistics ¯(!) ⇡ 1 T Z T 0 (!, R(t))dt = T1 T 1 T1 Z T1 0 (!, R(t))dt + T2 T 1 T1 Z T2 0 (!, R(t))dt + · · · ⇠ X c Pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="M91ZgbXW8xPN06crywZthMBesCw=">AAADCXichVJNbxMxEPUuBcry0RSOXKxGrRIVRbsBCS5UkbhwDChpK+Gy8nq9iRV7vbJnq0ar7R/oD+HcG+LKmSuIf4PTbkXTojCSrTfzZp7mWU4KKSyE4W/Pv7N299799QfBw0ePn2y0Np/uW10axsdMS20OE2q5FDkfgwDJDwvDqUokP0hm7xb8wTE3Vuh8BPOCHyk6yUUmGAVXije9AUmoITNaFLRDtOIT2sU7xKVGn2CSGcqqqK5GNSYihzj8PMJLzS+IojBNsupj3YFuNwVMCN7Bb5vRUXwx/FfH5VdKTbJSbTe40umv0un/TwfvEpZqsJfbESuUu0oVMzx05/T0mtOYXVdmq5VxCnGrHfbCi8C3QdSANmpiGLfOSapZqXgOTFJrK2pAMMnrgJSWF5TN6IRXTCVGTKawXKXK2rlKary9WMPe5BbFf3GfSsjeHFUiL0rgufO07bislBg0XvwKnArDGci5A5QZ4fbBbErdk4D7O0HgPEY3Hd0G+/1e9LLX//CqPdhr3K6j52gLdVCEXqMBeo+GaIyY98X74f30fvln/rn/1f922ep7zcwztBT+9z9/fPQR</latexit> T1 T2 ¯(!) ⇠ X c pc 1 Tc Z Tc 0 (!, R(t))dt <latexit sha1_base64="vsLVGae9qRyObnVbTXfj1X7G4/A=">AAACJ3icbVDPa9swGJXTbsuyH/W64y6iIZDACHZbWI+hvezYlSYNVJn5rMiJiGQb6XMhGP9BO/aP6Lm3sh133nW9T9l8WJI+kHh6Tx9878W5khaD4IfX2Nl99vxF82Xr1es3b/f8d/sjmxWGiyHPVGbGMVihZCqGKFGJcW4E6FiJq3hxtvKvboSxMksvcZmLiYZZKhPJAZ0U+RGLwbAF5Dl0WabFDHqUMiu1uwodcZq7Q1ligJdhVV5GvKJMphgFX+vH/7MfmQacx0l5UXWx16NTjPx20A/+gm6TsCZtUuM88m/ZNOOFFilyBdaWYFByJaoWK6zIgS9gJkquYyNnc1xXQVu71HFFO6s17Ka3Ep/yrgtMTialTPMCReoydZyXFIpiRled0ak0gqNaOgLcSLcP5XNwlaBrttVyGcPNRNtkdNgPj/qHX47bg9M6bZN8IAekS0LyiQzIZ3JOhoSTO/KL/CaP3jfv3nvwvv/72vDqmfdkDd7PP410pTw=</latexit>
  • 70. Conformers population fro α β β conformational analysis
  • 72. 1 2 3 4 5 6 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 conformational analysis 0.00 0.05 0.10 0.15 0.20 0.25
  • 73. 1 2 3 4 5 6 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 conformational analysis 0.00 0.05 0.10 0.15 0.20 0.25
  • 74. conformational analysis pends on g density of the de- order are he doping hermore, hat takes Hall bar antitative . Novoselov, Phys. 3, tt. 98, 09 (2007). (2008). ev. Lett. 108, Science 344, ys. Rev. Lett. 10). echnol. 7, technol. 7, 1959–2007 03 (2013). optical data on monolayer MoS2. This research was supported by the Kavli Institute at Cornell for Nanoscale Science and the Cornell Center for Materials Research [National Science Foundation (NSF) DMR-1120296]. Additional funding was provided by the Air Force Office of Scientific Research (FA9550-10-1-0410) and the Nano-Material Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2012M3A7B4049887). Device fabrication was performed at the Cornell NanoScale Science and Technology Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by NSF (grant ECCS-0335765). K.L.M. acknowledges support from the NSF Integrative Graduate Education and Research Traineeship program (DGE-0654193) and the NSF Graduate Research Fellowship Program (DGE-1144153). SUPPLEMENTARY MATERIALS www.sciencemag.org/content/344/6191/1489/suppl/DC1 Materials and Methods Supplementary Text Figs. S1 to S10 References (34–37) 24 December 2013; accepted 23 May 2014 10.1126/science.1250140 MACHINE LEARNING Clustering by fast search and find of density peaks Alex Rodriguez and Alessandro Laio Cluster analysis is aimed at classifying elements into categories on the basis of their similarity. Its applications range from astronomy to bioinformatics, bibliometrics, and pattern recognition. We propose an approach based on the idea that cluster centers are characterized by a higher density than their neighbors and by a relatively large distance from points with higher densities.This idea forms the basis of a clustering procedure in which the number of clusters arises intuitively, outliers are automatically spotted and excluded from the analysis, and clusters are recognized regardless of their shape and of the dimensionality of the space in which they are embedded. We demonstrate the power of the algorithm on several test cases. lustering algorithms attempt to classify tion. This method allows the finding of nonspheri- onDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.orgonDecember17,2015emag.org he hole side Lett. 95, J. W. Kevek ruitful rding the choosing an appropriate threshold can be non- trivial, a drawback not present in the mean-shift clustering method (10, 11). There a cluster is de- fined as a set of points that converge to the same local maximum of the density distribution func- where cðxÞ ¼ 1 if x < 0 and cðxÞ ¼ 0 otherwise, and dc is a cutoff distance. Basically, ri is equal to the number of points that are closer than dc to point i. The algorithm is sensitive only to the rel- ative magnitude of ri in different points, implying that, for large data sets, the results of the analysis are robust with respect to the choice of dc. 1 sciencemag.org SCIENCE SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, I-34136 Trieste, Italy. E-mail: laio@sissa.it (A.L.); alexrod@sissa.it (A.R.) side, the VHE and the SHE become equivalent on the hole side owing to the spin-valley coupled valence band. 33. H.-A. Engel, B. I. Halperin, E. I. Rashba, Phys. Rev. Lett. 95, 166605 (2005). ACKNOWLEDGMENTS We thank D. C. Ralph for his insightful suggestions and J. W. Kevek for technical support. We also thank J. Shan for many fruitful discussions and Y. You for private communications regarding the choosing an appropriate threshold can be non- trivial, a drawback not present in the mean-shift clustering method (10, 11). There a cluster is de- fined as a set of points that converge to the same local maximum of the density distribution func- where c and dc is the num point i. T ative ma that, for are robu 1492 27 JUNE 2014 • VOL 344 ISSUE 6191 SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, I-34136 Trieste, Italy. E-mail: laio@sissa.it (A.L.); alexrod@sissa.it (A.R.)
  • 75. the multi-scale protocol 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent: m¨R = @E @R pc = Tc T<latexit sha1_base64="STuIG1a7eprxxfFZZ0pJMPslY94=">AAACGXicbVDLSsNAFJ34rPEVdelmsFjcWJIq6KZQEMFlK32BKWEymbRDJw9mJkIJ+RK/wpVrd+LWlQu3+htObBDbelaHc87l3nPdmFEhTfNdW1peWV1bL23om1vbO7vG3n5XRAnHpIMjFvG+iwRhNCQdSSUj/ZgTFLiM9NzxVe737gkXNArbchKTQYCGIfUpRlJJjtEKoO15kUztAMmR68PbDFbq8NT2OcKpHSMuKWLwOvvlf4K2rccOrtSn4baDs7SdOUbZrJo/gIvEKkgZFGg6xqPtRTgJSCgxQ0Kk+R7MSKbbiSAxwmM0JCkOXE6HIzmrokCISeBm8Di/Ssx7ufifd5dI/3KQ0jBOJAmxiijPTxiUEcy/BD3KCZZsogjCnKp7IB4h1VKqX+q66mjNN1ok3VrVOqvWWuflRrNoWwKH4AicAAtcgAa4AU3QARg8gQ/wCb60B+1Ze9Fep9ElrZg5ADPQ3r4BuZOgVw==</latexit>
  • 76. the multi-scale protocol 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon: m¨R = * @ ˆH @R + µ ¨ = ˆH + ⇤<latexit sha1_base64="tP10NdvYr1bk9WuUTj0+cXmi/Wo=">AAACanicbVFLTsMwEHXCr4RfgRViY1FASIiqLUhlg4TEpgsWgGhBwqiaOE5r1U4i20GqQi/DDTgOd+AQOGkEgjKrN+/NjOeN/URwbRqND8edm19YXKoseyura+sb1c2tno5TRVmXxiJWjz5oJnjEuoYbwR4TxUD6gj34o6tcf3hhSvM4ujfjhD1LGEQ85BSMpfrVN0mCIDYZkWCGfojvJocXJ5gIFhoiIBoIhkmi+ZTBr5iECmhGElCGg8BkCAZ3Jt/EzxhMFB8Mi5aif5oRVc4kHpFp8XQhH17gk+msIj3G5Np6CCDP+tVao94oAs+CZglqqIybfvWdBDFNJYsMFaB1lu9GBZt4JNUsATqCAcuo9IudfrMgtR5Lf4IPcif6r5aT/2lPqQnPnzMeJalhEbUlVgtTgU2M87PjgCtGjRhbAFRxuw+mQ7C3NPZzPM96bP51NAt6rXrztN66Patddkq3FbSL9tARaqI2ukQddIO6iDoVp+60nXPn091yd9zdaanrlD3b6Fe4+19/0Lg6</latexit>
  • 77. 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon; 3. for each CPMD trajectory thus generated, compute TDDFpT spectra on the fly ≈ 1ps apart, treaCng the solvent as a dielectric conCnuum: the multi-scale protocol L˜⇢0 n(t) = !n(t)˜⇢0 n(t) S(!) = * X n fn(t) ! !n(t) <latexit sha1_base64="pHAhkVBsNC71sWM+wisODy9r3QU=">AAACgHicbVFdaxNBFJ1dv+r6FfVRKINBTAXTbHxQBKHQPvRBpaJpC05Z7s7e3QydmV1m7goh5Ef55l/pv3E2XYQ03qcz55z7NTdvtPI0mVxF8a3bd+7e27mfPHj46PGTwdNnp75uncSZrHXtznPwqJXFGSnSeN44BJNrPMsvDzv97Bc6r2r7gxYNXhiorCqVBApUNvgjcqyUXVZAc3RvVsIEIEHzz1yQ0gVy4eZ1Zl+PaI9/4qI2WEFmu9e2LkTyfXRtCWahsSShwVY6uHxrMlv2mQVqApGrSvPe/3ajclAc3xNOVXMSbl0ho0SgLf4Nmg2Gk/FkHXwbpD0Ysj5OssFvUdSyNWhJavB+CY6U1LhKROuxAXkJFS6lydddN1kw3i9MvuKvuu/xN7WO/J/2s6Xyw8VS2aYltDJYgla2mlPNu2PwQjmUpBcBgHQqzMPlHBxICidLkrBjenOjbXA6HafvxtNv0+HBcb/tDnvBXrIRS9l7dsCO2QmbMRntRkfRl+hrHMejeD9Or61x1Oc8ZxsRf/wLWcq+zg==</latexit>
  • 78. 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon; 3. for each CPMD trajectory thus generated, compute TDDFpT spectra on the fly ≈ 1ps apart, treaCng the solvent as a dielectric conCnuum: the multi-scale protocol L˜⇢0 n(t) = !n(t)˜⇢0 n(t) S(!) = * X n fn(t) ! !n(t) <latexit sha1_base64="pHAhkVBsNC71sWM+wisODy9r3QU=">AAACgHicbVFdaxNBFJ1dv+r6FfVRKINBTAXTbHxQBKHQPvRBpaJpC05Z7s7e3QydmV1m7goh5Ef55l/pv3E2XYQ03qcz55z7NTdvtPI0mVxF8a3bd+7e27mfPHj46PGTwdNnp75uncSZrHXtznPwqJXFGSnSeN44BJNrPMsvDzv97Bc6r2r7gxYNXhiorCqVBApUNvgjcqyUXVZAc3RvVsIEIEHzz1yQ0gVy4eZ1Zl+PaI9/4qI2WEFmu9e2LkTyfXRtCWahsSShwVY6uHxrMlv2mQVqApGrSvPe/3ajclAc3xNOVXMSbl0ho0SgLf4Nmg2Gk/FkHXwbpD0Ysj5OssFvUdSyNWhJavB+CY6U1LhKROuxAXkJFS6lydddN1kw3i9MvuKvuu/xN7WO/J/2s6Xyw8VS2aYltDJYgla2mlPNu2PwQjmUpBcBgHQqzMPlHBxICidLkrBjenOjbXA6HafvxtNv0+HBcb/tDnvBXrIRS9l7dsCO2QmbMRntRkfRl+hrHMejeD9Or61x1Oc8ZxsRf/wLWcq+zg==</latexit> THE JOURNAL OF CHEMICAL PHYSICS 142, 034111 (2015) Self-consistent continuum solvation for optical absorption of complex molecular systems in solution Iurii Timrov,1 Oliviero Andreussi,2 Alessandro Biancardi,1 Nicola Marzari,3 and Stefano Baroni1,3,a) 1 SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy THE JOURNAL OF CHEMICAL PHYSICS 142, 034111 (2015) Self-consistent continuum solvation for optical absorption of complex molecular systems in solution Iurii Timrov,1 Oliviero Andreussi,2 Alessandro Biancardi,1 Nicola Marzari,3 and Stefano Baroni1,3,a) THE JOURNAL OF CHEMICAL PHYSICS 142, 034 Self-consistent continuum solvation for optical abs molecular systems in solution Iurii Timrov,1 Oliviero Andreussi,2 Alessandro Biancardi,1 Nicola Ma and Stefano Baroni1,3,a) 1 SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 341 2 Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgime
  • 79. 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon; 3. for each CPMD trajectory thus generated, compute TDDFpT spectra on the fly ≈ 1ps apart, treaCng the solvent as a dielectric conCnuum: 4. average the spectra within each conformer and over different conformers: the multi-scale protocol Sc (!) = * X n fn(t) ! !n(t) + c S(!) = X c pc Sc (!) <latexit sha1_base64="zkKEAfazMZ4lqDsDh6IYxkogMsI=">AAACanicbVHNahsxENZu08bdpo2bnkouIm7ALtTYziG5FAK55JiSOAlUYdGOZ9ciknaRZgvG+GX6Bn2cvkMfIrK9pPkbEPqY75uZb6Ss0srTYPA3il9tvH6z2XqbvNt6/2G7/XHn0pe1AxxDqUt3nUmPWlkckyKN15VDaTKNV9ntyZK/+oXOq9Je0KzCGyMLq3IFkkIqbf8WGRbKzgtJU3RfF8l5Cl1RGixkj38XGnMSWtpCIxe+NqnNU9ulHhcT1CRFpgrNG/239dXwgXG8J5wqpiTcqkMKnAuRnP/vv+4JvArnweBEoJ3cW0rbnUF/sAr+HAwb0GFNnKXtP2JSQm3QEmjp/Vw6UqBxkYjaYyXhVhY4B5OtzD3OSuP9zGQLvm/CeP+UWyZf4n7WlB/dzJWtakILQRK4vNacSr58dj5RDoH0LAAJTgU/HKbSSaDwOUkSdhw+3eg5uBz1hwf90Y9R5/i02bbFdtke67IhO2TH7JSdsTGDqBX1o8PoKPoX78Sf4921NI6amk/sUcRf7gAN+7bU</latexit>
  • 80. 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon; 3. for each CPMD trajectory thus generated, compute TDDFpT spectra on the fly ≈ 1ps apart, treaCng the solvent as a dielectric conCnuum: 4. average the spectra within each conformer and over different conformers: the multi-scale protocol Multimodel Approach to the Optical Properties of Molecular Dyes in Solution Iurii Timrov,†,¶ Marco Micciarelli,† Marta Rosa,† Arrigo Calzolari,‡ and Stefano Baroni*,† † SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy ‡ CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy Article pubs.acs.org/JCTC Multimodel Approach to the Optical Properties of Molecular Dyes in Solution Iurii Timrov,†,¶ Marco Micciarelli,† Marta Rosa,† Arrigo Calzolari,‡ and Stefano Baroni*,† † SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy ‡ CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy ABSTRACT: We introduce a multimodel approach to the Article pubs.acs.org/JCTC ABSTRACT: We introduce a multimodel approach to the simulation of the optical properties of molecular dyes in solution, whereby the effects of thermal fluctuations and of dielectric screening on the absorption spectra are accounted for by explicit and implicit solvation models, respectively. Ther- mal effects are treated by averaging the spectra of molecular configurations generated by an ab initio molecular-dynamics simulation where solvent molecules are treated explicitly. Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by comparing its predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology is finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at strong and intermediate acidity conditions. 1. INTRODUCTION Modeling the optical properties of molecular dyes in solution has long relied on a static picture, whereby thermal fluctuations are thoroughly ignored, either by neglecting the effects of the environment altogether or by accounting for the dielectric screening of the solvent through some kind of continuum solvation model (CSM),1 such as the polarizable continuum model (PCM),2−6 the conductor-like screening model (COSMO),7−10 or the (revised) self-consistent continuum solvation (SCCS) model.11−17 In both cases, the optical spectra are often obtained at the molecular minimum-energy configuration, as computed in vacuo or in some effective medium. Nevertheless, recent studies have shown the importance of thermal fluctuations on the optical properties of solvated dyes.18−23 Thermal fluctuations are accurately described in molecular solvation models (MSMs), in which solvent molecules are treated explicitly, i.e. on the same atomistic ground as the solute (this approach is often referred to as explicit solvent model). Some of the previous attempts to account for thermal fluctuations in the optical properties of solvated molecules were based on molecular dynamics (MD) utilizing classical force fields accurately targeted to the specific system(s) of interest.18,21,22 While this approach is apt to cope with thermal effects on the optical absorption spectra, its prac- tical implementation is hampered by the limited transferability of the available force fields, which would require extensive fitting and validation procedures for each system to be examined. In one of our previous works19 we introduced an MSM approach to simulating the optical properties of solvated dyes where the entire system (solute plus solvent) is treated quantum mechanically and let evolve according to ab initio (AI) molecular dynamics,24,25 while absorption spectra are computed on-the-fly using time- dependent density-functional theory (TDDFT)26,27 and aver- aged along the trajectory. This naturally accounts for both thermal and dielectric solvation effects on the optical spectra yet not requiring any unwieldy system-specific fitting or validation. When it comes to simulating large systems comprising hundreds of atoms, however, the deployment of ab initio MSMs is hindered by the large computational cost of hybrid functionals,28−30,32 particularly when using plane-wave basis sets, as it is common practice in many applications involving AIMD. In a previous paper23 we proposed to use a GGA exchange-correlation (XC) energy functional33 to generate explicit-solvent AIMD trajecto- ries and a semiempirical morphing procedure, tailored on the gas- phase B3LYP29 TDDFT spectra of the dye, to correct the GGA spectra evaluated along the AIMD trajectory. GGA is generally assumed to be accurate enough for the sake of sampling AIMD trajectories, in spite of the minor, but not always negligible, dif- ferences existing between the harmonic frequencies computed using different functionals.31 As for the morphing procedure previously proposed, while it proved accurate enough to deal with global properties of the optical spectra, such as the color expressed by a given solution, it may not be so when it comes to predicting individual spectral features. In this paper we propose an approach to this problem that combines the advantages of CSMs and MSMs, by applying them Received: April 24, 2016 Published: July 21, 2016 © 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417 J. Chem. Theory Comput. 2016, 12, 4423−4429 DownloadedviaSISSAonSeptember19,2019at11:44:23(UTC). Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.
  • 81. 1. esCmate conformaConal populaCons from long (> 1μs) classical MD simulaCons in explicit water solvent; 2. for each of the most populated molecular conformers thus idenCfied, run a 10-20 ps Car-Parrinello quantum MD simulaCon; 3. for each CPMD trajectory thus generated, compute TDDFpT spectra on the fly ≈ 1ps apart, treaCng the solvent as a dielectric conCnuum: 4. average the spectra within each conformer and over different conformers: the multi-scale protocol Multimodel Approach to the Optical Properties of Molecular Dyes in Solution Iurii Timrov,†,¶ Marco Micciarelli,† Marta Rosa,† Arrigo Calzolari,‡ and Stefano Baroni*,† † SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy ‡ CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy Article pubs.acs.org/JCTC Multimodel Approach to the Optical Properties of Molecular Dyes in Solution Iurii Timrov,†,¶ Marco Micciarelli,† Marta Rosa,† Arrigo Calzolari,‡ and Stefano Baroni*,† † SISSA − Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy ‡ CNR-NANO, Istituto Nanoscienze, Centro S3, Via Campi 213A, 41125 Modena, Italy ABSTRACT: We introduce a multimodel approach to the Article pubs.acs.org/JCTC ABSTRACT: We introduce a multimodel approach to the simulation of the optical properties of molecular dyes in solution, whereby the effects of thermal fluctuations and of dielectric screening on the absorption spectra are accounted for by explicit and implicit solvation models, respectively. Ther- mal effects are treated by averaging the spectra of molecular configurations generated by an ab initio molecular-dynamics simulation where solvent molecules are treated explicitly. Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by comparing its predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology is finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at strong and intermediate acidity conditions. 1. INTRODUCTION Modeling the optical properties of molecular dyes in solution has long relied on a static picture, whereby thermal fluctuations are thoroughly ignored, either by neglecting the effects of the environment altogether or by accounting for the dielectric screening of the solvent through some kind of continuum solvation model (CSM),1 such as the polarizable continuum model (PCM),2−6 the conductor-like screening model (COSMO),7−10 or the (revised) self-consistent continuum solvation (SCCS) model.11−17 In both cases, the optical spectra are often obtained at the molecular minimum-energy configuration, as computed in vacuo or in some effective medium. Nevertheless, recent studies have shown the importance of thermal fluctuations on the optical properties of solvated dyes.18−23 Thermal fluctuations are accurately described in molecular solvation models (MSMs), in which solvent molecules are treated explicitly, i.e. on the same atomistic ground as the solute (this approach is often referred to as explicit solvent model). Some of the previous attempts to account for thermal fluctuations in the optical properties of solvated molecules were based on molecular dynamics (MD) utilizing classical force fields accurately targeted to the specific system(s) of interest.18,21,22 While this approach is apt to cope with thermal effects on the optical absorption spectra, its prac- tical implementation is hampered by the limited transferability of the available force fields, which would require extensive fitting and validation procedures for each system to be examined. In one of our previous works19 we introduced an MSM approach to simulating the optical properties of solvated dyes where the entire system (solute plus solvent) is treated quantum mechanically and let evolve according to ab initio (AI) molecular dynamics,24,25 while absorption spectra are computed on-the-fly using time- dependent density-functional theory (TDDFT)26,27 and aver- aged along the trajectory. This naturally accounts for both thermal and dielectric solvation effects on the optical spectra yet not requiring any unwieldy system-specific fitting or validation. When it comes to simulating large systems comprising hundreds of atoms, however, the deployment of ab initio MSMs is hindered by the large computational cost of hybrid functionals,28−30,32 particularly when using plane-wave basis sets, as it is common practice in many applications involving AIMD. In a previous paper23 we proposed to use a GGA exchange-correlation (XC) energy functional33 to generate explicit-solvent AIMD trajecto- ries and a semiempirical morphing procedure, tailored on the gas- phase B3LYP29 TDDFT spectra of the dye, to correct the GGA spectra evaluated along the AIMD trajectory. GGA is generally assumed to be accurate enough for the sake of sampling AIMD trajectories, in spite of the minor, but not always negligible, dif- ferences existing between the harmonic frequencies computed using different functionals.31 As for the morphing procedure previously proposed, while it proved accurate enough to deal with global properties of the optical spectra, such as the color expressed by a given solution, it may not be so when it comes to predicting individual spectral features. In this paper we propose an approach to this problem that combines the advantages of CSMs and MSMs, by applying them Received: April 24, 2016 Published: July 21, 2016 © 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417 J. Chem. Theory Comput. 2016, 12, 4423−4429 DownloadedviaSISSAonSeptember19,2019at11:44:23(UTC). Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.
  • 82. effects of the environment: acidity OHO OH OH OH O O HO HO OH OH Cyanidin 3-O-glucoside
  • 83. OHO OH OH OH O O HO HO OH OH effects of the environment: acidity + AH+ flavylium cation -H+ A - quinoidal base 0 OHO OH O OH O O HO HO OH OH HO OH O OH O O HO HO OH OH OH O Cc - cis-chalcone HO OH O HO O O HO HO OH OH OH O Ct - trans-chalcone OHO OH O OH O O HO HO OH OH OH B - carbinol +OH- 0
  • 84. OHO OH OH OH O O HO HO OH OH effects of the environment: acidity + AH+ flavylium cation -H+ A - quinoidal base 0 OHO OH O OH O O HO HO OH OH HO OH O OH O O HO HO OH OH OH O Cc - cis-chalcone HO OH O HO O O HO HO OH OH OH O Ct - trans-chalcone OHO OH O OH O O HO HO OH OH OH B - carbinol +OH- 0
  • 85. OHO OH OH OH O O HO HO OH OH effects of the environment: acidity + AH+ flavylium cation -H+ A - quinoidal base 0 OHO OH O OH O O HO HO OH OH HO OH O OH O O HO HO OH OH OH O Cc - cis-chalcone HO OH O HO O O HO HO OH OH OH O Ct - trans-chalcone OHO OH O OH O O HO HO OH OH OH B - carbinol +OH- 0 OHO O O OH O O HO HO OH OH - -H+ −
  • 86. OHO OH OH OH O O HO HO OH OH effects of the environment: acidity + AH+ flavylium cation -H+ A - quinoidal base 0 OHO OH O OH O O HO HO OH OH HO OH O OH O O HO HO OH OH OH O Cc - cis-chalcone HO OH O HO O O HO HO OH OH OH O Ct - trans-chalcone OHO OH O OH O O HO HO OH OH OH B - carbinol +OH- 0 ? OHO O O OH O O HO HO OH OH - -H+ − ?
  • 88. OHO OH OH OH O O HO HO OH OH + comparing predictions with experiments 450 550 650 λ experiment
  • 89. OHO OH OH OH O O HO HO OH OH + comparing predictions with experiments 450 550 650 λ experiment 450 550 650 λ theory
  • 90. comparing predictions with experiments OHO OH OH OH O O HO HO OH OH + OHO OH O OH O O HO HO OH OH 0 450 550 650 λ experiment
  • 91. comparing predictions with experiments OHO OH OH OH O O HO HO OH OH + OHO OH O OH O O HO HO OH OH 0 450 550 650 λ experiment theory 450 550 650 λ
  • 92. OHO O O OH O O HO HO OH OH - H5 OO O OH O O HO HO OH OH - OH H7 comparing predictions with experiments 450 550 650 λ pH=9 pH=8 pH=7 450 550 650 λ H7 H5
  • 93. OHO O O OH O O HO HO OH OH - H5 OO O OH O O HO HO OH OH - OH H7 comparing predictions with experiments 450 550 650 λ pH=9 pH=8 pH=7 450 550 650 λ H7 H5 pH9 450 550 650 λ
  • 94. OHO O O OH O O HO HO OH OH - H5 OO O OH O O HO HO OH OH - OH H7 comparing predictions with experiments 450 550 650 λ pH=9 pH=8 pH=7 450 550 650 λ H7 H5 pH9 450 550 650 λ Cite this: Phys.Chem.Chem.Phys., 2019, 21, 8757 Unraveling the molecular mechanisms of color expression in anthocyanins† Mariami Rusishvili, ab Luca Grisanti, ‡a Sara Laporte, a Marco Micciarelli, §a Marta Rosa, ¶a Rebecca J. Robbins,c Tom Collins,d Alessandra Magistrato e and Stefano Baroni *ae Anthocyanins are a broad family of natural dyes, increasingly finding application as substitutes for artificial colorants in the food industry. In spite of their importance and ubiquity, the molecular principles responsible for their extreme color variability are poorly known. We address these mechanisms by computer simulations and photoabsorption experiments of cyanidin-3-O-glucoside in water solution, as a proxy for more complex members of the family. Experimental results are presented in the range of pH 1–9, accompanied by a comprehensive systematic computational study across relevant charge states and tautomers. The computed spectra are in excellent agreement with the experiments, providing unprecedented insight into the complex behavior underlying color expression in these molecules. Besides confirming the importance of the molecule’s charge state, we also unveil the hitherto unrecognizedReceived 6th February 2019, PCCP PAPER deraCreativeCommonsAttribution3.0UnportedLicence. View Article Online View Journal | View Issue
  • 95. in the quest for a natural blue 1 1. bend the CB bond 2. inhibit deprotonation at 5
  • 96. in the quest for a natural blue 1 450 550 650 λ 5 7 1. bend the CB bond 2. inhibit deprotonation at 5
  • 97. in the quest for a natural blue 1
  • 98. in the quest for a natural blue 1
  • 99. in the quest for a natural blue 1
  • 100. in the quest for a natural blue 1 θ φ θ φ θ
  • 102. predicting tautomeric equilibria and pKa H+± Cy3G (4’)Cy3G+
  • 103. Cy3G (4’) predicting tautomeric equilibria and pKa Cy3G+ Cy3G (7) H+±
  • 104. predicting tautomeric equilibria and pKa 1 1.2 1.4 1.6 1.8 2 0.2 0.1 0 0.1 0.2 0.3 0.4 3.5 3 2.5 2 1.5 1 0.5 0 kcal/mol deprotonated at 4' deprotonated at 7 Cy3G (4’) Cy3G (7)
  • 105. F = Z 1 0 ⌧ @H(⌘) @⌘ d⌘ <latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit> predicting tautomeric equilibria and pKa thermodynamic integration Cy3G (4’) Cy3G (7)
  • 106. predicting tautomeric equilibria and pKa F = Z 1 0 ⌧ @H(⌘) @⌘ d⌘ <latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit> Cy3G (4’) Cy3G (7) 1 H λ=0 no H½ H ½ Hno H 1 H λ=½ λ=1
  • 107. F = Z 1 0 ⌧ @H(⌘) @⌘ d⌘ <latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit> predicting tautomeric equilibria and pKa CyG (4’) CyG (7)
  • 108. 0 0.5 1 η F = Z 1 0 ⌧ @H(⌘) @⌘ d⌘ <latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit> predicting tautomeric equilibria and pKa CyG (4’) CyG (7)
  • 109. F = Z 1 0 ⌧ @H(⌘) @⌘ d⌘ <latexit sha1_base64="ZeyrUaIOqAtyj8Qolb0Nf9GmOpc=">AAACI3icbVDLSgNBEJz1GeMr6tHLYBDiJeyqoBdBVCRHBaOCE0PvpDcZnH0w0yuEkM/xA/wEz97EiwfPXvUP3I0BSbRONVXd9FT5iVaWXPfNmZicmp6ZLcwV5xcWl5ZLK6uXNk6NxLqMdWyufbCoVYR1UqTxOjEIoa/xyr87zv2rezRWxdEFdRNshNCOVKAkUCY1SzfiBDUBP+UHQkXUdG89LjQGJDREbY1cBAZkTyRgSIHmtYpAgq3+r5K/+1wY1e6QMD9LrYHaLJXdqjsA/0u8ISmzIc6apUfRimUaYkRSg7W9/ITU2C+K1GIC8g7a2JOhPzg2qkJobTf0+3wzBOrYcS8X//NuUgr2Gz0VJSlhJLORzAtSzSnmeV+8pQxK0t2MgDQq+w+XHcg6oazVYjHL6I0n+ksut6veTnX7fLd8eDRMW2DrbINVmMf22CGrsTNWZ5I9sQ/2yb6cB+fZeXFef0YnnOHOGhuB8/4NM16kNQ==</latexit> predicting tautomeric equilibria and pKa 0 0.5 1 η 0.99 1 CyG (4’) CyG (7)
  • 111. • the color optical properties of anthocyanins depend sensitively on intramolecular distortions due to either thermal fluctuations or co-pigmentation conclusions
  • 112. • the color optical properties of anthocyanins depend sensitively on intramolecular distortions due to either thermal fluctuations or co-pigmentation • the protomeric state of the negative species also affects the color, with far-reaching consequences on the bluing effect of co-pigmenation conclusions
  • 113. • the color optical properties of anthocyanins depend sensitively on intramolecular distortions due to either thermal fluctuations or co-pigmentation • the protomeric state of the negative species also affects the color, with far-reaching consequences on the bluing effect of co-pigmenation • molecular simulations have been instrumental in the identification of a natural substitute for blue 1 conclusions
  • 114. • the color optical properties of anthocyanins depend sensitively on intramolecular distortions due to either thermal fluctuations or co-pigmentation • the protomeric state of the negative species also affects the color, with far-reaching consequences on the bluing effect of co-pigmenation • molecular simulations have been instrumental in the identification of a natural substitute for blue 1 • applied research can be fun and instructive for theoretical physicists as well … conclusions
  • 116. and to
  • 117.