SlideShare a Scribd company logo
1 of 60
WHAT IS BEING LEARNED FROM  THE SYSTEM OF RICE INTENSIFICATION (SRI):   An Agroecological Innovation from Madagascar Norman Uphoff, CIIFAD Cornell University, USA  Plant Protection/IPM Program Hanoi, January 4, 2006
The System of Rice Intensification (SRI) is a ‘work in progress’ ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The System of Rice Intensification (SRI) gives ‘more’ from ‘less’ ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Basic Practices: ,[object Object],[object Object],[object Object],[object Object],[object Object]
Adaptations: ,[object Object],[object Object],[object Object],[object Object]
SRI Underscores Importance of Management ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Different Paradigms of Production   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI Practices  ,[object Object],[object Object],[object Object],[object Object]
Ms. Im Sarim, Cambodia, with rice plant grown from a single seed, using SRI methods and traditional variety -- yield of 6.72 t/ha
Morang District, Nepal - 2005
Single plant with 185 tillers, Morang, Nepal
India: Single SRI plant – Swarna cv. – normally ‘shy-tillering’
Roots of a single rice plant (MTU 1071)  grown at Agricultural Research Station Maruteru, AP, India, kharif 2003
Cuba – Two plants the same age (52 DAP) and same variety (VN 2084)
Madagascar SRI field, 2003
47.9% 34.7% “ Non-Flooding Rice Farming Technology in Irrigated Paddy Field” Dr. Tao Longxing, China National Rice Research Institute, 2004
Plant Physical Structure and  Light Intensity Distribution  at Heading Stage   (Tao et al., CNRRI, 2002)
Change of Leaf Area Index (LAI) during growth cycle (Zheng et al., SAAS, 2003)
Roots’ Oxygenation Ability with SRI  vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng-9 variety (Wang et al., 2002)
Rice fields in Sri Lanka: same variety, same irrigation system, and  same drought  : conventional methods (left), SRI (right)
Rice in Tamil Nadu, India: normal crop is seen in foreground; SRI crop, behind it, resists lodging
Rice in Vietnam: normal methods on right; SRI with close  spacing in middle; SRI with recommended spacing on left
SRI crop in Sri Lanka
SRI field of Basmati rice, Sri Lanka, 2005
[object Object],[object Object],[object Object]
Trophobiosis ,[object Object],[object Object],[object Object]
Trophobiosis ,[object Object],[object Object],[object Object]
Farmer-Centered Strategy ,[object Object],[object Object]
Benefits from This Approach ,[object Object],[object Object],[object Object]
H. M. Premaratna, Mellawellana, Sri Lanka, who has become spokesperson for SRI in many forums; working for Oxfam
Cono-weeder developed by H. M. Premaratna, Sri Lanka, locally manufactured for $10
Mey Som, the first Cambodian farmer to use SRI; now known as ‘the professor’ for his extensive SRI training efforts
Weeder designed by Nong Sovann, Kampong Spreu province, Cambodia; built for $3, with a $20 increase in value of rice
Vietnamese women who have trained 1,000 farmers (on 300 ha) in SRI methods to accomplish potential water saving possible
 
Four-row weeder developed by Gopal Swaminathan, Cauvery Delta, Tamil Nadu, India; who also devised the Kadiramangalam  version  of SRI for production in  high-temperature regions
Kadiramangalam System ,[object Object],[object Object],[object Object],[object Object]
Cotton seedlings planted in cups, 1 cup of hybrid seed = 1 acre At 10 days, bottom of cup is removed; seedlings are planted at 2 x 4 foot spacing Yield is 20% more, with less weed problems and reduced watering
 
S. Ariyaratne Direct-Seeding ,[object Object],[object Object],[object Object],[object Object]
Roller-marker devised by Lakshmana Reddy, East Godavari, AP, India, to save time in transplanting operations; Reddy’s yield in 2003-04 rabi season was 17.25 t/ha paddy (dry wt)
Liu Zhibin, Meishan Inst. of Science & Technology, China, in  raised-bed, no-till  SRI field with certified yield of 13.4 t/ha; in 2001, his first SRI yield was 16 t/ha, setting a new record
Nie Fu-Qiu, Bu Tou village, Tian Tai, Zhejiang province, who got record yield of 12.1 t/ha with SRI in 2004; next year, even  though 3 typhoons hit his area, his SRI crop did not lodge, and it produced 11.38 t/ha (with a 93.4% seed-set rate)
Results of Direct Seeding, by Machine and by Hand (t/ha) 10.1 11.1 No-Till 10.1 11.3 Standard D.S. by hand D.S. by machine TILLAGE Method Used
 
Seeder Developed in Cuba Direct seeding will probably replace transplanting in future; SRI seeks to  avoid trauma to the young roots ; TP not needed
 
Farmers Extend SRI to Other Crops ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
Increase in Finger Millet Yield with  Guli Vidhana  Method, as reported by Green Foundation, Bangalore Methods: Broadcast - Drill sowing - Close transplant -  Guli Vidhana
SRI RAGI (FINGER MILLET), Rabi 2004-05 60 days after sowing – Varieties 762 and 708 VR 762 VR 708 10   15   21* *Age at which seedlings were transplanted from nursery Results of trials being being done by ANGRAU
Sugar Cane Adaptation ,[object Object],[object Object],[object Object],[object Object]
Application to Chicken Rearing ,[object Object],[object Object],[object Object],[object Object]
Farmer Innovation is Added Benefit ,[object Object],[object Object],[object Object],[object Object],[object Object]
Nepal: Monsoon Season, 2004 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MEASURED DIFFERENCES IN GRAIN QUALITY Characteristic  SRI (3 spacings)  Conventional  Diff. Paper by Prof. Ma Jun, Sichuan Agricultural University, presented at 10th conference on Theory and Practice for High-Quality, High-Yielding Rice in China, Haerbin, 8/2004 + 17.5 38.87 - 39.99 41.81 - 50.84 Head milled rice (%) + 16.1 41.54 - 51.46 53.58 - 54.41 Milled rice outturn (%) - 65.7 6.74 - 7.17 1.02 - 4.04 General chalkiness (%) - 30.7 39.89 - 41.07 23.62 - 32.47 Chalky kernels (%)
LESS  CAN PRODUCE  MORE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Table 1.  Summary of results from SRI vs. BMP evaluations in China and India, t ha -1 , 2003-2004 * Chinese comparisons were made using hybrid rice varieties. 1.57 (27.7%) 7.23 5.66 100 trials (SRI and BMP trials  each 0.1 ha) Tamil Nadu state 2.42 (33.8%) 8.73 6.31 1,525 trials (average 0.4 ha; range 0.1-1.6 ha) Andhra Pradesh state 3.31* (40.7%) 11.44* 8.13* 8 trials (0.2 ha each) Sichuan province  3.1* (35.2%) 11.9* 8.8* 16.8 ha of SRI rice with 2 hybrid varieties Zhejiang province SRI advantage (% incr.) SRI  ave. yield BMP ave. yield No. of on-farm comparison trials (area) Province/state
THANK YOU ,[object Object],[object Object],[object Object]

More Related Content

What's hot

IPM for insect pests of ground nut
IPM for insect pests of ground nutIPM for insect pests of ground nut
IPM for insect pests of ground nutJayant Pujari
 
Diamond back moth & its biological control
Diamond back moth & its biological controlDiamond back moth & its biological control
Diamond back moth & its biological controlMunmun Mohapatra
 
integrated disease management in ragi
integrated disease management in ragiintegrated disease management in ragi
integrated disease management in ragiGuru P N
 
Rice insect pests - GM
Rice insect pests - GMRice insect pests - GM
Rice insect pests - GMSuvanthinis
 
Lec. 9 rkp pcgm_brinjal, tomato, chilli
Lec. 9 rkp pcgm_brinjal, tomato, chilliLec. 9 rkp pcgm_brinjal, tomato, chilli
Lec. 9 rkp pcgm_brinjal, tomato, chilliRajuPanse
 
Integrated Disease Pest Management - IDPM
Integrated Disease Pest Management -  IDPMIntegrated Disease Pest Management -  IDPM
Integrated Disease Pest Management - IDPMAjatus Software
 
Presentation on sugarcane pest.
Presentation on sugarcane pest.Presentation on sugarcane pest.
Presentation on sugarcane pest.S.M.Shohrab Ali
 
Integrated Pest Management on Okra (Abelmoschus esculentus L. Moench)
Integrated Pest Management  on Okra  (Abelmoschus  esculentus L. Moench)Integrated Pest Management  on Okra  (Abelmoschus  esculentus L. Moench)
Integrated Pest Management on Okra (Abelmoschus esculentus L. Moench)RAKESH KUMAR MEENA
 
Yellow stem borer by mureed abbas(scirpophaga incertulas)
Yellow stem borer by mureed abbas(scirpophaga incertulas)Yellow stem borer by mureed abbas(scirpophaga incertulas)
Yellow stem borer by mureed abbas(scirpophaga incertulas)Malikmureed
 
Sugarcane scales and leafhopper
Sugarcane scales and leafhopperSugarcane scales and leafhopper
Sugarcane scales and leafhopperPrudhiviVijayBabu
 
Lec. 4 rkp pcgm_pulses
Lec. 4 rkp pcgm_pulsesLec. 4 rkp pcgm_pulses
Lec. 4 rkp pcgm_pulsesRajuPanse
 
Ragi Blast
Ragi BlastRagi Blast
Ragi Blastrishi0
 
Lec. 3 rkp pcgm_wheat, maize, sorghum
Lec. 3 rkp pcgm_wheat, maize, sorghumLec. 3 rkp pcgm_wheat, maize, sorghum
Lec. 3 rkp pcgm_wheat, maize, sorghumRajuPanse
 

What's hot (20)

Rice leaf folder
Rice leaf folderRice leaf folder
Rice leaf folder
 
Ipm brinjal methi okra
Ipm brinjal methi okraIpm brinjal methi okra
Ipm brinjal methi okra
 
IPM for insect pests of ground nut
IPM for insect pests of ground nutIPM for insect pests of ground nut
IPM for insect pests of ground nut
 
Diamond back moth & its biological control
Diamond back moth & its biological controlDiamond back moth & its biological control
Diamond back moth & its biological control
 
integrated disease management in ragi
integrated disease management in ragiintegrated disease management in ragi
integrated disease management in ragi
 
Rice insect pests - GM
Rice insect pests - GMRice insect pests - GM
Rice insect pests - GM
 
Lec. 9 rkp pcgm_brinjal, tomato, chilli
Lec. 9 rkp pcgm_brinjal, tomato, chilliLec. 9 rkp pcgm_brinjal, tomato, chilli
Lec. 9 rkp pcgm_brinjal, tomato, chilli
 
Insect pest of rice
Insect pest of riceInsect pest of rice
Insect pest of rice
 
Ipm idm sri_paddy
Ipm idm sri_paddyIpm idm sri_paddy
Ipm idm sri_paddy
 
Integrated Disease Pest Management - IDPM
Integrated Disease Pest Management -  IDPMIntegrated Disease Pest Management -  IDPM
Integrated Disease Pest Management - IDPM
 
Presentation on sugarcane pest.
Presentation on sugarcane pest.Presentation on sugarcane pest.
Presentation on sugarcane pest.
 
Integrated Pest Management on Okra (Abelmoschus esculentus L. Moench)
Integrated Pest Management  on Okra  (Abelmoschus  esculentus L. Moench)Integrated Pest Management  on Okra  (Abelmoschus  esculentus L. Moench)
Integrated Pest Management on Okra (Abelmoschus esculentus L. Moench)
 
Yellow stem borer by mureed abbas(scirpophaga incertulas)
Yellow stem borer by mureed abbas(scirpophaga incertulas)Yellow stem borer by mureed abbas(scirpophaga incertulas)
Yellow stem borer by mureed abbas(scirpophaga incertulas)
 
Pests of maize
Pests of maizePests of maize
Pests of maize
 
Sugarcane scales and leafhopper
Sugarcane scales and leafhopperSugarcane scales and leafhopper
Sugarcane scales and leafhopper
 
Lec. 4 rkp pcgm_pulses
Lec. 4 rkp pcgm_pulsesLec. 4 rkp pcgm_pulses
Lec. 4 rkp pcgm_pulses
 
Pyrimidines
PyrimidinesPyrimidines
Pyrimidines
 
Ragi Blast
Ragi BlastRagi Blast
Ragi Blast
 
Lec. 3 rkp pcgm_wheat, maize, sorghum
Lec. 3 rkp pcgm_wheat, maize, sorghumLec. 3 rkp pcgm_wheat, maize, sorghum
Lec. 3 rkp pcgm_wheat, maize, sorghum
 
Insect pests of paddy
Insect pests of paddyInsect pests of paddy
Insect pests of paddy
 

Similar to 0624 What is Being Learned from the System of Rice Intensification: An Agroecological Innovation from Madagascar

Similar to 0624 What is Being Learned from the System of Rice Intensification: An Agroecological Innovation from Madagascar (20)

0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
0506 Some New Ideas and Opportunities Offered by the System of Rice Intensifi...
 
1031 International Experience with the System of Rice Intensification
1031 International Experience with the System of Rice Intensification1031 International Experience with the System of Rice Intensification
1031 International Experience with the System of Rice Intensification
 
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
0207 Potential Contributions of the System of Rice Intensification (SRI) for ...
 
0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...
 
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
 
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
 
2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI
 
0425 The System of Rice Intensification (SRI): An Overview - Part I
0425 The System of Rice Intensification (SRI):   An Overview - Part I0425 The System of Rice Intensification (SRI):   An Overview - Part I
0425 The System of Rice Intensification (SRI): An Overview - Part I
 
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
 
0610 Thoughts on the History, Principals and Practices of the System of Rice ...
0610 Thoughts on the History, Principals and Practices of the System of Rice ...0610 Thoughts on the History, Principals and Practices of the System of Rice ...
0610 Thoughts on the History, Principals and Practices of the System of Rice ...
 
0961 The System of Rice Intensification (SRI): Rethinking Agricultural Parad...
0961 The System of Rice Intensification (SRI):  Rethinking Agricultural Parad...0961 The System of Rice Intensification (SRI):  Rethinking Agricultural Parad...
0961 The System of Rice Intensification (SRI): Rethinking Agricultural Parad...
 
0959 The System of Rice Intensification (SRI): Creating Opportunities for A...
0959 The System of  Rice Intensification (SRI):  Creating Opportunities for A...0959 The System of  Rice Intensification (SRI):  Creating Opportunities for A...
0959 The System of Rice Intensification (SRI): Creating Opportunities for A...
 
0953 The System of Rice Intensification (SRI): A Win-Win Opportunity for Ind...
0953 The System of Rice Intensification (SRI):  A Win-Win Opportunity for Ind...0953 The System of Rice Intensification (SRI):  A Win-Win Opportunity for Ind...
0953 The System of Rice Intensification (SRI): A Win-Win Opportunity for Ind...
 
0204 The System of Rice Intensification: An Opportunity for the Rice Sector a...
0204 The System of Rice Intensification: An Opportunity for the Rice Sector a...0204 The System of Rice Intensification: An Opportunity for the Rice Sector a...
0204 The System of Rice Intensification: An Opportunity for the Rice Sector a...
 
0954 The System of Rice Intensification (SRI) and Its Relevance to Smallhold...
0954 The System of  Rice Intensification (SRI) and Its Relevance to Smallhold...0954 The System of  Rice Intensification (SRI) and Its Relevance to Smallhold...
0954 The System of Rice Intensification (SRI) and Its Relevance to Smallhold...
 
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
 
1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview
 
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
 
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
 
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
 

More from SRI-Rice, Dept. of Global Development, CALS, Cornell University

More from SRI-Rice, Dept. of Global Development, CALS, Cornell University (20)

2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
 
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
 
2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World
 
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
 
2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz
 
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
 
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
 
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
 
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
1615   Ecological Intensification - Lessons from SRI from Green Revolution to...1615   Ecological Intensification - Lessons from SRI from Green Revolution to...
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
 
2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines
 
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
 
2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq
 
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
 
1913 Resuitados SRI MIDA-IICA Panama 2019
1913   Resuitados SRI MIDA-IICA Panama 2019 1913   Resuitados SRI MIDA-IICA Panama 2019
1913 Resuitados SRI MIDA-IICA Panama 2019
 
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
 
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
 
1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment
 
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
 
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
 
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
 

Recently uploaded

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 

Recently uploaded (20)

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 

0624 What is Being Learned from the System of Rice Intensification: An Agroecological Innovation from Madagascar

  • 1. WHAT IS BEING LEARNED FROM THE SYSTEM OF RICE INTENSIFICATION (SRI): An Agroecological Innovation from Madagascar Norman Uphoff, CIIFAD Cornell University, USA Plant Protection/IPM Program Hanoi, January 4, 2006
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. Ms. Im Sarim, Cambodia, with rice plant grown from a single seed, using SRI methods and traditional variety -- yield of 6.72 t/ha
  • 11. Single plant with 185 tillers, Morang, Nepal
  • 12. India: Single SRI plant – Swarna cv. – normally ‘shy-tillering’
  • 13. Roots of a single rice plant (MTU 1071) grown at Agricultural Research Station Maruteru, AP, India, kharif 2003
  • 14. Cuba – Two plants the same age (52 DAP) and same variety (VN 2084)
  • 16. 47.9% 34.7% “ Non-Flooding Rice Farming Technology in Irrigated Paddy Field” Dr. Tao Longxing, China National Rice Research Institute, 2004
  • 17. Plant Physical Structure and Light Intensity Distribution at Heading Stage (Tao et al., CNRRI, 2002)
  • 18. Change of Leaf Area Index (LAI) during growth cycle (Zheng et al., SAAS, 2003)
  • 19. Roots’ Oxygenation Ability with SRI vs. Conventionally-Grown Rice Research done at Nanjing Agricultural University, Wuxianggeng-9 variety (Wang et al., 2002)
  • 20. Rice fields in Sri Lanka: same variety, same irrigation system, and same drought : conventional methods (left), SRI (right)
  • 21. Rice in Tamil Nadu, India: normal crop is seen in foreground; SRI crop, behind it, resists lodging
  • 22. Rice in Vietnam: normal methods on right; SRI with close spacing in middle; SRI with recommended spacing on left
  • 23. SRI crop in Sri Lanka
  • 24. SRI field of Basmati rice, Sri Lanka, 2005
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30. H. M. Premaratna, Mellawellana, Sri Lanka, who has become spokesperson for SRI in many forums; working for Oxfam
  • 31. Cono-weeder developed by H. M. Premaratna, Sri Lanka, locally manufactured for $10
  • 32. Mey Som, the first Cambodian farmer to use SRI; now known as ‘the professor’ for his extensive SRI training efforts
  • 33. Weeder designed by Nong Sovann, Kampong Spreu province, Cambodia; built for $3, with a $20 increase in value of rice
  • 34. Vietnamese women who have trained 1,000 farmers (on 300 ha) in SRI methods to accomplish potential water saving possible
  • 35.  
  • 36. Four-row weeder developed by Gopal Swaminathan, Cauvery Delta, Tamil Nadu, India; who also devised the Kadiramangalam version of SRI for production in high-temperature regions
  • 37.
  • 38. Cotton seedlings planted in cups, 1 cup of hybrid seed = 1 acre At 10 days, bottom of cup is removed; seedlings are planted at 2 x 4 foot spacing Yield is 20% more, with less weed problems and reduced watering
  • 39.  
  • 40.
  • 41. Roller-marker devised by Lakshmana Reddy, East Godavari, AP, India, to save time in transplanting operations; Reddy’s yield in 2003-04 rabi season was 17.25 t/ha paddy (dry wt)
  • 42. Liu Zhibin, Meishan Inst. of Science & Technology, China, in raised-bed, no-till SRI field with certified yield of 13.4 t/ha; in 2001, his first SRI yield was 16 t/ha, setting a new record
  • 43. Nie Fu-Qiu, Bu Tou village, Tian Tai, Zhejiang province, who got record yield of 12.1 t/ha with SRI in 2004; next year, even though 3 typhoons hit his area, his SRI crop did not lodge, and it produced 11.38 t/ha (with a 93.4% seed-set rate)
  • 44. Results of Direct Seeding, by Machine and by Hand (t/ha) 10.1 11.1 No-Till 10.1 11.3 Standard D.S. by hand D.S. by machine TILLAGE Method Used
  • 45.  
  • 46. Seeder Developed in Cuba Direct seeding will probably replace transplanting in future; SRI seeks to avoid trauma to the young roots ; TP not needed
  • 47.  
  • 48.
  • 49.  
  • 50. Increase in Finger Millet Yield with Guli Vidhana Method, as reported by Green Foundation, Bangalore Methods: Broadcast - Drill sowing - Close transplant - Guli Vidhana
  • 51. SRI RAGI (FINGER MILLET), Rabi 2004-05 60 days after sowing – Varieties 762 and 708 VR 762 VR 708 10 15 21* *Age at which seedlings were transplanted from nursery Results of trials being being done by ANGRAU
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57. MEASURED DIFFERENCES IN GRAIN QUALITY Characteristic SRI (3 spacings) Conventional Diff. Paper by Prof. Ma Jun, Sichuan Agricultural University, presented at 10th conference on Theory and Practice for High-Quality, High-Yielding Rice in China, Haerbin, 8/2004 + 17.5 38.87 - 39.99 41.81 - 50.84 Head milled rice (%) + 16.1 41.54 - 51.46 53.58 - 54.41 Milled rice outturn (%) - 65.7 6.74 - 7.17 1.02 - 4.04 General chalkiness (%) - 30.7 39.89 - 41.07 23.62 - 32.47 Chalky kernels (%)
  • 58.
  • 59. Table 1. Summary of results from SRI vs. BMP evaluations in China and India, t ha -1 , 2003-2004 * Chinese comparisons were made using hybrid rice varieties. 1.57 (27.7%) 7.23 5.66 100 trials (SRI and BMP trials each 0.1 ha) Tamil Nadu state 2.42 (33.8%) 8.73 6.31 1,525 trials (average 0.4 ha; range 0.1-1.6 ha) Andhra Pradesh state 3.31* (40.7%) 11.44* 8.13* 8 trials (0.2 ha each) Sichuan province 3.1* (35.2%) 11.9* 8.8* 16.8 ha of SRI rice with 2 hybrid varieties Zhejiang province SRI advantage (% incr.) SRI ave. yield BMP ave. yield No. of on-farm comparison trials (area) Province/state
  • 60.

Editor's Notes

  1. Slides for presentation to the Plant Protection/IPM program in Hanoi, Vietnam, January 4, 2005.
  2. SRI was developed in Madagascar about 20 years ago, by Fr. Henri de Laulani é, SJ, who spent 34 years of his life in that country, far from his native France, working with farmers, observing, experimenting, and having some good luck, to synthesize a set of practices that changes many things farmers have done for centuries and even millennia, to good effect. This presentation is not about SRI per se, so gives only a brief characterization of the System, documented in other presentations.
  3. SRI departs from the usual concepts and practices, where one uses more and better inputs to get even more outputs; with SRI, one reduces inputs but capitalizes upon synergies and symbioses inherent within agroecological systems.
  4. This is the most simple description of what SRI entails. Transplanting is not necesssary since direct seeding, with the other SRI practices, also produces similarly good results. The principle of SRI is that if transplanting is done , very young seedling should be used, and there should be little or no trauma to the young plant roots. These are often ‘abused’ in transplanting process, being allowed to dry out (desiccate), or are knocked to remove soil, etc.
  5. SRI is an evolving methodology
  6. SRI is often hard to accept because it does not depend on either of the two main strategies of the Green Revolution, not requiring any change in the rice variety used (genotype) or an increase in external inputs. The latter can be reduced.
  7. Picture provided by Dr. Koma Yang Saing, director, Cambodian Center for the Study and Development of Agriculture (CEDAC), September 2004. Dr. Koma himself tried SRI methods in 1999, and once satisfied that they worked, got 28 farmers in 2000 to try them. From there the numbers have increased each year, to 400, then 2100, then 9100, then almost 17,000. Over 50,000 farmers are expecting to be using SRI in 2005. Ms. Sarim previously produced 2-3 t/ha on her field. In 2004, some parts of this field reached a yield of 11 t/ha, where the soil was most ‘biologized’ from SRI practices.
  8. Picture provided by Rajendra Uprety, District Agricultural Development Office, Morang District, Nepal, of single SRI plant.
  9. Picture provided by Rajendra Uprety, District Agricultural Development Office, Biratnagar, serving Morang District, Nepal, September 2005. This plant was growing outside the field, so it had plenty of space to expand. About half the tillers are fertile. Many SRI plants grown within SRI fields around Biratnagar produced over 100 tillers. On August 18, 2004, the Director-General for Agriculture for Nepal visited Morang district and counted 119 tillers on one SRI plant only 48 days old.
  10. Picture provided by Dr. A. Satyanarayana, at the time Director of Extension for Acharya N. G. Ranga Agricultural University (ANGRAU), the agricultural university for Andhra Pradesh state in India. Dr. Satyanarayana was a co-recipient with ICRISAT of the King Baudoin Award in 2002, the CGIAR’s highest award, as a plant breeder working on (drought-resistant) pulses. He has become the leader of SRI evaluation and dissemination efforts in Andhra Pradesh based on observed and measured results.
  11. Picture provided by Dr. P. V. Satyanarayana, the plant breeder who developed this very popular variety, which also responds very well to SRI practices.
  12. Picture provided by Dr. Rena Perez. These two rice plants are ‘twins’ in that they were planted on the same day in the same nursery from the same seed bag. The one on the right was taken out at 9 days and transplanted into an SRI environment. The one on the left was kept in the flooded nursery until its 52 nd day, when it was taken out for transplanting (in Cuba, transplanting of commonly done between 50 and 55 DAP). The difference in root growth and tillering (5 vs. 42) is spectacular. We think this difference is at least in part attributable to the contributions of soil microorganisms producing phytohormones in the rhizosphere that benefit plant growth and performance.
  13. This field was harvested in March 2004 with representatives from the Department of Agriculture present to measure the yield. Picture provided by George Rakotondrabe, Landscape Development Interventions project, which has worked with Association Tefy Saina in spreading the use of SRI to reduce land pressures on the remaining rainforest areas.
  14. Figures from a paper presented by Dr. Tao to international rice conference organized by the China National Rice Research Institute for the International Year of Rice and World Food Day, held in Hangzhou, October 15-17, 2004. Dr. Tao has been doing research on SRI since 2001 to evaluate its effects in physiological terms.
  15. This figure is based on research findings from the China National Rice Research Institute, reported at the Sanya conference in April 2002 and published in the conference proceedings. Two different rice varieties were used (top and bottom rows) with SRI and conventional (CK) methods (left and right columns). The second variety responded more positively to the SRI methods in terms of leaf area and dry matter as measured at different elevations, but there was a very obvious difference in the phenotypes produced from the first variety's genome by changing cultivation methods from conventional to SRI. Both leaf area and dry matter were significantly increased by using SRI methods.
  16. Figure from research on SRI done by the Crop Research Institute of the Sichuan Academy of Agricultural Sciences, comparing leaf area of SRI rice with conventional rice, same variety and otherwise same growing conditions.
  17. Figure from a report by Nanjing Agricultural University researchers to the 2002 Sanya conference, and reproduced from the conference proceedings. It shows that the oxygenation ability of rice roots growing under SRI conditions are about double the ability, throughout the growth cycle, compared to the same variety grown under conventional conditions. At maturity, the SRI roots have still almost 3x the oxygenation ability of conventionally grown rice plants.
  18. This picture from Sri Lanka shows two fields having the same soil, climate and irrigation access, during a drought period. On the left, the rice grown with conventional practices, with continuous flooding from the time of transplanting, has a shallower root system that cannot withstand water stress. On the right, SRI rice receiving less water during its growth has deeper rooting, and thus it can continue to thrive during the drought. Farmers in Sri Lanka are coming to accept SRI in part because it reduces their risk of crop failure during drought.
  19. Picture provided by Dr. T. M. Thiyagarajan, dean of TNAU college of agriculture at Killikulam, who has been evaluating SRI since 2000 and promoting it since 2002.
  20. Provided by Max Whitten, former head of plant pathology for ACIAR in Australia, who is working with Farmer Field Schools in many Southeast Asian countries, including demonstrations of SRI.
  21. Picture provided by Gamini Batuwitage, at the time Sr. Asst. Secretary of Agriculture, Sri Lanka, of SRI field that yielded 13 t/ha in 2000, the first year SRI was used in that country. Such performance got SRI started there.
  22. Chaboussou’s book was only recently translated, after being largely neglected for almost 20 years. It could be one of the most significant books in agricultural science for the past 50 years. It is based on published literature (in mainstream, peer-reviewed journals) since 1930.
  23. This is explained in the book by Chaboussou for which reference is given above.
  24. This is explained in the book referenced above.
  25. These at not always stated but we try to communicate these principles and give this advice wherever possible. The persons working on SRI dissemination are agreed on this approach, which is consistent with what Fr. de Laulani é wanted from farmers and for farmers. See his book, Le Riz à Madagascar: Un dèveloppement en dialogue avec les paysans . Editions Karthala, Paris, 2003.
  26. These benefits are emerging as we reflect on the participatory development and diffusion of SRI.
  27. Premaratna was the first farmer in Sri Lanka to use SRI methods, having read about them in the ILEIA newsletter. His first yields were 10 and 15 t/ha, on soil that was already being used for ‘organic farming’ the past five years. He became a champion for SRI on a national scale, and has been hired by the Australian affiliate of Oxfam (CAA) to take SRI methods into east coast areas still under LTTE (Tamil Tiger) control. Already by 2002, he had trained at least 4,000 farmers in SRI methods, having built a small, simple ‘schoolhouse’ on the edge of his fields where lectures could be given in a rural setting on how to practice SRI.
  28. This design by Premaratna is very popular with many farmers, as it speeds up their weeding operations, saving much time as there are no spokes to get clogged with weeds.
  29. This was built with a wooden axle, into which bent large nails were driven, with the axle mounted on a simple iron-rod frame. The ‘rake’ at the back was added to increase the soil aeration. Nong estimated that he got $20 more worth of rice yield from his small plot with this soil-aerating weeder, for the cost of $3 in materials and about 75 cents worth of labor.
  30. Elske van de Fliert (FAO Vegetable IPM program in Vietnam) provided this picture and this information. She was impressed with their understanding of the need for and benefits from collective action in connection with SRI.
  31. Gopal Swaminathan was one of the first SRI farmers in the Cauvery delta. His Kadiramangalam system was devised for delta areas where sun and wind desiccate tiny seedlings; so he transplants 15-day seedlings in clumps of 5 plants, at 30x30 cm spacing, and then re-transplants them at 30 days, as single plants per hill at that spacing. The extra labor means that there is almost zero mortality, and yields of 7.5 t/ha are assuredly attained.
  32. This is Subasinghe Ariyaratna’s own design. He is a small rice farmer (2 ha) in Mahaweli System ‘H’ of Sri Lanka. He has also devised a method of crop establishment that is labor saving. Instead of transplanting young seedlings 10 days old, at a seed rate of 5 kg/ha, he germinates seed and broadcasts it on prepared muddy soil at a rate of 25 kg/ha. Then at 10 days, when the seedlings are established, he ‘weeds’ the field as recommended for SRI, with rows 25x25 cm, in both directions, removing (churning under) about 80% of the seedlings, leaving just 1 or maybe 2 or 3 plants at the intersections of his passes. This saves the labor of making and managing a nursery and of transplanting, at a cost of 20 kg of seed/ha. He says this can assure a yield of 7.5 t/ha. As his household labor supply is limited (he has two young children and his wife teaches), he needs to economize on labor.
  33. This was developed in 2003 by Mr. L. Reddy, to replace the use of strings and sticks to mark lines for planting, or the use of a wooden “rake” that could mark lines when pulled across the paddy in two directions. This implement, which can be built for any spacing desired, enables farmers, after it is pulled across the paddy in one direction, to plant SRI seedlings in a 25x250 cm square pattern. It saves as lot of labor time for transplanting because only one pass is needed across the field, and this is wider than a rake could be. Even wider ones have been built. Mr. Reddy is a very innovative and successful SRI farmer, with a superb yield last rabi season, measured and reported by the Department of Extension in Andhra Pradesh. This yield was the average for a 9-acre rice farm. In one plot, the yield measured by the Dept. staff was 20 t/ha; Reddy was disappointed that they would not report this separately. Instead, they just averaged this for the whole-farm statistic.
  34. This plot of Liu Zhibin’s was harvested just before my visit, with an official certificate for a yield of 13.4 t/ha. In 2001, when Liu first used SRI methods, on soil that has been kept well supplied with organic matter, he got a yield of 16 t/ha which helped to persuade Prof. Yuan Long-ping, ‘the father of hybrid rice’ in China, to become more interested in SRI. Liu is manager for the seed farm that produces hybrid seed for Prof. Yuan’s operations.
  35. Nie is the farmer-demonstrator for the village, a kind of ‘master farmer’ in US extension terminology. He showed us the five experimental plots that he had set up, on his own initiative, within the SRI system, to evaluate raised beds, no-till cultivation, and every wide spacing (50x50 cm). The next year, he experimented with direct-seeding and no-till SRI cultivation. His example persuaded 438 farmers in two neighboring villages to use SRI on 65 continguous hectares of paddy land in 2005.
  36. Results posted by Mr. Nie Fu Qiu, Bu Tou village, on his field, from trials with different combinations of land preparation (till/no-till) and crop establishment (by machine and by hand). He built his own direct-seeding machine, to plant single seeds at spacing of 30.3 x 23.5 cm in rectangular pattern. The no-till practice is expected to give higher yields in subsequent seasons as soil organic matter is built up. Both no-till and direct-seeding by machine reduce labor time and costs.
  37. Built by Luis Romero, one of the most successful SRI farmers in Cuba, to plant germinated seeds at 40x40 cm spacing. The seeds are put in the respective bins and dropped at the bins rotate. For his field, Luis found that 40x40 cm was too wide, because of weed problems. He has built one for 30x30 cm now. His neighbor built a seeder with 12 bins, four times as wide, that can be pulled by oxen to further save labor. The important thing to know is that farmers are working on their own ways to reduce SRI labor requirements because they see the benefits of wide spacing, aerated soil, etc.
  38. This is a picture sent by Thadeusz Niesiobedzki in Poland, of his winter wheat crop that is being grown with single seedlings, wide spacing, use of organic matter, etc. approximating SRI. He hit upon these practices by accident (a long story) and also discovered the SRI internet web page, and saw the similarities between his practices and SRI, thereafter contacting Cornell by email to open up dialogue.
  39. The Guli Vidhana methodology, being promoted by the Green Foundation, Bangalore, was developed by farmers for rainfed conditions. They plow furrows across the field in a grid pattern, 18 x 18 inches (45x45 cm) and then a handful of cow dung or compost is put at all the intersections of the furrows, and two seedlings are planted at each intersection. When the seedlings are 25 days old, still supple, a long board is pulled across the field in several directions by oxen, bending the plants over, right at ground level, in many directions. This shock to the plant in its meristematic region triggers the production of many adventitious roots that grow into the ground in different directions and also profuse tillering, 25-30 tillers per plant, with the heads of millet also being numerous and compact (‘fisty’). A very large increase in yield, shown in the slide from an extension poster produced by the Green Foundation, results.
  40. These pictures of finger millet roots, all at 60 days of age, with different dates (ages) of transplanting, confirm the observations with SRI that using younger seedlings for transplanting will result in more vigorous root (and shoot) growth. Pictures from staff of the Acharya N. G. Ranga Agricultural University in Hyderabad, India, the state agricultural university for Andhra Pradesh.
  41. This method has been developed by Prabhakar Reddy, one of the first SRI farmers in Andhra Pradesh state, and is being monitored and documented by Dr. Shashi Bhushan, ANGRAU faculty member. Reddy was explicitly adapting his SRI experience to sugar cane production, with similarly large increases in production from reduced planting material.
  42. Chickens reared on compost heaps can feed on worms and insects in the compost, giving them a more protein-rich diet. They enhance the nutrient value of the compost by adding chicken manure directly to it. Chickens can be kept well-watered and healthier during the hot, dry summer season, when free-ranging chickens suffer from thirst. They are safe from predators and from thieves when reared this way. Farmers suggested a connection between these practices and what they had learned from the practice of SRI.
  43. From report by Rajendra Uprety, District Agricultural Development Office, Biratnagar, Nepal – for Morang District. Available from SRI home page on the web.
  44. This was first reported in Sri Lanka in 2002, where rice millers in the Mahaweli system began coming to SRI fields and offering to buy the crop when harvested for 10% more per bushel. This indicated that they must be getting more than a 10% higher outturn of milled rice; otherwise they would be losing money, which is something millers seldom do purposefully.
  45. Prof. Ma Jun in his paper to the Haerbin conference included data on rice quality that he had collected. They showed SRI rice grains (from three different spacings within the SRI range) to be clearly superior in two major respects to conventionally-grown grains (two spacings). A reduction in chalkiness makes the rice more palatable. An increase in outturn is a ‘bonus’ on top of the higher yields of paddy (unmilled) rice that farmers get with SRI methods. We have seen this kind of improvement in outturn rates in Cuba, India and Sri Lanka, about 15%. More research on other aspects of SRI grain quality should be done, including nutritional content.
  46. SRI defies usual logic – that to get more, you have to invest more. But “less” can produce “more,” for a number of different, but reinforcing reasons, well grounded in the scientific literature. USDA research by Kumar and associates (Proceedings of the National Academy of Sciences, US, 2004) shows how changed growing conditions in the root zone affects the expression of genes in leaf tissue cells, affecting senescence and disease resistance. This research gives clues for explaining how SRI practices produce different phenotypes.
  47. These data were provided by, respectively, the China National Rice Research Institute, Hangzhou, Zhejiang Province, China; the Crop Research Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan Province, China; the Acharya N. G. Ranga Agricultural University (ANGRAU), Hyderabad, Andhra Pradesh State, India; and the Tamil Nadu Agricultural University (TNAU) College of Agriculture, Killikulam, Tamil Nadu State, India. The data from the on-going evaluation of SRI by these institutions.
  48. Tefy Saina is more comfortable communicating in French language, though it can handle English. CIIFAD has worldwide contacts on SRI through the internet.