SlideShare a Scribd company logo
1 of 29
Download to read offline
Convex Hull Approximation of
Nearly Optimal Lasso Solutions
1
Satoshi Hara Takanori Maehara
PRICAI’19
Background Lasso and Enumeration
n Lasso Typical approach for feature selection
min
$
1
2
'( − * + + - ( . =: 1 ( , ', * ∈ ℝ5 ×7×ℝ5
n Enumeration for feature selection [Hara & Maehara, AAAI’17]
• Helpful for gaining more insights of data.
2
Ordinary Lasso
• One global optimum, i.e.,
one feature set, is obtained.
Enumeration of Lasso
• Several possible solutions, i.e.,
multiple feature sets, are obtained.
I found one feature set that is
helpful for predicting energy
consumption.
Found:
{Wall Area, Glazing Area}
I found several feature sets
that are helpful for predicting
energy consumption.
Found:
{Wall Area, Glazing Area},
{Wall Area, Overall Height},
{Roof Area, Glazing Area}, …
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
3
Selected words
in Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
4
Selected words
in Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Model7
Remove motherboard
cable
adb
drivers
Model8
Remove motherboard
cable
adb
drivers
Model9
Remove motherboard
cable
adb
drivers
Model4
Remove motherboard
cable
adb
drivers
Model5
Remove motherboard
cable
adb
drivers
Model6
Remove motherboard
cable
adb
drivers
Model1
Remove motherboard
cable
adb
drivers
Model2
Remove motherboard
cable
adb
drivers
Model3
Remove motherboard
cable
adb
drivers
Enumerated Models
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
5
Selected
words in
Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Model7
Remove motherboard
cable
adb
drivers
Model8
Remove motherboard
cable
adb
drivers
Model9
Remove motherboard
cable
adb
drivers
Model4
Remove motherboard
cable
adb
drivers
Model5
Remove motherboard
cable
adb
drivers
Model6
Remove motherboard
cable
adb
drivers
Model1
Remove motherboard
cable
adb
drivers
Model2
Remove motherboard
cable
adb
drivers
Model3
Remove motherboard
cable
adb
drivers
Enumerated Models
Drawback of Enumeration
Enumerated models can be just a combination
of a few representative patterns.
Exponentially many combinations of similar models can be found.
These similar models are not helpful for gaining insights.
Goal of This Study
n Goal
Find small numbers of diverse models.
large numbers similar
n Overview of the Proposed Approach
• Define a set of good models.
! " ≔ $: & $ ≤ "
• Find vertices of ! " .
Vertices = sparse models
Vertices are distinct -> diversity
6
! !Enumeration
" "
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
7
Properties of ! "
n ! " ≔ $: & $ ≔
'
(
)$ − + (
+ - $ ' ≤ "
• A set of models with sufficiently small Lasso objectives.
1. ! " consists of smooth boundaries
and non-smooth vertices.
• Smooth boundaries = dense models
• Non-smooth vertices = sparse models
2. A convex hull of the set of vertices /
can approximate ! " well.
• conv / ≈ ! "
8
Problem Approximation of ! "
n Our Approach
Approximate !(") by a set of % points & = () )*+
,
.
n To attain good approximation,
the vertices - of !(") should
be selected as &.
9
Problem Approximation of ! "
n Our Approach
Approximate !(") by a set of % points & = () )*+
,
.
n Question How to measure the approximation quality?
10
!(")
How similar
they are?
We use Hausdorff distance.
& = () )*+
,
Problem Approximation of ! "
n Def. Hausdorff distance between the two sets.
• Maximum margin in the non-overlapping region.
#$ %, %′ ≔ max sup
/∈1
inf
/5∈15
6 − 68 , sup
/8∈18
inf
/∈1
6 − 68
n We measure the approximation quality by using #$.
Problem Minimization of Hausdorff distance
min
9
#$ conv = , !(") , s. t. = ≤ C
11
%
%′
!(")
conv =Measure #$ = = EF FGH
I
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
12
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
n Step2 Greedily select # points to minimize $%.
13
Step1 Sampling Step2 Greedy Selection
Step1 Sampling
n Note Want to sample vertices as much as possible.
n Proposed Sampling Method
• Take a random direction.
• Find an “edge” of ! " at that direction.
14
This method can sample
vertices with high probabilities.
Step1 Sampling
n Finding an “edge”
max$ %&', s. t. ' ∈ -(/) (%: random direction)
n Finding an “edge” by binary search
• Dual Problem
min
345
max
$
%&' − 7(8 ' − /)
• Find ' that satisfies 8 ' = /
by finding optimal 7 by using
binary search.
15
solvable with Lasso solvers
large 7
small 7
optimal 7
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
n Step2 Greedily select # points to minimize $%.
16
Step1 Sampling Step2 Greedy Selection
Step2 Greedy Selection
n Original Problem
min
$
%& conv * , ,(.) , s. t. * ≤ 4
n Approximate , . with the sampled points 5.
• , . ≈ conv 5
min
$⊆8
%& conv * , conv 5 , s. t. * ≤ 4
• Remark
%& conv * , conv 5 = max
<∈8
min
<>∈?@AB $
C − C′
17
,(.)
conv(5)
conv *Measure %&
≈
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
18
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
19
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
20
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
21
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n Details of computing !" ∈ max
'∈(
min
'+∈,-./ 0 1
" − "′
n 1. Computing min Quadratic Programming (QP)
• min
'+∈,-./ 0 1
" − "′
⇔ min
5
" − 6
7
8797 , s. t. 8 ≥ 0, 6
7
87 = 1
n 2. Computing max Lazy Update
• A naïve implementation requires searching over all " ∈ B.
• By using a monotonicity of the Hausdorff distance, we
can skip redundant computations and accelerate the
search.
22
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
• Sampling random directions + Lasso + Binary Search
n Step2 Greedily select # points to minimize $%.
• Greedy selection
23
Step1 Sampling Step2 Greedy Selection
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
24
Synthetic Experiment Visualization of ! " and #
n Synthetic Problems
• 2D ver. $ =
1 1
1 1 + 1/40
, , =
1
1
• 3D ver. $ =
1 1 1
1 1 + 1/40 1
1 1 1 + 2/40
, , =
1
1
1
n Results
25
2D ver. 3D ver. Hausdorff dist.
2D ver.
3D ver.
Synthetic Experiment High-dimensional Data
n Synthetic data
• ! = #$% + '
• % ∼ ) 0, , , ,-. = exp −0.1|6 − 7|
• dimensionality of % = 100
n Result
• Huadorff dist. decreases
as 8 increases.
• Huadorff dist. decreases
as the sampling size 9 increases.
The effect is marginal, though.
In practice, 9 ≈ 1,000 would suffice.
26
Real-Data Experiment Diversity verification
n Data: 20Newsgroups
• Classification of news articles into two categories.
(ibm or mac)
• Feature selection = Identification of important words.
! ∈ ℝ$$%&': tf-idf weighted bag-of-words
( ∈ {0, 1}: categories of articles
# of data: 1168
n Model
• Linear logistic regression + ℓ$
n Baseline Methods [Hara & Maehara, AAAI’17]
• Enumeration Exact enumeration of top-K models
• Heuristic Skip similar models while enumeration.
27
Real-Data Experiment Diversity verification
n Comparison of the found 500 models
n Visualization with PCA
• Projected found models with PCA.
• The proposed method attained
the largest diversity.
28
Found Words
Enumeration 39
Heuristic 63
Proposed 889
apple macs macintosh
Enumeration ✘ ✘
Heuristic ✘
Proposed
Baseline methods found
combinations of a few
representative patterns only.
Baseline methods missed
some important words.
Summary
n Our Goal
• Find small numbers of diverse models for Lasso.
n Our Method
• Find “vertices” of a set of models ! " ≔ $: & $ ≤ "
• Problem: Hausdorff distance minimization.
• Method: Sampling + Greedy Selection
n Verified the effectiveness of the proposed method.
• The proposed method could
find points that can well approximate ! " .
obtain diverse models than the existing enumeration
methods.
29
GitHub: /sato9hara/LassoHull

More Related Content

What's hot

変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
Takao Yamanaka
 
勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは
Takuya Akiba
 
inversion counting
inversion countinginversion counting
inversion counting
tmaehara
 

What's hot (20)

技術者が知るべき Gröbner 基底
技術者が知るべき Gröbner 基底技術者が知るべき Gröbner 基底
技術者が知るべき Gröbner 基底
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
混合モデルとEMアルゴリズム(PRML第9章)
混合モデルとEMアルゴリズム(PRML第9章)混合モデルとEMアルゴリズム(PRML第9章)
混合モデルとEMアルゴリズム(PRML第9章)
 
勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは
 
PRML輪読#6
PRML輪読#6PRML輪読#6
PRML輪読#6
 
PRML輪読#9
PRML輪読#9PRML輪読#9
PRML輪読#9
 
蟻本輪講 データ構造
蟻本輪講 データ構造蟻本輪講 データ構造
蟻本輪講 データ構造
 
PRML 1.5-1.5.5 決定理論
PRML 1.5-1.5.5 決定理論PRML 1.5-1.5.5 決定理論
PRML 1.5-1.5.5 決定理論
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
lsh
lshlsh
lsh
 
辺彩色
辺彩色辺彩色
辺彩色
 
inversion counting
inversion countinginversion counting
inversion counting
 
直交領域探索
直交領域探索直交領域探索
直交領域探索
 
双対性
双対性双対性
双対性
 
全域木いろいろ
全域木いろいろ全域木いろいろ
全域木いろいろ
 
詳説word2vec
詳説word2vec詳説word2vec
詳説word2vec
 
Union find(素集合データ構造)
Union find(素集合データ構造)Union find(素集合データ構造)
Union find(素集合データ構造)
 
Binary indexed tree
Binary indexed treeBinary indexed tree
Binary indexed tree
 
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis
 
異常検知と変化検知 9章 部分空間法による変化点検知
異常検知と変化検知 9章 部分空間法による変化点検知異常検知と変化検知 9章 部分空間法による変化点検知
異常検知と変化検知 9章 部分空間法による変化点検知
 

Similar to Convex Hull Approximation of Nearly Optimal Lasso Solutions

Similar to Convex Hull Approximation of Nearly Optimal Lasso Solutions (20)

Lecture1
Lecture1Lecture1
Lecture1
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
 
cutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdfcutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdf
 
Greedy algorithm
Greedy algorithmGreedy algorithm
Greedy algorithm
 
Mit6 094 iap10_lec03
Mit6 094 iap10_lec03Mit6 094 iap10_lec03
Mit6 094 iap10_lec03
 
Paris Data Geeks
Paris Data GeeksParis Data Geeks
Paris Data Geeks
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data SetsMethods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
 
Real-Time Big Data Stream Analytics
Real-Time Big Data Stream AnalyticsReal-Time Big Data Stream Analytics
Real-Time Big Data Stream Analytics
 
Counting trees.pptx
Counting trees.pptxCounting trees.pptx
Counting trees.pptx
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
 
Recursion
RecursionRecursion
Recursion
 
5163147.ppt
5163147.ppt5163147.ppt
5163147.ppt
 
Unit 5
Unit 5Unit 5
Unit 5
 
Unit 5
Unit 5Unit 5
Unit 5
 
Derivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust OptimizationDerivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust Optimization
 
Decision Tree.pptx
Decision Tree.pptxDecision Tree.pptx
Decision Tree.pptx
 
Introduction to Big Data Science
Introduction to Big Data ScienceIntroduction to Big Data Science
Introduction to Big Data Science
 
DAA Notes.pdf
DAA Notes.pdfDAA Notes.pdf
DAA Notes.pdf
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
 

More from Satoshi Hara

More from Satoshi Hara (13)

Explanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its ReliabilityExplanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its Reliability
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
 
機械学習で嘘をつく話
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
異常の定義と推定
異常の定義と推定異常の定義と推定
異常の定義と推定
 
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
Maximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as ExplanationMaximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as Explanation
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
 
機械学習モデルの列挙
機械学習モデルの列挙機械学習モデルの列挙
機械学習モデルの列挙
 
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
 
特徴選択のためのLasso解列挙
特徴選択のためのLasso解列挙特徴選択のためのLasso解列挙
特徴選択のためのLasso解列挙
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 

Convex Hull Approximation of Nearly Optimal Lasso Solutions

  • 1. Convex Hull Approximation of Nearly Optimal Lasso Solutions 1 Satoshi Hara Takanori Maehara PRICAI’19
  • 2. Background Lasso and Enumeration n Lasso Typical approach for feature selection min $ 1 2 '( − * + + - ( . =: 1 ( , ', * ∈ ℝ5 ×7×ℝ5 n Enumeration for feature selection [Hara & Maehara, AAAI’17] • Helpful for gaining more insights of data. 2 Ordinary Lasso • One global optimum, i.e., one feature set, is obtained. Enumeration of Lasso • Several possible solutions, i.e., multiple feature sets, are obtained. I found one feature set that is helpful for predicting energy consumption. Found: {Wall Area, Glazing Area} I found several feature sets that are helpful for predicting energy consumption. Found: {Wall Area, Glazing Area}, {Wall Area, Overall Height}, {Roof Area, Glazing Area}, …
  • 3. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 3 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows
  • 4. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 4 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows Model7 Remove motherboard cable adb drivers Model8 Remove motherboard cable adb drivers Model9 Remove motherboard cable adb drivers Model4 Remove motherboard cable adb drivers Model5 Remove motherboard cable adb drivers Model6 Remove motherboard cable adb drivers Model1 Remove motherboard cable adb drivers Model2 Remove motherboard cable adb drivers Model3 Remove motherboard cable adb drivers Enumerated Models
  • 5. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 5 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows Model7 Remove motherboard cable adb drivers Model8 Remove motherboard cable adb drivers Model9 Remove motherboard cable adb drivers Model4 Remove motherboard cable adb drivers Model5 Remove motherboard cable adb drivers Model6 Remove motherboard cable adb drivers Model1 Remove motherboard cable adb drivers Model2 Remove motherboard cable adb drivers Model3 Remove motherboard cable adb drivers Enumerated Models Drawback of Enumeration Enumerated models can be just a combination of a few representative patterns. Exponentially many combinations of similar models can be found. These similar models are not helpful for gaining insights.
  • 6. Goal of This Study n Goal Find small numbers of diverse models. large numbers similar n Overview of the Proposed Approach • Define a set of good models. ! " ≔ $: & $ ≤ " • Find vertices of ! " . Vertices = sparse models Vertices are distinct -> diversity 6 ! !Enumeration " "
  • 7. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 7
  • 8. Properties of ! " n ! " ≔ $: & $ ≔ ' ( )$ − + ( + - $ ' ≤ " • A set of models with sufficiently small Lasso objectives. 1. ! " consists of smooth boundaries and non-smooth vertices. • Smooth boundaries = dense models • Non-smooth vertices = sparse models 2. A convex hull of the set of vertices / can approximate ! " well. • conv / ≈ ! " 8
  • 9. Problem Approximation of ! " n Our Approach Approximate !(") by a set of % points & = () )*+ , . n To attain good approximation, the vertices - of !(") should be selected as &. 9
  • 10. Problem Approximation of ! " n Our Approach Approximate !(") by a set of % points & = () )*+ , . n Question How to measure the approximation quality? 10 !(") How similar they are? We use Hausdorff distance. & = () )*+ ,
  • 11. Problem Approximation of ! " n Def. Hausdorff distance between the two sets. • Maximum margin in the non-overlapping region. #$ %, %′ ≔ max sup /∈1 inf /5∈15 6 − 68 , sup /8∈18 inf /∈1 6 − 68 n We measure the approximation quality by using #$. Problem Minimization of Hausdorff distance min 9 #$ conv = , !(") , s. t. = ≤ C 11 % %′ !(") conv =Measure #$ = = EF FGH I
  • 12. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 12
  • 13. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " n Step2 Greedily select # points to minimize $%. 13 Step1 Sampling Step2 Greedy Selection
  • 14. Step1 Sampling n Note Want to sample vertices as much as possible. n Proposed Sampling Method • Take a random direction. • Find an “edge” of ! " at that direction. 14 This method can sample vertices with high probabilities.
  • 15. Step1 Sampling n Finding an “edge” max$ %&', s. t. ' ∈ -(/) (%: random direction) n Finding an “edge” by binary search • Dual Problem min 345 max $ %&' − 7(8 ' − /) • Find ' that satisfies 8 ' = / by finding optimal 7 by using binary search. 15 solvable with Lasso solvers large 7 small 7 optimal 7
  • 16. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " n Step2 Greedily select # points to minimize $%. 16 Step1 Sampling Step2 Greedy Selection
  • 17. Step2 Greedy Selection n Original Problem min $ %& conv * , ,(.) , s. t. * ≤ 4 n Approximate , . with the sampled points 5. • , . ≈ conv 5 min $⊆8 %& conv * , conv 5 , s. t. * ≤ 4 • Remark %& conv * , conv 5 = max <∈8 min <>∈?@AB $ C − C′ 17 ,(.) conv(5) conv *Measure %& ≈
  • 18. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 18 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 19. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 19 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 20. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 20 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 21. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 21 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 22. Step2 Greedy Selection n Details of computing !" ∈ max '∈( min '+∈,-./ 0 1 " − "′ n 1. Computing min Quadratic Programming (QP) • min '+∈,-./ 0 1 " − "′ ⇔ min 5 " − 6 7 8797 , s. t. 8 ≥ 0, 6 7 87 = 1 n 2. Computing max Lazy Update • A naïve implementation requires searching over all " ∈ B. • By using a monotonicity of the Hausdorff distance, we can skip redundant computations and accelerate the search. 22
  • 23. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " • Sampling random directions + Lasso + Binary Search n Step2 Greedily select # points to minimize $%. • Greedy selection 23 Step1 Sampling Step2 Greedy Selection
  • 24. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 24
  • 25. Synthetic Experiment Visualization of ! " and # n Synthetic Problems • 2D ver. $ = 1 1 1 1 + 1/40 , , = 1 1 • 3D ver. $ = 1 1 1 1 1 + 1/40 1 1 1 1 + 2/40 , , = 1 1 1 n Results 25 2D ver. 3D ver. Hausdorff dist. 2D ver. 3D ver.
  • 26. Synthetic Experiment High-dimensional Data n Synthetic data • ! = #$% + ' • % ∼ ) 0, , , ,-. = exp −0.1|6 − 7| • dimensionality of % = 100 n Result • Huadorff dist. decreases as 8 increases. • Huadorff dist. decreases as the sampling size 9 increases. The effect is marginal, though. In practice, 9 ≈ 1,000 would suffice. 26
  • 27. Real-Data Experiment Diversity verification n Data: 20Newsgroups • Classification of news articles into two categories. (ibm or mac) • Feature selection = Identification of important words. ! ∈ ℝ$$%&': tf-idf weighted bag-of-words ( ∈ {0, 1}: categories of articles # of data: 1168 n Model • Linear logistic regression + ℓ$ n Baseline Methods [Hara & Maehara, AAAI’17] • Enumeration Exact enumeration of top-K models • Heuristic Skip similar models while enumeration. 27
  • 28. Real-Data Experiment Diversity verification n Comparison of the found 500 models n Visualization with PCA • Projected found models with PCA. • The proposed method attained the largest diversity. 28 Found Words Enumeration 39 Heuristic 63 Proposed 889 apple macs macintosh Enumeration ✘ ✘ Heuristic ✘ Proposed Baseline methods found combinations of a few representative patterns only. Baseline methods missed some important words.
  • 29. Summary n Our Goal • Find small numbers of diverse models for Lasso. n Our Method • Find “vertices” of a set of models ! " ≔ $: & $ ≤ " • Problem: Hausdorff distance minimization. • Method: Sampling + Greedy Selection n Verified the effectiveness of the proposed method. • The proposed method could find points that can well approximate ! " . obtain diverse models than the existing enumeration methods. 29 GitHub: /sato9hara/LassoHull