SlideShare a Scribd company logo
1 of 78
The System of Rice Intensification (SRI):   Understanding an Opportunity  to Raise Rice Sector Productivity Norman Uphoff, CIIFAD Cornell University, USA
For Centuries, Even Millennia, We Have Been ABUSING and MISTREATING the Rice Plant  ,[object Object],[object Object],[object Object],[object Object]
The System of Rice Intensification  ,[object Object],[object Object],[object Object],[object Object]
Canopy of an individual rice plant grown under SRI conditions; this variety (Swarna) is normally ‘shy-tillering’ Andhra Pradesh, India, Rabi season, 2003-04
Roots of a single rice plant (MTU 1071)  grown at Agricultural Research Station Maruteru, AP, India, Kharif 2003
SRI field in Sri Lanka -- yield of 13 t/ha with panicles having 400+ grains
CFA Camilo Cienfuegos, Cuba 14 t/ha -- Variety Los Palacios 9
SRI (3S) in Summary : A set of principles/methods to get  more productive PHENOTYPES   from  any existing GENOTYPE  of rice.  SRI (3S)  changes the management  of  plants, soil, water, and nutrients  to (a) induce   greater ROOT growth   and (b) nurture  more abundant and diverse  populations of   SOIL BIOTA
Plant Physical Structure and  Light Intensity Distribution  at Heading Stage   (CNRRI Research --Tao et al. 2002)
Dry Matter Accumulation between SRI and Control (CK) Practices  (kg/ha) at Full Heading (Zheng et al., SAAS, 2003)
Dry Matter Accumulation between SRI and Control (CK) Practices  (kg/ha) at Maturity (Zheng et al., SAAS, 2003)
Table 2. Different sizes of the leaf blade (cm) (Zheng et al., SAAS, 2003) 11.98 15.95 7.96 18.49 19.11 14.97 9.79 14.59 % 0.20 8.86 0.16 9.00 0.30 9.29 0.14 8.18 +/- 1.67 55.56 2.01 48.67 1.57 62.03 1.43 56.07 CK 1.87 64.41 2.17 57.67 1.87 71.32 1.57 64.25 SRI Width Length Width Length Width Length Width Length Average Flag leaf 2 nd  leaf 3 rd  leaf Item
Figure 1. Change of leaf area index (LAI) during growth cycle (Zheng et al., 2003)
Different P aradigms  of Production   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Greatest Benefit Is not YIELD ,[object Object],[object Object],[object Object],[object Object]
SRI Practices Should Always be Varied to Suit Conditions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Explanations: 1.  Above-Ground Environment ,[object Object],[object Object],[object Object]
Explanation: 2.  Nitrogen Provision ,[object Object],[object Object],[object Object],[object Object]
 
Explanations:  3.  Phosphorus Solubilization ,[object Object],[object Object],[object Object],[object Object]
Explanations:  4.  Mycorrhizal Fungi ,[object Object],[object Object],[object Object]
Explanations: 5.  Phytohormones ,[object Object],[object Object],[object Object]
Single Cambodian rice plant transplanted at 10 days
Cuba -- Variety VN 2084 (Bolito) -- 52  DAP
Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage  (CNRRI research: Tao et al. 2002) Root dry weight (g)
Table 13: Root Length Density (cm. cm -3 ) under SRI, ‘Modern’ (SRA) and Conventional Practice (from Barison, 2002) Results from replicated on-station trials 0.06 0.13 0.36 1.19 1.28 4.11 Conventional practice 0.07 0.15 0.31 0.55 0.85 3.24 SRA  without fertilization 0.09 0.18 0.34 0.65 0.99 3.73 SRA  with NPK and urea 0.20 0.25 0.32 0.57 0.71 3.33 SRI  -- without compost 0.23 0.30 0.33 0.61 0.75 3.65 SRI  --  with compost 40-50 30-40 20-30 10-20 5-10 0-5 Soil layers (cm) Treatments
Figure 8: Linear regression relationship between N uptake  and grain yield for SRI and  conventional methods,  using QUEFTS modeling (from Barison, 2002)  Results are from on-farm comparisons (N = 108)
Figure 9: Estimation of balanced N uptake for given a grain yield for rice plants with  the SRI and conventional systems,  using QUEFTS modeling (same for P and K) (Barison, 2002) Results are from on-farm comparisons (N = 108)
Root Oxygenation Ability with SRI  vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
What Are Problems for SRI? ,[object Object],[object Object],[object Object],[object Object]
Roller-marker devised by Lakshmana Reddy, East Godavari, AP, India, to save time in transplanting operations; his yield in 2003-04 rabi season was 16.2 t/ha paddy (dry weight)
4-row weeder designed by Gopal Swaminathan, Thanjavur, TN, India
Motorized weeder developed by S. Ariyaratna Sri Lanka
Adjustable-width weeder designed by Hari R., Moramanga, Madagascar (from IRRI design)
Labor-Saving Methods of  Crop Establishment ,[object Object],[object Object]
Seeder Developed in Cuba
What Are Problems for SRI? ,[object Object],[object Object],[object Object],[object Object]
Emerging Benefits of SRI? ,[object Object],[object Object],[object Object]
Two rice fields in Sri Lanka -- same variety, same irrigation system, and  same drought  : conventional methods (left), SRI (right)
Emerging Benefits of SRI? ,[object Object],[object Object],[object Object],[object Object]
Emerging Benefits of SRI? ,[object Object],[object Object],[object Object],[object Object]
Emerging Benefits of SRI? ,[object Object],[object Object],[object Object],[object Object]
 
SRI sounds ILLOGICAL ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI RAISES  MORE QUESTIONS  THAN WE HAVE ANSWERS FOR ,[object Object],[object Object],[object Object]
SRI Experience Could  Help to Us to Improve  21 st  Century Agriculture ,[object Object],[object Object],[object Object],[object Object],[object Object]
Thank You for Opportunity to Share Ideas With You ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
SRI Data from Sri Lanka ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
IWMI Data from Sri Lanka ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
SRI CONCEPTS CAN BE EXTENDED TO  UPLAND PRODUCTION Results of trials (N=20) by Philippine NGO, Broader Initiatives for Negros Development,  with  Azucena  local variety (4,000 m 2  area) --  using  mulch  as main innovation, not young plants
(1) ROOT SYSTEM PROMOTION  ,[object Object],[object Object],[object Object],[object Object]
SRI farmer in Cambodia
SRI farmer in Cuba -- 14 t/ha
Root Research Reported by  Dr. Ana Primavesi (1980) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(2) Contribution of SOIL MICROBIAL PROCESSES ,[object Object],[object Object]
Bacteria, funguses, protozoa, amoeba, actinomycetes, etc. ,[object Object],[object Object],[object Object]
Known Processes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(3) Impact of Transplanting  YOUNG SEEDLINGS ,[object Object],[object Object],[object Object]
 
Effect of Young Seedlings ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions  (continued) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions  (continued) ,[object Object],[object Object],[object Object],[object Object]
Spread of SRI in Asia
Spread of SRI in Africa ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Spread of SRI in Latin America ,[object Object],[object Object],[object Object]
 
 
 
 
 
.
 
 

More Related Content

What's hot

Wee mangmnt
Wee mangmntWee mangmnt
Wee mangmntsankupar
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickEverGreenAgriculture13
 

What's hot (20)

0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
 
Improved Soil Health through Climate-smart Rice Cultivation Increases Product...
Improved Soil Health through Climate-smart Rice Cultivation Increases Product...Improved Soil Health through Climate-smart Rice Cultivation Increases Product...
Improved Soil Health through Climate-smart Rice Cultivation Increases Product...
 
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
 
1049 SRI Findings in India
1049 SRI Findings in India 1049 SRI Findings in India
1049 SRI Findings in India
 
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
 
2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI
 
Uphoff Sri
Uphoff SriUphoff Sri
Uphoff Sri
 
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
 
Wee mangmnt
Wee mangmntWee mangmnt
Wee mangmnt
 
1608 - How farmers in Uttarakhand reworked the System of Rice Intensification...
1608 - How farmers in Uttarakhand reworked the System of Rice Intensification...1608 - How farmers in Uttarakhand reworked the System of Rice Intensification...
1608 - How farmers in Uttarakhand reworked the System of Rice Intensification...
 
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
1449 - Azolla Rice Duck Fish Farming Systems with SRI Methods in the Mekong R...
 
1429- Root morphology and anatomy of rice plants cultivated under SRI
1429- Root morphology and anatomy of rice plants cultivated under SRI1429- Root morphology and anatomy of rice plants cultivated under SRI
1429- Root morphology and anatomy of rice plants cultivated under SRI
 
Shrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dickShrub rhizo microbiol hydo gates bamako 2014 r dick
Shrub rhizo microbiol hydo gates bamako 2014 r dick
 
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
 
1427- Physiological and morphological changes in rice plants under SRI
1427- Physiological and morphological changes in rice plants under SRI1427- Physiological and morphological changes in rice plants under SRI
1427- Physiological and morphological changes in rice plants under SRI
 
0735 Facing the Ecology of Green Revolution Rice: The Controversy Around the ...
0735 Facing the Ecology of Green Revolution Rice: The Controversy Around the ...0735 Facing the Ecology of Green Revolution Rice: The Controversy Around the ...
0735 Facing the Ecology of Green Revolution Rice: The Controversy Around the ...
 
0728 Insect-Pest Dynamics and Arthropod Diversity in SRI and Conventional Met...
0728 Insect-Pest Dynamics and Arthropod Diversity in SRI and Conventional Met...0728 Insect-Pest Dynamics and Arthropod Diversity in SRI and Conventional Met...
0728 Insect-Pest Dynamics and Arthropod Diversity in SRI and Conventional Met...
 
0405 What is Being Learned about SRI in China and Other Countries
0405 What is Being Learned about SRI in China and Other Countries0405 What is Being Learned about SRI in China and Other Countries
0405 What is Being Learned about SRI in China and Other Countries
 
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
1019 An Overview of Opportunities with the System of Rice Intensification (SRI)
 
0212 Opportunities for Rice Research and Production Deriving from the System ...
0212 Opportunities for Rice Research and Production Deriving from the System ...0212 Opportunities for Rice Research and Production Deriving from the System ...
0212 Opportunities for Rice Research and Production Deriving from the System ...
 

Similar to 0301 Understanding an Opportunity to Raise Rice Sector Productivity

Similar to 0301 Understanding an Opportunity to Raise Rice Sector Productivity (20)

0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
 
0327 The System of Rice Intensification (SRI)
0327 The System of Rice Intensification (SRI)0327 The System of Rice Intensification (SRI)
0327 The System of Rice Intensification (SRI)
 
0206 Potential Contributions of the System of Rice Intensification to Balanci...
0206 Potential Contributions of the System of Rice Intensification to Balanci...0206 Potential Contributions of the System of Rice Intensification to Balanci...
0206 Potential Contributions of the System of Rice Intensification to Balanci...
 
0210 A Review of the System of Rice Intensification (SRI)
0210 A Review of the System of Rice Intensification (SRI)0210 A Review of the System of Rice Intensification (SRI)
0210 A Review of the System of Rice Intensification (SRI)
 
1603 - Improving Food Production for Health in a Water-constrained World - Ag...
1603 - Improving Food Production for Health in a Water-constrained World - Ag...1603 - Improving Food Production for Health in a Water-constrained World - Ag...
1603 - Improving Food Production for Health in a Water-constrained World - Ag...
 
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
 
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
 
1801- What has been learned of scientific value from SRI research and experience
1801- What has been learned of scientific value from SRI research and experience1801- What has been learned of scientific value from SRI research and experience
1801- What has been learned of scientific value from SRI research and experience
 
0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...
 
1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview
 
0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works
 
1445 - Improving the Phenotypic Expression of Rice Genotypes: Reasons to Reth...
1445 - Improving the Phenotypic Expression of Rice Genotypes: Reasons to Reth...1445 - Improving the Phenotypic Expression of Rice Genotypes: Reasons to Reth...
1445 - Improving the Phenotypic Expression of Rice Genotypes: Reasons to Reth...
 
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
 
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
 
0304 SRI/SICA New Opportunities for Organic Rice Production
0304 SRI/SICA New Opportunities for Organic Rice Production0304 SRI/SICA New Opportunities for Organic Rice Production
0304 SRI/SICA New Opportunities for Organic Rice Production
 
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
 
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
 
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
 
SRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin AmericaSRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin America
 
1014 Current Developments with SRI: Other Methods, Other Crops, Mechanizatio...
1014 Current Developments  with SRI: Other Methods, Other Crops, Mechanizatio...1014 Current Developments  with SRI: Other Methods, Other Crops, Mechanizatio...
1014 Current Developments with SRI: Other Methods, Other Crops, Mechanizatio...
 

More from SRI-Rice, Dept. of Global Development, CALS, Cornell University

More from SRI-Rice, Dept. of Global Development, CALS, Cornell University (20)

2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
 
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
 
2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World
 
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
 
2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz
 
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
 
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
 
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
 
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
1615   Ecological Intensification - Lessons from SRI from Green Revolution to...1615   Ecological Intensification - Lessons from SRI from Green Revolution to...
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
 
2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines
 
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
 
2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq
 
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
 
1913 Resuitados SRI MIDA-IICA Panama 2019
1913   Resuitados SRI MIDA-IICA Panama 2019 1913   Resuitados SRI MIDA-IICA Panama 2019
1913 Resuitados SRI MIDA-IICA Panama 2019
 
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
 
1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment
 
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
 
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
 
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
 
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 2341905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
 

Recently uploaded

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Visualising and forecasting stocks using Dash
Visualising and forecasting stocks using DashVisualising and forecasting stocks using Dash
Visualising and forecasting stocks using Dashnarutouzumaki53779
 

Recently uploaded (20)

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Visualising and forecasting stocks using Dash
Visualising and forecasting stocks using DashVisualising and forecasting stocks using Dash
Visualising and forecasting stocks using Dash
 

0301 Understanding an Opportunity to Raise Rice Sector Productivity

  • 1. The System of Rice Intensification (SRI): Understanding an Opportunity to Raise Rice Sector Productivity Norman Uphoff, CIIFAD Cornell University, USA
  • 2.
  • 3.
  • 4. Canopy of an individual rice plant grown under SRI conditions; this variety (Swarna) is normally ‘shy-tillering’ Andhra Pradesh, India, Rabi season, 2003-04
  • 5. Roots of a single rice plant (MTU 1071) grown at Agricultural Research Station Maruteru, AP, India, Kharif 2003
  • 6. SRI field in Sri Lanka -- yield of 13 t/ha with panicles having 400+ grains
  • 7. CFA Camilo Cienfuegos, Cuba 14 t/ha -- Variety Los Palacios 9
  • 8. SRI (3S) in Summary : A set of principles/methods to get more productive PHENOTYPES from any existing GENOTYPE of rice. SRI (3S) changes the management of plants, soil, water, and nutrients to (a) induce greater ROOT growth and (b) nurture more abundant and diverse populations of SOIL BIOTA
  • 9. Plant Physical Structure and Light Intensity Distribution at Heading Stage (CNRRI Research --Tao et al. 2002)
  • 10. Dry Matter Accumulation between SRI and Control (CK) Practices (kg/ha) at Full Heading (Zheng et al., SAAS, 2003)
  • 11. Dry Matter Accumulation between SRI and Control (CK) Practices (kg/ha) at Maturity (Zheng et al., SAAS, 2003)
  • 12. Table 2. Different sizes of the leaf blade (cm) (Zheng et al., SAAS, 2003) 11.98 15.95 7.96 18.49 19.11 14.97 9.79 14.59 % 0.20 8.86 0.16 9.00 0.30 9.29 0.14 8.18 +/- 1.67 55.56 2.01 48.67 1.57 62.03 1.43 56.07 CK 1.87 64.41 2.17 57.67 1.87 71.32 1.57 64.25 SRI Width Length Width Length Width Length Width Length Average Flag leaf 2 nd leaf 3 rd leaf Item
  • 13. Figure 1. Change of leaf area index (LAI) during growth cycle (Zheng et al., 2003)
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.  
  • 20.
  • 21.
  • 22.
  • 23. Single Cambodian rice plant transplanted at 10 days
  • 24. Cuba -- Variety VN 2084 (Bolito) -- 52 DAP
  • 25. Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage (CNRRI research: Tao et al. 2002) Root dry weight (g)
  • 26. Table 13: Root Length Density (cm. cm -3 ) under SRI, ‘Modern’ (SRA) and Conventional Practice (from Barison, 2002) Results from replicated on-station trials 0.06 0.13 0.36 1.19 1.28 4.11 Conventional practice 0.07 0.15 0.31 0.55 0.85 3.24 SRA without fertilization 0.09 0.18 0.34 0.65 0.99 3.73 SRA with NPK and urea 0.20 0.25 0.32 0.57 0.71 3.33 SRI -- without compost 0.23 0.30 0.33 0.61 0.75 3.65 SRI -- with compost 40-50 30-40 20-30 10-20 5-10 0-5 Soil layers (cm) Treatments
  • 27. Figure 8: Linear regression relationship between N uptake and grain yield for SRI and conventional methods, using QUEFTS modeling (from Barison, 2002) Results are from on-farm comparisons (N = 108)
  • 28. Figure 9: Estimation of balanced N uptake for given a grain yield for rice plants with the SRI and conventional systems, using QUEFTS modeling (same for P and K) (Barison, 2002) Results are from on-farm comparisons (N = 108)
  • 29. Root Oxygenation Ability with SRI vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
  • 30.
  • 31. Roller-marker devised by Lakshmana Reddy, East Godavari, AP, India, to save time in transplanting operations; his yield in 2003-04 rabi season was 16.2 t/ha paddy (dry weight)
  • 32. 4-row weeder designed by Gopal Swaminathan, Thanjavur, TN, India
  • 33. Motorized weeder developed by S. Ariyaratna Sri Lanka
  • 34. Adjustable-width weeder designed by Hari R., Moramanga, Madagascar (from IRRI design)
  • 35.
  • 37.
  • 38.
  • 39. Two rice fields in Sri Lanka -- same variety, same irrigation system, and same drought : conventional methods (left), SRI (right)
  • 40.
  • 41.
  • 42.
  • 43.  
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.  
  • 49.  
  • 50.
  • 51.
  • 52.  
  • 53. SRI CONCEPTS CAN BE EXTENDED TO UPLAND PRODUCTION Results of trials (N=20) by Philippine NGO, Broader Initiatives for Negros Development, with Azucena local variety (4,000 m 2 area) -- using mulch as main innovation, not young plants
  • 54.
  • 55. SRI farmer in Cambodia
  • 56. SRI farmer in Cuba -- 14 t/ha
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.  
  • 63.
  • 64. Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
  • 65.
  • 66.
  • 67.
  • 68. Spread of SRI in Asia
  • 69.
  • 70.
  • 71.  
  • 72.  
  • 73.  
  • 74.  
  • 75.  
  • 76. .
  • 77.  
  • 78.  

Editor's Notes

  1. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  2. Picture provided by Gamini Batuwitage, Sri Lanka, of field that yielded 17 t/ha in 2000.
  3. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  4. This figure is from research from the China National Rice Research Institute reported at the Sanya conference in April 2002 and published in the Proceedings. Two different rice varieties were used with SRI and conventional (CK) methods. The second responded more positively to the methods in terms of leaf area and dry matter as measured at different elevations, but there was a very obvious difference in the phenotypes produced from the first variety's genome by changing cultivation methods from conventional to SRI.
  5. Summary results from two sets of factorial trials in two different agroecological settings in 2000 and 2001 by honors students in the Faculty of Agriculture at the University of Antananarivo. The first setting was on the west coast of Madagascar, at an agricultural experiment center near Morondava, with a tropical climate, near sea level, and poor sandy soil. (This location was chosen because there are few pest or disease problems during that season which could affect plant performance.) The second was on the high plateau near the village of Anjomakely, 18 km south of Antananarivo, with a temperate climate, about 1200 m elevation, and better soils, comparing results on better clay soil and poorer loam soil. In 2000, Jean de Dieu Rajonarison did trials on 288 plots (2.5x2.5 m) at the Centre de Baobab, with sandy soil [ sable roux], evaluating the effects of five factors: variety – HYV [2798] vs. traditional [riz rouge]; age of seedling [16-day vs. 8-day], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The study was designed with spacing as a sixth factor [25x25 vs. 30x30cm], sok that there were 96 combinations (2x2x2x3x2x2), with three replications. But both spacings were within the SRI range, and the average yield distinguished by spacing [each N = 144] was identical, 3.18 t/ha. So the analysis deals with only five factors, having six replications for each average reported. Plots were randomly distributed according to a modified Fisher bloc design, except for water management, for which the plot with these two different treatments had to be separate to avoid effects of lateral seepage. In 2000, Andry Andriankaja did trials on 240 plots (2.5x2.5m) on a farmer’s fields near Anjomakely, using a traditional rice variety [ riz rouge], evaluating the effects of five factors: soil [clay vs. loam], age of seedling [20-day vs. 8-day – with colder temperatures, the onset of the 4 th phyllochron of growth is later than at Morondava], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The reason why there are only 240 trials rather than 288 is that trials with no amendments were done only on the clay soil plots, not on the poorer loam soil plots, which were known to have low inherent fertility. This made for 40 combinations, with six replications. [The spacing factor as in the Morondava trials was not significant, with a difference of only 80 kg/ha for the two sets, each N = 120.] Again, all yields reported are averages for 6 replicated plots randomly distributed.
  6. Summary results from two sets of factorial trials in two different agroecological settings in 2000 and 2001 by honors students in the Faculty of Agriculture at the University of Antananarivo. The first setting was on the west coast of Madagascar, at an agricultural experiment center near Morondava, with a tropical climate, near sea level, and poor sandy soil. (This location was chosen because there are few pest or disease problems during that season which could affect plant performance.) The second was on the high plateau near the village of Anjomakely, 18 km south of Antananarivo, with a temperate climate, about 1200 m elevation, and better soils, comparing results on better clay soil and poorer loam soil. In 2000, Jean de Dieu Rajonarison did trials on 288 plots (2.5x2.5 m) at the Centre de Baobab, with sandy soil [ sable roux], evaluating the effects of five factors: variety – HYV [2798] vs. traditional [riz rouge]; age of seedling [16-day vs. 8-day], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The study was designed with spacing as a sixth factor [25x25 vs. 30x30cm], sok that there were 96 combinations (2x2x2x3x2x2), with three replications. But both spacings were within the SRI range, and the average yield distinguished by spacing [each N = 144] was identical, 3.18 t/ha. So the analysis deals with only five factors, having six replications for each average reported. Plots were randomly distributed according to a modified Fisher bloc design, except for water management, for which the plot with these two different treatments had to be separate to avoid effects of lateral seepage. In 2000, Andry Andriankaja did trials on 240 plots (2.5x2.5m) on a farmer’s fields near Anjomakely, using a traditional rice variety [ riz rouge], evaluating the effects of five factors: soil [clay vs. loam], age of seedling [20-day vs. 8-day – with colder temperatures, the onset of the 4 th phyllochron of growth is later than at Morondava], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The reason why there are only 240 trials rather than 288 is that trials with no amendments were done only on the clay soil plots, not on the poorer loam soil plots, which were known to have low inherent fertility. This made for 40 combinations, with six replications. [The spacing factor as in the Morondava trials was not significant, with a difference of only 80 kg/ha for the two sets, each N = 120.] Again, all yields reported are averages for 6 replicated plots randomly distributed.
  7. The "economist's $100 bill" refers to the joke about an economist and his friend who were walking together down the street one day when the friend saw a $100 bill on the sidewalk. Thinking that his friend, being concerned with money, would surely pick the bill up, he did not reach down himself. But the economist walked right by. The friend asked, didn't you see that $100 bill on the sidewalk? Why didn't you pick it up? The economist replied,It wasn't a real $100 bill. If it had been genuine, since people are rational, someone would have picked it up by now, so I am sure that it was a counterfeit, and I didn't want to waste any effort on it. Agronomists have regarded SRI with similar skepticism, dismissing it by saying if it were indeed as good as reported, it should have been discovered previously, given the many millions of farmers and thousands of scientists who have worked with rice. So, therefore, SRI must not be genuine. SRI contradicts a number of key concepts held by agronomists and economists, giving them reasons to reject it, without giving it an empirical evaluation. However, the evidence in support of SRI is mounting year by year, month by month.
  8. These data from a study done by Fide Raobelison under the supervision of Prof. Robert Randriamiharisoa at Beforona station in Madagascar, and reported in Prof. Robert's paper in the Sanya conference proceedings, give the first direct evidence to support our thinking about the contribution of soil microbes to the super-yields achieved with SRI methods. The bacterium Azospirillum was studied as an "indicator species" presumably reflecting overall levels of microbial populations and activity in and around the plant roots. Somewhat surprisingly, there was no significant difference in Azospirillum populations in the rhizosphere. But there were huge differences in the counts of Azospirillum in the roots themselves according to soil types (clay vs. loam) and cultivation practices (traditional vs. SRI) and nutrient amendments (none vs. NPK vs. compost). NPK amendments with SRI produce very good results, a yield on clay soil five times higher than traditional methods with no amendments. But compost used with SRI gives a six times higher yield. The NPK increases Azospirillum (and other) populations, but most/much of the N that produced a 9 t/ha yield is coming from inorganic sources compared to the higher 10.5 t/ha yield with compost that depends entirely on organic N. On poorer soil, SRI methods do not have much effect, but when enriched with compost, even this poor soil can give a huge increase in production, attributable to the largest of the increases in microbial activity in the roots. At least, this is how we interpret these findings. Similar research should be repeated many times, with different soils, varieties and climates. We consider these findings significant because they mirror results we have seen in other carefully measured SRI results such as the Anjomakely factorial trials (Slide 24) and the previous season's trials with SRI at Beforona (10.2 t/ha).
  9. This picture was contributed from Cambodia by Koma Yang Saing (CEDAC). Viewers should try to imagine the very small single young seedling from which this massive plant grew.
  10. This is a figure also from research reported by the China National Rice Research Institute to the Sanya conference and published in its proceedings. It shows how the roots of the same variety (two varieties shown) grow deeper into the soil with SRI methods compared to conventional ones (CK).
  11. This figure from report by Nanjing Agricultural University researchers to the Sanya conference, and reproduced from those proceedings, shows that the oxygenation ability of rice roots growing under SRI conditions are about double the ability, throughout the growth cycle, compared to the same variety grown under conventional conditions.
  12. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  13. This picture from Sri Lanka shows two fields having the same soil, climate and irrigation access, during a drought period. On the left, the rice grown with conventional practices, with continuous flooding from the time of transplanting, has a shallower root system that cannot withstand water stress. On the right, SRI rice receiving less water during its growth has deeper rooting, and thus it can continue to thrive during the drought. Farmers in Sri Lanka are coming to accept SRI in part because it reduces their risk of crop failure during drought.
  14. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  15. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  16. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  17. This was one of the first data sets that began laying a scientific foundation for SRI. Data were gathered from 76 farmers around Ambatovaky, a town on the western side of the peripheral zone around Ranomafana National Park in Madagascar, during the 1996-97 season. We had confidence in the field worker who collected the data, Simon Pierre, who had worked with Fr. de Laulanie before his death. The correlation between number of tillers per plant and number of grains per panicle was +.65, rather than the negative one expected from the literature. We have seen this positive relationship many times since this first analysis was done.
  18. Dr. Janaiah visited Sri Lanka the last week of October, 2002, and talked with 30 farmers in four villages who had been practicing SRI and who could give him detailed data. He had previously done such an evaluation for IRRI of the costs and benefits of adopting hybrid rice, having been on the IRRI staff in Los Banos from 1999 to 2002. He found SRI to be a much more profitable innovation for rice production than adoption of hybrids. We have found that SRI methods give the highest yields with hybrid varieties so there is not necessary contradiction or competition between the two. The SRI results reported from the Philippines, by the Agricultural Training Institute of the Department of Agriculture, from trials with three varieties at its Cotobato center in Mindanao (slide 20), calculated that the cost of production per hectare was 25,000 pesos, while the value of the rice yield with SRI was 96,000 pesos, a return of almost four times. Thus there are other evaluations of net profit from SRI that are even more favorable than Janaiah's calculation.
  19. Dr. Janaiah visited Sri Lanka the last week of October, 2002, and talked with 30 farmers in four villages who had been practicing SRI and who could give him detailed data. He had previously done such an evaluation for IRRI of the costs and benefits of adopting hybrid rice, having been on the IRRI staff in Los Banos from 1999 to 2002. He found SRI to be a much more profitable innovation for rice production than adoption of hybrids. We have found that SRI methods give the highest yields with hybrid varieties so there is not necessary contradiction or competition between the two. The SRI results reported from the Philippines, by the Agricultural Training Institute of the Department of Agriculture, from trials with three varieties at its Cotobato center in Mindanao (slide 20), calculated that the cost of production per hectare was 25,000 pesos, while the value of the rice yield with SRI was 96,000 pesos, a return of almost four times. Thus there are other evaluations of net profit from SRI that are even more favorable than Janaiah's calculation.
  20. The "economist's $100 bill" refers to the joke about an economist and his friend who were walking together down the street one day when the friend saw a $100 bill on the sidewalk. Thinking that his friend, being concerned with money, would surely pick the bill up, he did not reach down himself. But the economist walked right by. The friend asked, didn't you see that $100 bill on the sidewalk? Why didn't you pick it up? The economist replied,It wasn't a real $100 bill. If it had been genuine, since people are rational, someone would have picked it up by now, so I am sure that it was a counterfeit, and I didn't want to waste any effort on it. Agronomists have regarded SRI with similar skepticism, dismissing it by saying if it were indeed as good as reported, it should have been discovered previously, given the many millions of farmers and thousands of scientists who have worked with rice. So, therefore, SRI must not be genuine. SRI contradicts a number of key concepts held by agronomists and economists, giving them reasons to reject it, without giving it an empirical evaluation. However, the evidence in support of SRI is mounting year by year, month by month.
  21. This picture was provided by Koma Yang Saing (CEDAC) of a pleased Cambodian farmer, showing the size of a massive root ball with a SRI rice plant.
  22. These are just the most obvious contributions. Our understanding of this netherworld is limited, though fortunately there are a growing number of microbiologists using very advanced modern techniques, such as DNA analysis, to map and track what is going on in the soil. The discussion that follows is can be viewed as introductory or superficial, or both.
  23. Most people know that leguminous plants "fix" N in their roots through nodules on the roots inhabited by certain bacteria, rhizobia. And by implication, most thinks that non-leguminous plants "do not fix nitrogen." This is correct in terms of locus, but it misleads. All of the gramineae species (rice, wheat, sugar cane, etc.) have free-living bacteria in their root zones (referred to as 'associated' microbes) that fix N. Even in fertilized crops, a majority of the N taken up by the roots is from organic sources. And there is evidence that adding inorganic N to the root zone inhibits or suppresses the roots' and microbes' production of nitrogenase, the enzyme needed to fix N. So there is a tradeoff, in that adding inorganic N fertilizer reduces the N that is produced by natural biological processes. Or most relevance to SRI is research published more than 30 years ago reporting that when aerobic and anaerobic horizons of soil are mixed, BNF increases greatly compared to that originating from either aerobic or anaerobic soil. This suggests that the water management and weeding practices of SRI could be actively promoting N production in the soil. We have no research results to support this inference (though see data in Slide 49), but the yield increases with SRI practices require large amounts of N. BNF is the most plausible explanation.
  24. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  25. Summary results from two sets of factorial trials in two different agroecological settings in 2000 and 2001 by honors students in the Faculty of Agriculture at the University of Antananarivo. The first setting was on the west coast of Madagascar, at an agricultural experiment center near Morondava, with a tropical climate, near sea level, and poor sandy soil. (This location was chosen because there are few pest or disease problems during that season which could affect plant performance.) The second was on the high plateau near the village of Anjomakely, 18 km south of Antananarivo, with a temperate climate, about 1200 m elevation, and better soils, comparing results on better clay soil and poorer loam soil. In 2000, Jean de Dieu Rajonarison did trials on 288 plots (2.5x2.5 m) at the Centre de Baobab, with sandy soil [ sable roux], evaluating the effects of five factors: variety – HYV [2798] vs. traditional [riz rouge]; age of seedling [16-day vs. 8-day], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The study was designed with spacing as a sixth factor [25x25 vs. 30x30cm], sok that there were 96 combinations (2x2x2x3x2x2), with three replications. But both spacings were within the SRI range, and the average yield distinguished by spacing [each N = 144] was identical, 3.18 t/ha. So the analysis deals with only five factors, having six replications for each average reported. Plots were randomly distributed according to a modified Fisher bloc design, except for water management, for which the plot with these two different treatments had to be separate to avoid effects of lateral seepage. In 2000, Andry Andriankaja did trials on 240 plots (2.5x2.5m) on a farmer’s fields near Anjomakely, using a traditional rice variety [ riz rouge], evaluating the effects of five factors: soil [clay vs. loam], age of seedling [20-day vs. 8-day – with colder temperatures, the onset of the 4 th phyllochron of growth is later than at Morondava], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The reason why there are only 240 trials rather than 288 is that trials with no amendments were done only on the clay soil plots, not on the poorer loam soil plots, which were known to have low inherent fertility. This made for 40 combinations, with six replications. [The spacing factor as in the Morondava trials was not significant, with a difference of only 80 kg/ha for the two sets, each N = 120.] Again, all yields reported are averages for 6 replicated plots randomly distributed.
  26. This is a SRI rice nursery in Sri Lanka, showing one way (but only one of many ways) to grow young seedlings. The soil in this raised bed was a mixture of one-third soil, one-third compost, and one-third chicken manure. (The flooding around it is because the surrounding field is being readied for transplanting; normally there would not be so much water standing around the nursery.)
  27. Here the seedlings are being removed. We would recommend that they be lifted with a trowel, to have minimum disturbance of the roots, but these seedlings are so vigorous that this manual method is successful. This farmer has found that his seedlings, when transplanted with two leaves at time of transplanting, already put out a third leave the next day after transplanting, indicating that there was no transplant 'shock.'
  28. Here the field is being 'marked' for transplanting with a simple wooden 'rake.' If the soil is too wet, these lines will not remain long enough for transplanting. There are drains within the field to carry excess water away from the root zone.
  29. Here are seedlings being removed from a clump for transplanting. Note that the yellow color comes from the sunlight reflecting off the plant. The plant's color is a rich green, indicating no N deficiency.
  30. Here the seedlings are being set into the soil, very shallow (only 1-2 cm deep). The transplanted seedlings are barely visible at the intersections of the lines. This operation proceeds very quickly once the transplanters have gained some skill and confidence in the method. As noted already, these seedling set out with two leaves can already have a third leaf by the next day.
  31. The SRI field looks rather sparse and unproductive at first. Up to the 5th or 6th week, SRI fields look rather miserable, and farmers can wonder why they ever tried this method and 'wasted' their precious land with such a crazy scheme. But the SRI plot here will yield twice as much rice as the surrounding ones once the rapid tillering (and root growth) begins between 35 and 45 days.
  32. This is one of many happy Sri Lankan farmers with his SRI field nearing harvest time. Some young farmers have taken up growing "eco-rice," i.e., traditional varieties grown organically to be sold for a much higher price than conventional HYV rice, because of better texture, taste, smell and aroma and more assurance of healthy food. SRI in this way is starting to contribute to the preservation of rice biodiversity. As noted above, SRI methods work well with hybrid varieties and HYVs. These give the highest yields with SRI methods. But as SRI methods can double or triple traditional-variety yields, these old varieties become economically more advantageous with SRI. Much more remains to be learned about and from SRI. But we have now enough accumulated evidence, based on experience in farmers' fields, not just on experiment stations, and consistent with what is known in the literature (though often not previously connected up to promote increased rice productivity), to have confidence that this methodology will contribute to greater food security and a better environment. SRI, developed by Fr. de Laulanie and promoted by his friends in Association Tefy Saina, and by a growing number of colleagues in many countries around the world, could help to improve other crop production. The world does not need a doubling of rice production, but it does need increased productivity in the rice sector, as this is the largest single agricultural sector in the world in terms of the resources devoted to it. By raising the productivity of land, labor, water and capital in the rice sector, we should be able to meet our staple food needs with less of these resources, which have significant opportunity costs. We hope that SRI methods will enable farmers to redeploy some of their land, labor, water and capital to producing other, higher-value and more nutritious crops, thereby enhancing the well-being of rural households and urban populations. The urban poor should benefit from lower prices for rice that will follow from higher productivity. SRI is not a labor-intensive method that will 'keep rice production backward,' as was alleged by its critics in Madagascar for many years, but a strategy for achieving diversification and modernization in the agricultural sector.