SlideShare a Scribd company logo
1 of 79
GENERAL CHARACTERS
• Most common heavy metals
toxicity: lead (Pb), mercury (Hg),
cadmium (Cd) and arsenic (As)
• They are mainly produced by
industrial activities, and deposit
slowly in the surrounding water
and soil
• Toxicity may occur through ingestion,
inhalation or dermal exposure
• Toxicity is either acute or chronic
• Metallic taste if ingested except arsenic
which is tasteless
• Can cause both local & systemic effects
• Most metals cause diarrhea except lead
which causes constipation
• The antidotes are called chelators
• The most common metallic poison.
• Occurs in organic and inorganic forms.
• Absorption of ingested lead in children is
much more than in adults (50% children&
10% in adults).
• Probably the most important chronic
environmental illness affecting children.
• In children, probably no organ system is
immune to the effects of lead poisoning.
• Developing brain is the most risky organ to be affected.
1- Occupational: More than 900 occupations. Parents
may bring lead dust.
2- Some cosmetics and folk remedies.
3- Water & Food contamination: lead pipes or storage
tanks, and eating contaminated food.
4- Foreign body ingestion: several reports have
documented cases of childhood lead poisoning
resulting from the ingestion of lead-based foreign
bodies.
5- Retained bullet
6- Illegally manufactured alcohols
7- Inhalation of lead from motor vehicle
NEWS headlines!
Lead laced
Marijuana
producing
sociopaths?
Leaded
turmericLeaded
kohl
eye
make-up
LEAD AS A COLORANT OR TO ADD
WEIGHT TO FOOD
• Lead has a high affinity for SH groups. It is therefore particularly
toxic to multiple enzyme systems.
• Many of lead’s toxic effects also result from its inhibition of
cellular function requiring calcium.
• Lead binds to calcium-activated proteins 105 times than Ca2+
• Pb2+ and Ca2+ compete at the plasma membrane for transport
systems, which affect their entry or exit (ie, Ca2+ channels and
the Ca2+ pump.)
• Intracellular Ca2+ is buffered by proteins, endoplasmic
reticulum, and mitochondria; Pb2+ disturbs this intracellular
Ca2+ homeostasis.
• Pb2+ interacts with a number of Ca2+-dependent effector
mechanisms, such as calmodulin (Ca2+ binding protein,
which couples to several enzymes, eg, phosphodiesterase,
protein kinases).
A-HEMATOLOGICAL EFFECTS
Lead-induced anemia:
• Hypochromic Microcytic
• More in children
Mechanisms:
•Inhibition of heme synthesis:
•a) Inhibits conversion of DALA to porphobilinogen.
•b) Inhibits conversion of coproporphyrinogen III to
protoporphyrin.
•c) Blocks incorporation of iron into protoporphyrin to
form heme. Protoporphyrin accumulates in RBCs and
chelate zinc. EP reflects chronic lead exposure.
ENZYMES INVOLVED IN THE INHIBITION OF HEME SYNTHESIS
• Increase of RBC fragility
• Erythropoietin deficiency: from the toxic
effects of lead on renal tubules.
• Inhibition of 5-pyrimidine nucleotidase:
aggregation of ribosomes, appearing as
basophilic stippling of RBCs (not specific to
lead toxicity).
Basophilic
Stippling
Inhibition of 5-
pyrimidine
nucleotidase:
aggregation of
ribosomes,
appearing as
basophilic
stippling of RBCs
(not specific to
lead toxicity)
• Acute toxicity may cause renal colic.
• Acute toxicity may cause direct tubular
damage (Fanconi-like syndrome)
• Chronic toxicity may cause chronic
interstitial nephritis.
• Alters rennin-angiotensin system and
may cause hypertension.
• Alters uric acid excretion resulting in
hyperuricemia and gout
• Direct effect on CNS causing lead
encephalopathy especially in children.
• Delayed or reversed development,
permanent learning disabilities.
• Children below 3 Y are at the greatest
risk (brains are rapidly developing).
• DALA is thought to be neurotoxic by
interfering with GABA.
• Chronic lead exposure affects peripheral
nerves mainly the motor (radial nerve)
D- Reproductive System Effects
• Abortion, stillbirth, neurodevelopmental problems.
• May cause decreased sperm count, and increased
number of abnormal sperms.
E- Bone Effects
• Triggers hypermineralization (reflected in
metaphyseal & growth plate densities (lead lines).
• They reflect bone growth arrest and not deposition.
Their width is related to the duration of exposure.
• Lead inhibits the conversion of vitamin D into its
active form.
FEATURES
ACUTE TOXICITY
• More commonly on top of chronic
exposure.
1- GIT: anorexia, abdominal pain,
constipation, vomiting.
2- CNS: encephalopathy, behavioral
changes, lethargy, fatigue, seizures &
coma.
CHRONIC TOXICITY (PLUMBISM)
• Nonspecific: vague body aches, anorexia, constipation
and abdominal colic.
• Blue lines on the gums and around anal marginsdue to
bacterial action precipitating lead sulfide.
• Neuropathy: wrist drop and foot drop. Optic
neuropathy may occur.
• CNS: cognitive disturbances, headache and
encephalopathy
• Anemia, reticulocytosis and hemolysis.
• Renal impairment.
• Bony aches and gouty arthritis.
• Myocarditis
GINGIVAL LEAD LINE
BONE LEAD LINE (BONE GROWTH ARREST)
WRIST DROP (RADIAL NERVE)
CARCINOGENICITY
2B. Agent is possibly carcinogenic
to humans
•Human epidemiology data weak
•Animal data positive
!!!!!!!!!!!!!!!!!!!!!NOTE!!!!!!!!!!!!!!!!!!
ABSENT
(NOAEL) NO OBSERVABLE ADVERSE EFFECT LEVEL
NOAEL: An exposure level at which there are no statistically or
biologically significant increases in the frequency or severity of
adverse effects between the exposed population and its control.
it is the highest tested dose or concentration of a substance at
which no such adverse effect is found in exposed test organisms
where higher doses or concentrations resulted in an adverse effect
NOAEL is absent in Lead toxicity
S1- Blood Lead level
• less than 5 µg/dL for children (before 2012 as 10 (µg/dl).
• less than 25 µg/dL for adults
• biological exposure index (a level that should not be exceeded) for
lead-exposed workers in the U.S. is 30 µg/dL in a random blood
specimen.
2- Blood zinc protoporphyrin (ZPP) (Free erythrocyte Protoporphyrin
FEP)
• The normal range for ZPP is 0-35
• Its gives clue about duration of toxicity
• can be used as screening test
3- Urine DALA
• 1 - 8 years: 2.3-6.2 mg/g creat
• 9 - 17 years : 1.5-5.3 mg/g creat
• ≥ 18 years:
• Females : <5.4 mg/g creat
• Males : <1.8 mg/g creat
BLLS IN DIFFERENT EUROPEAN
COUNTRIES (WHO)
All Australians should have BLL below
10 µg/dL
• “It was never intended that this goal of 10 µg/dL be interpreted as a
‘safe’ level of exposure or a ‘level of concern’”, rather, it is the level
at which sources of exposure to lead should be investigated.
•
RECOMMENDED BLOOD LEAD
LEVELS
• Update on BLLs in Children
• Reference BLLin children below 6 Ys is 5 µg/dL
• This new level is based on the U.S. population of
children ages 1-5 years who are in the highest 2.5%
of children when tested for lead in their blood.
• The new recommendation does not change the
guidance that chelation therapy be considered
when a child has a blood lead test result greater
than or equal to 45 µg/dL
CENTERS OF DISEASE
CONTROL & PREVENTION
(USA) 2012
2- A baseline hemogram
Typical pattern of iron-deficiency
anemia with hypochromia and
microcytosis.
3- A chemistry profile including:
RFT, LFT & uric acid.
• Adults may have elevated uric avid
level
because of the disturbance of
enzymatic amino hydrolases
TREATMENT
Dimercaprol (BAL)
Removes intracellular & extracellular lead.
It is a lipid-soluble drug and must be administered
IM only as IV may cause fat embolism.
It is the first chelator used in encephalopathic
individuals. Rapidly crosses the BBB.
Calcium disodium edentate (Ca Na2
EDTA)
Allows extracellular lead to be renally
eliminated.
Once started CaNa2EDTA should be given in full 5-day course.
The first dose begins removing lead from extracellular fluid in
bone, if not followed by next doses free lead neurotoxicity.
In cases of lead encephalopathy, BAL should be given first to
avoid redistribution of lead mobilized by CaNa2EDTA to CNS.
D-Penicillamine
• orally and has few adverse effects.
• Can chelate lead even in low blood levels.
• Effective in children with levels 20-40
µg/100ml.
Dimercaptosuccinic acid (Succimer or DMSA):
5- Dimerval (DMPS):
Has become antidote for most heavy metal intoxications. It is
available in the oral form and in a water-based parenteral form.
POSTMORTEM APPEARANCE
• Depends on whether
acute or chronic
poisoning according to
clinical manifestations
MERCUR
Y
TOXICIT
• The only metal that is liquid at room
temperature.
• Elemental symbol is Hg: Greek word
hydrargyrias “water silver.”
• Found in 3 forms but all are toxic:
1) Elemental (metallic) mercury (Hg0)
2) Organic
3) Inorganic
METHODS OF EXPOSURE
1- Elemental mercury:
barometers, batteries, dental amalgams,
electroplating, fingerprinting products, fluorescent
and mercury lamps, infrared detectors, jewelry
industry, manometers, neon lamps, paints,
photography, silver and gold production,
thermometers.
2- Organic mercury:
antiseptics, bactericidals, fungicides,
insecticidal products, laundry products,
diaper products, paper manufacturing, seed
preservation, and wood preservatives.
3- Inorganic mercury:
Cosmetics, disinfectants, explosives, ink
manufacturing, mirror silvering, perfume
industry, photography, spermicidal jellies,
tattooing inks, and wood preservation.
4-Thimerosal:
Vaccine preservative to prevent bacterial
contamination. Most commonly vaccines
that contain Thimerosal are DTP,
Haemophilus influenzae, and hepatitis B.
ELEMENTAL MERCURY
 Toxicity by inhalation exposure
 Poorly absorbed from GIT (eg, thermometers) .
 Once inhaled, it is mostly converted to inorganic Hg (limited permeability to BBB).
 Acute toxicity might result in:
• Fever, fatigue, and clinical signs of pneumonitis.
 Chronic exposure results in
• neurologic, dermatologic, and renal manifestations.
• Signs and symptoms might include:
• neuropsychiatric disturbances (e.g., memory loss, irritability, or depression)
• Tremor
• Paresthesias
• Gingivostomatitis
• flushing, discoloration and desquamation of the hands and feet
• hypertension
ELEMENTAL MERCURY
In January 2008, Norway and Sweden totally
banned mercury fillings. In April 2008,
Denmark banned mercury fillings Ingested Elemental Hg
ORGANIC MERCURY
• Ingestion is the main route of ingestion
• Largest outbreaks are related to organic mercury (fungicide, seed
dressing, contaminated fish)
• Marine animals convert elemental to organic mercury in their
tissues
• Minamata (1940) Japan
• Iraq (1974)
• Toxicity is mainly neurologic
• Visual field defects
• Hearing loss
• Tremor
• Dysarthria
• Mental deteriration
ORGANIC MERCURY
Minamata Disease (1940) Iraq Grain Disaster (1971)
INORGANIC MERCURY
• Main absorption by ingestion and skin
• Can be corrosive to mucosal membranes
• Poor lipid solubility:
• causes a non-uniform distribution with
kidney accumulation, causing renal
damage.
• Limit CNS penetration, but chronic
exposure allow for CNS accumulation &
toxicity.
AUTISM & THIMEROSAL
???????????????
??????????????
TOTAL AMOUNT OF MERCURY (ΜG) RECEIVED BY LIBYAN CHILDREN
FROM VACCINES IN FIRST 2 YEARS OF LIFE ACCORDING TO OLD AND
NEW IMMUNIZATION SCHEDULES (2007)
Vaccine LIBYA USA
Old
Schedule
New
Schedule
1999 2004
BCG
Polio
HB
DTP
Hib
MMR
0
0
0
37.5
---
0
0
0
0
37.5
75 ?
0
100
37.5
100
<1.2
< 1.5
0
Total 37.5 µg 112.5 µg ? 237.5 µg < 2.7 µg
• Mercury reacts with sulfhydryl (SH) groups,
resulting in enzyme inhibition and pathologic
alteration of cellular membranes.
• Elemental and methylmercury are particularly
toxic to the CNS. Metallic mercury vapor is
also a pulmonary irritant.
• Methylmercury is teratogenic.
• Inorganic mercuric salts are corrosive to the
skin, eyes, and gastrointestinal tract, and are
nephrotoxic.
• An immune mechanism is attributed to
membranous glomerulonephritis and acrodynia.
CLINICAL FEATURES
1- Acute inhalation elemental
mercury:
• Dyspnea and pleuritic chest pain.
• Lethargy, confusion.
• Fatal ARDS has been reported
following elemental mercury
inhalation.
2- Acute ingestion of inorganic mercury &
mercuric salts:
Its corrosive properties account for
most of the acute signs and
symptoms.
The presentation can include
a) Gray mucous membranes.
b) Vomiting, severe abdominal pain,
hematemesis, and hypovolemic shock.
c) Systemic effects usually begin several
hours postingestion and may last
several days
3- Acute ingestion of organic mercury
(Methyl mercury):
• Contaminated food.
• Organic mercury targets specific sites in the brain,
including the cerebral cortex (especially visual
cortex), motor and sensory centers , auditory
center, and cerebellum.
• Onset of symptoms usually is delayed
(days-weeks). Depletion of enzymes must
occur before the onset of symptoms.
• Symptoms are typically neurological:
• visual (eg, scotomata), ataxia, paresthesias, hearing loss,
dysarthria, mental deterioration, muscle tremor, movement
disorders.
4- Chronic toxicity
Triad: Tremors, Gingivitis,
Erethism
GIT: metallic taste, gingivostomatitis, hypersalivation.
• Neurologic: Neurasthenia & Erethism.
• Neurasthenia: impaired interpersonal
relations, fatigue, depression,
hypersensitivity to stimuli, loss of
concentration.
• Erethism: insomnia, shyness, memory
loss, emotional instability,
depression, anorexia, vasomotor
disturbance, uncontrolled
perspiration.
Acrodynia (Pink disease):
• considered to be a mercury allergy
• erythema of the palms and soles
• edema of the hands and feet
• desquamating rash
• hair loss
• Pruritis
• Diaphoresis
• tachycardia, hypertension,
• Photophobia
• irritability
• anorexia
• Insomnia
• poor muscle tone
• constipation or diarrhea
MERCURY WAS ADDITIVE FOR
TEETHING POWDER UNTIL 1950
• All forms are toxic to the
fetus, but methylmercury
most readily passes through
the placenta.
• Even with an asymptomatic
patient, maternal exposure
can lead to spontaneous
abortion or retardation.
Country No. of Subjects Mean level µg/L Level range µg/L References
Belgium 474 15 1.1-103 Lauwerys et al.
(1978)
Italy 80 20 0-46 Pallotti et al. (1979)
Japan 11 6.6 2 – 16.4 Suzuki et al. (1984 b)
Norway 103 11.3 0.6 – 24 Lie et al. (1982)
Poland 270 11.3 2.5-24 Szucki & Kurys
(1982)
USA 25
1709
3.4
1.02
0.82
0-7
0,85-1.2
Kuhnert et al. (1981)
Schober et al. (2003)
Jones et al. (2010)
South Korea 293 8.63 1.48 – 45.71 Eun-mi Jo (2010)
Canada 492 16 0.8 – 112 * Dewailly E et al.
(2001)
Sweden 106 3.4 0.4 – 16 Johansson N et al.
(2002)
1- Blood levels less than 2 µg/L in unexposed
individual (exceptions individuals with a high dietary intake of fish).
2- Urine mercury levels less than 10-20 µg/L.
3- Hg can be found in hair because high SH group
• False-positive results secondary to environmental exposure.
• Do not use hair analysis solely to confirm mercury toxicity.
ABCs.
Removal of contaminated clothing and skin irrigation
Do not induce emesis if the compound ingested is caustic
inorganic form.
Gastric lavage is recommended for organic ingestion, especially if
the compound is observed on the abdominal x-ray series.
Whole bowel irrigation may be used until rectal effluent is clear
and void of any radiopaque material.
Use chelating agents if the patient is symptomatic or if increased
blood or urine levels.
1. Metallic (elemental) mercury: In acute or chronic
poisoning,
• Oral DMSA may enhance urinary Hg excretion.
• Penicillamine is an alternative oral treatment.
2. Inorganic mercury salts:
• BAL if begun within minutes to a few hours after
ingestion, may reduce severe renal injury.
• Oral DMSA is also effective.
3. Organic mercury:
• Oral DMSA may be effective in decreasing Hg in
tissues, including brain.
 BAL should not be used in metallic or organic mercury as
it redistribute mercury to the brain from other tissue sites.
 CaNa2EDTA is contraindicated. It makes with Hg a
nephrotoxic complex.
• Hemodialysis is used in severe
cases of toxicity when renal
function has declined.
• Neostigmine may help motor
function in methylmercury
toxicity. This toxicity often
leads to acetylcholine
deficiency.
POSTMORTEM APPEARANCE
• Grayish corrosion of GIT
• Ulceration of large intestine
• Congestion of kidneys
TOXICIT
Y
KING OF POISONS
&
POISON OF KINGS
60
• Homicidal agent
• Signs & symptoms mimic natural diseases
• Ease of administration; odorless, tasteless
• Foods: daily human intake of arsenic contained in
food 0.5-1 mg, with the greatest mainly from fish In
seafood, arsenic is mainly found in its less toxic
organic form..
• Water: A 2007 study found that over 137 million
people in more than 70 countries are probably
affected by arsenic poisoning from drinking water.
WHO recommends a limit of 0.01 mg/L of arsenic in drinking water
• Industry: herbicide, fungicide, wood preservative.
FORMS OF ARSENIC
• Arsenic exists in:
1- Inorganic (arsenite)
2- Organic (arsine)
3- Elemental form
PATHOPHYSIOLOGY
1. Arsenic distributes rapidly to erythrocytes and
binds to the globin portion of hemoglobin
2. Redistribution occurs within 24 hours to the
liver, spleen, kidney & GIT
3. Arsenic impairs cellular respiration by
inhibiting mitochondrial enzymes and oxidative
phosphorylation
4. Blocks pyruvate dehydrogenase in Kreb’s cycle
5. Over a period of weeks, deposits may be found
in skin, hair, nails, bone.
Arsenic produces cellular damage by:
• binding to enzyme SH groups.
• Massive fluid transudation into the bowel.
• Arsenic blocks the conversion of pyruvate to acetyl
coenzyme A and inhibits gluconeogenesis.
• Long-term exposure results in nerve damage
and may lead to lung, skin, or liver cancer.
• Once inhaled, arsine gas combines with
hemoglobin severe hemolysis and anemia.
Proposed MOA for arsenic and examples of biochemical effects that result from this action.
Hughes M F et al. Toxicol. Sci. 2011;123:305-332
Published by Oxford University Press on behalf of the Society of Toxicology 2011.
1. It is cheap
2. Easily obtained
3. Colorless
4. No smell
5. No taste
6. Small quantity is required to cause death.
7. Can be easily administered with food or drink.
8. Symptoms simulate those of Cholera.
Arsenic is a Homicidal poison
SIGNS AND SYMPTOMS
1.The Fulminant type
2.The Gastroenteric Type
THE FULMINANT TYPE
• Massive doses of arsenic when rapidly
absorbed cause death in one to three
hours from shock and peripheral
vascular failure.
• All the capillaries are markedly dilated,
especially in the splanchnic area with a
marked fall of blood pressure.
THE GASTROENTERIC TYPE
• This is the common form of acute poisoning and resembles
bacterial food poisoning.
• Symptoms usually appear half to one hour after ingestion,
but may be delayed many hours especially when arsenic is
taken with food.
• Burning and colicky pain in the esophagus, stomach and
bowel occur.
• Intense thirst and severe vomiting which may be projectile
are the common symptoms.
69
Telugu Doctors.co.in
SIGNS AND SYMPTOMS
• Acute severe arsenic poisoning
• Vital signs - Tachycardia and hypotension, even shock
• CNS - Altered mental status, delirium, coma, and seizures
(acute encephalopathy)
• Frequently, patients exposed to arsenic have a garlic smell
to their breath and tissue fluids.
70
Telugu Doctors.co.in
SIGNS AND SYMPTOMS
• Acute exposures generally manifest with the cholera-
like gastrointestinal symptoms of
• vomiting (often times bloody) and
• severe diarrhea (which may be rice-watery in
character and often bloody);
• these patients will experience acute distress,
dehydration (often), and hypovolemic shock.
SIGNS AND SYMPTOMS
• Arsine gas exposure
manifests with an acute
hemolytic anemia and striking
chills.
• Hemoglobinuria causes the
urine to appear black, and the
patient becomes rapidly
obtunded and shocky.
• Shaking chills are often
described in these patients.
Frequently, patients exposed to arsenic have a
garlic smell to their breath and tissue fluids.
CHRONIC TOXICITY
• Peripheral Neuropathy: it affects sensory part
more than the motor one, often present with the
complaint of painful paresthesias.
• Black Foot Disease: peripheral vascular disease
due to peripheral vascular obliteration appearing
with acrocyanosis, Raynaud’s phenomenon.
• Dermatologic Effects: alopecia, hypo- or
hyperpigmentation, palmoplantar keratosis.
• Mee’s lines: transverse white lines in the nails
appear several weeks after mercury exposure.
Chronic toxicity is more insidious and may manifest as a
classical dermatitis (hyperkeratosis with a classical "dew
drops on a dusty road" appearance) 75
Telugu Doctors.co.in
whitish lines (Mees lines) that look
much like traumatic injuries are found
on the fingernails.
Contact dermatitis may also be
induced in occupational arsenic
poisoning. Arsenic dust coming
into contact with the skin
produces four main types of
reactions:
1. Toxic
2. Eczematous
3. Combined toxic and
eczematous and
4. Reactions characterized by
follicular lesions.
76
Telugu Doctors.co.in
INVESTIGATIONS
• Blood and urine arsenic levels
• Normal blood arsenic level is < 7 µg/dl
• Ideal urine test is 24-hour urine collection
• Hair & Nails
• Arsenic is normally found in higher
concentrations in human hair and nails than
in other parts of the body. This has been
explained by the high content of keratin in
these tissues .
TREATMENT
• BAL (British Antilewisite)
•Lewisite is arsenic-
containing vesicant gas
• DMSA (Succimer)
POSTMORTEM APPEARANCE
1. Pigmentation of skin
2. Mees lines in finger nails
3. Garlic odor of gastric contents
4. Subendocardial hemorrhage
5. Fatty degeneration of liver

More Related Content

What's hot

Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticides Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticides Joy Jones
 
Mercury Poisoning
Mercury PoisoningMercury Poisoning
Mercury PoisoningEneutron
 
HEAVY METALS AND THEIR EFFECTS
HEAVY METALS AND THEIR EFFECTSHEAVY METALS AND THEIR EFFECTS
HEAVY METALS AND THEIR EFFECTSvirgo_az
 
Heavy Metal Pollution
Heavy Metal PollutionHeavy Metal Pollution
Heavy Metal PollutionMANISHSAHU106
 
Occupational poisonings and toxicity
Occupational poisonings and toxicityOccupational poisonings and toxicity
Occupational poisonings and toxicityNik Ronaidi
 
Toxicities and manag. of poisonings (heavy metals)
Toxicities and manag. of poisonings (heavy metals)Toxicities and manag. of poisonings (heavy metals)
Toxicities and manag. of poisonings (heavy metals)Subramani Parasuraman
 
Heavymetals & living system ppt
Heavymetals & living system pptHeavymetals & living system ppt
Heavymetals & living system pptDeepak Sarangi
 
Arsenic poisoning( acute, subacute and chronic)
Arsenic poisoning( acute, subacute and chronic)Arsenic poisoning( acute, subacute and chronic)
Arsenic poisoning( acute, subacute and chronic)Dr. Mohd Kaleem Khan
 
Mercury poisoning
Mercury poisoningMercury poisoning
Mercury poisoningninarose85
 

What's hot (20)

Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticides Water pollution due to heavy metals, pesticides
Water pollution due to heavy metals, pesticides
 
Mercury Poisoning
Mercury PoisoningMercury Poisoning
Mercury Poisoning
 
HEAVY METALS AND THEIR EFFECTS
HEAVY METALS AND THEIR EFFECTSHEAVY METALS AND THEIR EFFECTS
HEAVY METALS AND THEIR EFFECTS
 
Heavy Metal Pollution
Heavy Metal PollutionHeavy Metal Pollution
Heavy Metal Pollution
 
Environmental Toxicology
Environmental ToxicologyEnvironmental Toxicology
Environmental Toxicology
 
Heavy Metal Poisoning
Heavy Metal PoisoningHeavy Metal Poisoning
Heavy Metal Poisoning
 
Heavy metal and human health
Heavy metal and human healthHeavy metal and human health
Heavy metal and human health
 
heavy metals
heavy metalsheavy metals
heavy metals
 
Occupational poisonings and toxicity
Occupational poisonings and toxicityOccupational poisonings and toxicity
Occupational poisonings and toxicity
 
Toxicities and manag. of poisonings (heavy metals)
Toxicities and manag. of poisonings (heavy metals)Toxicities and manag. of poisonings (heavy metals)
Toxicities and manag. of poisonings (heavy metals)
 
Toxicity of pesticides
Toxicity of pesticidesToxicity of pesticides
Toxicity of pesticides
 
Lead poisoning
Lead poisoningLead poisoning
Lead poisoning
 
Heavymetals & living system ppt
Heavymetals & living system pptHeavymetals & living system ppt
Heavymetals & living system ppt
 
Introduction to Toxicology
Introduction to ToxicologyIntroduction to Toxicology
Introduction to Toxicology
 
arsenic & mercury
arsenic & mercuryarsenic & mercury
arsenic & mercury
 
Arsenic poisoning( acute, subacute and chronic)
Arsenic poisoning( acute, subacute and chronic)Arsenic poisoning( acute, subacute and chronic)
Arsenic poisoning( acute, subacute and chronic)
 
Heavy Metals
Heavy MetalsHeavy Metals
Heavy Metals
 
Mercury poisoning
Mercury poisoningMercury poisoning
Mercury poisoning
 
Toxicology
ToxicologyToxicology
Toxicology
 
Lead poisoning
Lead poisoningLead poisoning
Lead poisoning
 

Viewers also liked

Viewers also liked (8)

Lead poisoning in Pediatrics
Lead poisoning in PediatricsLead poisoning in Pediatrics
Lead poisoning in Pediatrics
 
Stevens johnson syndrome & toxic epidermal necrolysis
Stevens johnson syndrome & toxic epidermal necrolysisStevens johnson syndrome & toxic epidermal necrolysis
Stevens johnson syndrome & toxic epidermal necrolysis
 
Stevens johnson syndrome
Stevens johnson syndromeStevens johnson syndrome
Stevens johnson syndrome
 
Vesiculobullous diseases
Vesiculobullous diseasesVesiculobullous diseases
Vesiculobullous diseases
 
Erthyma nodosum
Erthyma nodosumErthyma nodosum
Erthyma nodosum
 
Pemphigus - intra epidermal blistering disorders
Pemphigus - intra epidermal blistering disordersPemphigus - intra epidermal blistering disorders
Pemphigus - intra epidermal blistering disorders
 
Cocaine
CocaineCocaine
Cocaine
 
Pemphigus vulgaris
Pemphigus vulgarisPemphigus vulgaris
Pemphigus vulgaris
 

Similar to Toxicity of Heavy Metals

Similar to Toxicity of Heavy Metals (20)

Lead poisoning
Lead poisoning Lead poisoning
Lead poisoning
 
Toxic materials
Toxic materialsToxic materials
Toxic materials
 
LEAD POISONING.pptx
LEAD POISONING.pptxLEAD POISONING.pptx
LEAD POISONING.pptx
 
Lead toxicity
Lead toxicityLead toxicity
Lead toxicity
 
GHeavyMetals.ppt
GHeavyMetals.pptGHeavyMetals.ppt
GHeavyMetals.ppt
 
Lead poisoning
Lead poisoningLead poisoning
Lead poisoning
 
Ana ppt. upload
Ana ppt.   uploadAna ppt.   upload
Ana ppt. upload
 
Ldp
LdpLdp
Ldp
 
Lead poisoning
Lead poisoningLead poisoning
Lead poisoning
 
leadpoisoning-191203075145 (2).pdf
leadpoisoning-191203075145 (2).pdfleadpoisoning-191203075145 (2).pdf
leadpoisoning-191203075145 (2).pdf
 
السموم .pptx
السموم .pptxالسموم .pptx
السموم .pptx
 
Heavy metal and heavy metal antagonists
Heavy metal and heavy metal antagonistsHeavy metal and heavy metal antagonists
Heavy metal and heavy metal antagonists
 
Heavy metal poisoning
Heavy metal poisoningHeavy metal poisoning
Heavy metal poisoning
 
Toxic minerals
Toxic mineralsToxic minerals
Toxic minerals
 
Heavy metal poisoning PPT.pptx
Heavy metal poisoning PPT.pptxHeavy metal poisoning PPT.pptx
Heavy metal poisoning PPT.pptx
 
Wilson’s disese.pptx
Wilson’s disese.pptxWilson’s disese.pptx
Wilson’s disese.pptx
 
heavy Metal toxicology in environment science
heavy Metal toxicology in environment scienceheavy Metal toxicology in environment science
heavy Metal toxicology in environment science
 
Anemia
AnemiaAnemia
Anemia
 
Presentation on iron poisoning
Presentation on iron poisoningPresentation on iron poisoning
Presentation on iron poisoning
 
Cadmium iron toxicity
Cadmium iron toxicityCadmium iron toxicity
Cadmium iron toxicity
 

More from Tahar Abdulaziz Suliman (10)

Volatile Poisons
Volatile PoisonsVolatile Poisons
Volatile Poisons
 
Toxicity of Pesticides
Toxicity of PesticidesToxicity of Pesticides
Toxicity of Pesticides
 
Toxicity of Corrosives
Toxicity of CorrosivesToxicity of Corrosives
Toxicity of Corrosives
 
Toxicity of Asphyxians
Toxicity of AsphyxiansToxicity of Asphyxians
Toxicity of Asphyxians
 
Animal Poisons
Animal PoisonsAnimal Poisons
Animal Poisons
 
Abuse/Dependece/Addiction
Abuse/Dependece/AddictionAbuse/Dependece/Addiction
Abuse/Dependece/Addiction
 
TOXICITY OF ALKALOIDS
TOXICITY OF ALKALOIDSTOXICITY OF ALKALOIDS
TOXICITY OF ALKALOIDS
 
MCQs in TOXICOLOGY
MCQs in TOXICOLOGY  MCQs in TOXICOLOGY
MCQs in TOXICOLOGY
 
Principles of Management of Acute Poisoning
Principles of Management of Acute PoisoningPrinciples of Management of Acute Poisoning
Principles of Management of Acute Poisoning
 
INTRODUCTION TO TOXICOLOGY
INTRODUCTION TO TOXICOLOGYINTRODUCTION TO TOXICOLOGY
INTRODUCTION TO TOXICOLOGY
 

Recently uploaded

Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 

Recently uploaded (20)

Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 

Toxicity of Heavy Metals

  • 1.
  • 2. GENERAL CHARACTERS • Most common heavy metals toxicity: lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As) • They are mainly produced by industrial activities, and deposit slowly in the surrounding water and soil
  • 3. • Toxicity may occur through ingestion, inhalation or dermal exposure • Toxicity is either acute or chronic • Metallic taste if ingested except arsenic which is tasteless • Can cause both local & systemic effects • Most metals cause diarrhea except lead which causes constipation • The antidotes are called chelators
  • 4.
  • 5. • The most common metallic poison. • Occurs in organic and inorganic forms. • Absorption of ingested lead in children is much more than in adults (50% children& 10% in adults). • Probably the most important chronic environmental illness affecting children. • In children, probably no organ system is immune to the effects of lead poisoning. • Developing brain is the most risky organ to be affected.
  • 6. 1- Occupational: More than 900 occupations. Parents may bring lead dust. 2- Some cosmetics and folk remedies. 3- Water & Food contamination: lead pipes or storage tanks, and eating contaminated food. 4- Foreign body ingestion: several reports have documented cases of childhood lead poisoning resulting from the ingestion of lead-based foreign bodies. 5- Retained bullet 6- Illegally manufactured alcohols 7- Inhalation of lead from motor vehicle
  • 8.
  • 9. • Lead has a high affinity for SH groups. It is therefore particularly toxic to multiple enzyme systems. • Many of lead’s toxic effects also result from its inhibition of cellular function requiring calcium. • Lead binds to calcium-activated proteins 105 times than Ca2+ • Pb2+ and Ca2+ compete at the plasma membrane for transport systems, which affect their entry or exit (ie, Ca2+ channels and the Ca2+ pump.) • Intracellular Ca2+ is buffered by proteins, endoplasmic reticulum, and mitochondria; Pb2+ disturbs this intracellular Ca2+ homeostasis. • Pb2+ interacts with a number of Ca2+-dependent effector mechanisms, such as calmodulin (Ca2+ binding protein, which couples to several enzymes, eg, phosphodiesterase, protein kinases).
  • 10. A-HEMATOLOGICAL EFFECTS Lead-induced anemia: • Hypochromic Microcytic • More in children Mechanisms: •Inhibition of heme synthesis: •a) Inhibits conversion of DALA to porphobilinogen. •b) Inhibits conversion of coproporphyrinogen III to protoporphyrin. •c) Blocks incorporation of iron into protoporphyrin to form heme. Protoporphyrin accumulates in RBCs and chelate zinc. EP reflects chronic lead exposure.
  • 11. ENZYMES INVOLVED IN THE INHIBITION OF HEME SYNTHESIS
  • 12. • Increase of RBC fragility • Erythropoietin deficiency: from the toxic effects of lead on renal tubules. • Inhibition of 5-pyrimidine nucleotidase: aggregation of ribosomes, appearing as basophilic stippling of RBCs (not specific to lead toxicity).
  • 13. Basophilic Stippling Inhibition of 5- pyrimidine nucleotidase: aggregation of ribosomes, appearing as basophilic stippling of RBCs (not specific to lead toxicity)
  • 14.
  • 15. • Acute toxicity may cause renal colic. • Acute toxicity may cause direct tubular damage (Fanconi-like syndrome) • Chronic toxicity may cause chronic interstitial nephritis. • Alters rennin-angiotensin system and may cause hypertension. • Alters uric acid excretion resulting in hyperuricemia and gout
  • 16. • Direct effect on CNS causing lead encephalopathy especially in children. • Delayed or reversed development, permanent learning disabilities. • Children below 3 Y are at the greatest risk (brains are rapidly developing). • DALA is thought to be neurotoxic by interfering with GABA. • Chronic lead exposure affects peripheral nerves mainly the motor (radial nerve)
  • 17. D- Reproductive System Effects • Abortion, stillbirth, neurodevelopmental problems. • May cause decreased sperm count, and increased number of abnormal sperms. E- Bone Effects • Triggers hypermineralization (reflected in metaphyseal & growth plate densities (lead lines). • They reflect bone growth arrest and not deposition. Their width is related to the duration of exposure. • Lead inhibits the conversion of vitamin D into its active form.
  • 18. FEATURES ACUTE TOXICITY • More commonly on top of chronic exposure. 1- GIT: anorexia, abdominal pain, constipation, vomiting. 2- CNS: encephalopathy, behavioral changes, lethargy, fatigue, seizures & coma.
  • 19. CHRONIC TOXICITY (PLUMBISM) • Nonspecific: vague body aches, anorexia, constipation and abdominal colic. • Blue lines on the gums and around anal marginsdue to bacterial action precipitating lead sulfide. • Neuropathy: wrist drop and foot drop. Optic neuropathy may occur. • CNS: cognitive disturbances, headache and encephalopathy • Anemia, reticulocytosis and hemolysis. • Renal impairment. • Bony aches and gouty arthritis. • Myocarditis
  • 21. BONE LEAD LINE (BONE GROWTH ARREST)
  • 23. CARCINOGENICITY 2B. Agent is possibly carcinogenic to humans •Human epidemiology data weak •Animal data positive
  • 24. !!!!!!!!!!!!!!!!!!!!!NOTE!!!!!!!!!!!!!!!!!! ABSENT (NOAEL) NO OBSERVABLE ADVERSE EFFECT LEVEL NOAEL: An exposure level at which there are no statistically or biologically significant increases in the frequency or severity of adverse effects between the exposed population and its control. it is the highest tested dose or concentration of a substance at which no such adverse effect is found in exposed test organisms where higher doses or concentrations resulted in an adverse effect NOAEL is absent in Lead toxicity
  • 25. S1- Blood Lead level • less than 5 µg/dL for children (before 2012 as 10 (µg/dl). • less than 25 µg/dL for adults • biological exposure index (a level that should not be exceeded) for lead-exposed workers in the U.S. is 30 µg/dL in a random blood specimen. 2- Blood zinc protoporphyrin (ZPP) (Free erythrocyte Protoporphyrin FEP) • The normal range for ZPP is 0-35 • Its gives clue about duration of toxicity • can be used as screening test 3- Urine DALA • 1 - 8 years: 2.3-6.2 mg/g creat • 9 - 17 years : 1.5-5.3 mg/g creat • ≥ 18 years: • Females : <5.4 mg/g creat • Males : <1.8 mg/g creat
  • 26. BLLS IN DIFFERENT EUROPEAN COUNTRIES (WHO)
  • 27. All Australians should have BLL below 10 µg/dL • “It was never intended that this goal of 10 µg/dL be interpreted as a ‘safe’ level of exposure or a ‘level of concern’”, rather, it is the level at which sources of exposure to lead should be investigated. • RECOMMENDED BLOOD LEAD LEVELS
  • 28. • Update on BLLs in Children • Reference BLLin children below 6 Ys is 5 µg/dL • This new level is based on the U.S. population of children ages 1-5 years who are in the highest 2.5% of children when tested for lead in their blood. • The new recommendation does not change the guidance that chelation therapy be considered when a child has a blood lead test result greater than or equal to 45 µg/dL CENTERS OF DISEASE CONTROL & PREVENTION (USA) 2012
  • 29. 2- A baseline hemogram Typical pattern of iron-deficiency anemia with hypochromia and microcytosis. 3- A chemistry profile including: RFT, LFT & uric acid. • Adults may have elevated uric avid level because of the disturbance of enzymatic amino hydrolases
  • 30. TREATMENT Dimercaprol (BAL) Removes intracellular & extracellular lead. It is a lipid-soluble drug and must be administered IM only as IV may cause fat embolism. It is the first chelator used in encephalopathic individuals. Rapidly crosses the BBB.
  • 31. Calcium disodium edentate (Ca Na2 EDTA) Allows extracellular lead to be renally eliminated. Once started CaNa2EDTA should be given in full 5-day course. The first dose begins removing lead from extracellular fluid in bone, if not followed by next doses free lead neurotoxicity. In cases of lead encephalopathy, BAL should be given first to avoid redistribution of lead mobilized by CaNa2EDTA to CNS.
  • 32. D-Penicillamine • orally and has few adverse effects. • Can chelate lead even in low blood levels. • Effective in children with levels 20-40 µg/100ml. Dimercaptosuccinic acid (Succimer or DMSA): 5- Dimerval (DMPS): Has become antidote for most heavy metal intoxications. It is available in the oral form and in a water-based parenteral form.
  • 33. POSTMORTEM APPEARANCE • Depends on whether acute or chronic poisoning according to clinical manifestations
  • 35. • The only metal that is liquid at room temperature. • Elemental symbol is Hg: Greek word hydrargyrias “water silver.” • Found in 3 forms but all are toxic: 1) Elemental (metallic) mercury (Hg0) 2) Organic 3) Inorganic
  • 36. METHODS OF EXPOSURE 1- Elemental mercury: barometers, batteries, dental amalgams, electroplating, fingerprinting products, fluorescent and mercury lamps, infrared detectors, jewelry industry, manometers, neon lamps, paints, photography, silver and gold production, thermometers. 2- Organic mercury: antiseptics, bactericidals, fungicides, insecticidal products, laundry products, diaper products, paper manufacturing, seed preservation, and wood preservatives.
  • 37. 3- Inorganic mercury: Cosmetics, disinfectants, explosives, ink manufacturing, mirror silvering, perfume industry, photography, spermicidal jellies, tattooing inks, and wood preservation. 4-Thimerosal: Vaccine preservative to prevent bacterial contamination. Most commonly vaccines that contain Thimerosal are DTP, Haemophilus influenzae, and hepatitis B.
  • 38. ELEMENTAL MERCURY  Toxicity by inhalation exposure  Poorly absorbed from GIT (eg, thermometers) .  Once inhaled, it is mostly converted to inorganic Hg (limited permeability to BBB).  Acute toxicity might result in: • Fever, fatigue, and clinical signs of pneumonitis.  Chronic exposure results in • neurologic, dermatologic, and renal manifestations. • Signs and symptoms might include: • neuropsychiatric disturbances (e.g., memory loss, irritability, or depression) • Tremor • Paresthesias • Gingivostomatitis • flushing, discoloration and desquamation of the hands and feet • hypertension
  • 39. ELEMENTAL MERCURY In January 2008, Norway and Sweden totally banned mercury fillings. In April 2008, Denmark banned mercury fillings Ingested Elemental Hg
  • 40. ORGANIC MERCURY • Ingestion is the main route of ingestion • Largest outbreaks are related to organic mercury (fungicide, seed dressing, contaminated fish) • Marine animals convert elemental to organic mercury in their tissues • Minamata (1940) Japan • Iraq (1974) • Toxicity is mainly neurologic • Visual field defects • Hearing loss • Tremor • Dysarthria • Mental deteriration
  • 41. ORGANIC MERCURY Minamata Disease (1940) Iraq Grain Disaster (1971)
  • 42. INORGANIC MERCURY • Main absorption by ingestion and skin • Can be corrosive to mucosal membranes • Poor lipid solubility: • causes a non-uniform distribution with kidney accumulation, causing renal damage. • Limit CNS penetration, but chronic exposure allow for CNS accumulation & toxicity.
  • 44. TOTAL AMOUNT OF MERCURY (ΜG) RECEIVED BY LIBYAN CHILDREN FROM VACCINES IN FIRST 2 YEARS OF LIFE ACCORDING TO OLD AND NEW IMMUNIZATION SCHEDULES (2007) Vaccine LIBYA USA Old Schedule New Schedule 1999 2004 BCG Polio HB DTP Hib MMR 0 0 0 37.5 --- 0 0 0 0 37.5 75 ? 0 100 37.5 100 <1.2 < 1.5 0 Total 37.5 µg 112.5 µg ? 237.5 µg < 2.7 µg
  • 45. • Mercury reacts with sulfhydryl (SH) groups, resulting in enzyme inhibition and pathologic alteration of cellular membranes. • Elemental and methylmercury are particularly toxic to the CNS. Metallic mercury vapor is also a pulmonary irritant. • Methylmercury is teratogenic. • Inorganic mercuric salts are corrosive to the skin, eyes, and gastrointestinal tract, and are nephrotoxic. • An immune mechanism is attributed to membranous glomerulonephritis and acrodynia.
  • 46. CLINICAL FEATURES 1- Acute inhalation elemental mercury: • Dyspnea and pleuritic chest pain. • Lethargy, confusion. • Fatal ARDS has been reported following elemental mercury inhalation.
  • 47. 2- Acute ingestion of inorganic mercury & mercuric salts: Its corrosive properties account for most of the acute signs and symptoms. The presentation can include a) Gray mucous membranes. b) Vomiting, severe abdominal pain, hematemesis, and hypovolemic shock. c) Systemic effects usually begin several hours postingestion and may last several days
  • 48. 3- Acute ingestion of organic mercury (Methyl mercury): • Contaminated food. • Organic mercury targets specific sites in the brain, including the cerebral cortex (especially visual cortex), motor and sensory centers , auditory center, and cerebellum. • Onset of symptoms usually is delayed (days-weeks). Depletion of enzymes must occur before the onset of symptoms. • Symptoms are typically neurological: • visual (eg, scotomata), ataxia, paresthesias, hearing loss, dysarthria, mental deterioration, muscle tremor, movement disorders.
  • 49. 4- Chronic toxicity Triad: Tremors, Gingivitis, Erethism GIT: metallic taste, gingivostomatitis, hypersalivation. • Neurologic: Neurasthenia & Erethism. • Neurasthenia: impaired interpersonal relations, fatigue, depression, hypersensitivity to stimuli, loss of concentration. • Erethism: insomnia, shyness, memory loss, emotional instability, depression, anorexia, vasomotor disturbance, uncontrolled perspiration.
  • 50. Acrodynia (Pink disease): • considered to be a mercury allergy • erythema of the palms and soles • edema of the hands and feet • desquamating rash • hair loss • Pruritis • Diaphoresis • tachycardia, hypertension, • Photophobia • irritability • anorexia • Insomnia • poor muscle tone • constipation or diarrhea
  • 51. MERCURY WAS ADDITIVE FOR TEETHING POWDER UNTIL 1950
  • 52. • All forms are toxic to the fetus, but methylmercury most readily passes through the placenta. • Even with an asymptomatic patient, maternal exposure can lead to spontaneous abortion or retardation.
  • 53. Country No. of Subjects Mean level µg/L Level range µg/L References Belgium 474 15 1.1-103 Lauwerys et al. (1978) Italy 80 20 0-46 Pallotti et al. (1979) Japan 11 6.6 2 – 16.4 Suzuki et al. (1984 b) Norway 103 11.3 0.6 – 24 Lie et al. (1982) Poland 270 11.3 2.5-24 Szucki & Kurys (1982) USA 25 1709 3.4 1.02 0.82 0-7 0,85-1.2 Kuhnert et al. (1981) Schober et al. (2003) Jones et al. (2010) South Korea 293 8.63 1.48 – 45.71 Eun-mi Jo (2010) Canada 492 16 0.8 – 112 * Dewailly E et al. (2001) Sweden 106 3.4 0.4 – 16 Johansson N et al. (2002)
  • 54. 1- Blood levels less than 2 µg/L in unexposed individual (exceptions individuals with a high dietary intake of fish). 2- Urine mercury levels less than 10-20 µg/L. 3- Hg can be found in hair because high SH group • False-positive results secondary to environmental exposure. • Do not use hair analysis solely to confirm mercury toxicity.
  • 55. ABCs. Removal of contaminated clothing and skin irrigation Do not induce emesis if the compound ingested is caustic inorganic form. Gastric lavage is recommended for organic ingestion, especially if the compound is observed on the abdominal x-ray series. Whole bowel irrigation may be used until rectal effluent is clear and void of any radiopaque material. Use chelating agents if the patient is symptomatic or if increased blood or urine levels.
  • 56. 1. Metallic (elemental) mercury: In acute or chronic poisoning, • Oral DMSA may enhance urinary Hg excretion. • Penicillamine is an alternative oral treatment. 2. Inorganic mercury salts: • BAL if begun within minutes to a few hours after ingestion, may reduce severe renal injury. • Oral DMSA is also effective. 3. Organic mercury: • Oral DMSA may be effective in decreasing Hg in tissues, including brain.  BAL should not be used in metallic or organic mercury as it redistribute mercury to the brain from other tissue sites.  CaNa2EDTA is contraindicated. It makes with Hg a nephrotoxic complex.
  • 57. • Hemodialysis is used in severe cases of toxicity when renal function has declined. • Neostigmine may help motor function in methylmercury toxicity. This toxicity often leads to acetylcholine deficiency.
  • 58. POSTMORTEM APPEARANCE • Grayish corrosion of GIT • Ulceration of large intestine • Congestion of kidneys
  • 61. • Homicidal agent • Signs & symptoms mimic natural diseases • Ease of administration; odorless, tasteless • Foods: daily human intake of arsenic contained in food 0.5-1 mg, with the greatest mainly from fish In seafood, arsenic is mainly found in its less toxic organic form.. • Water: A 2007 study found that over 137 million people in more than 70 countries are probably affected by arsenic poisoning from drinking water. WHO recommends a limit of 0.01 mg/L of arsenic in drinking water • Industry: herbicide, fungicide, wood preservative.
  • 62. FORMS OF ARSENIC • Arsenic exists in: 1- Inorganic (arsenite) 2- Organic (arsine) 3- Elemental form
  • 63. PATHOPHYSIOLOGY 1. Arsenic distributes rapidly to erythrocytes and binds to the globin portion of hemoglobin 2. Redistribution occurs within 24 hours to the liver, spleen, kidney & GIT 3. Arsenic impairs cellular respiration by inhibiting mitochondrial enzymes and oxidative phosphorylation 4. Blocks pyruvate dehydrogenase in Kreb’s cycle 5. Over a period of weeks, deposits may be found in skin, hair, nails, bone.
  • 64. Arsenic produces cellular damage by: • binding to enzyme SH groups. • Massive fluid transudation into the bowel. • Arsenic blocks the conversion of pyruvate to acetyl coenzyme A and inhibits gluconeogenesis. • Long-term exposure results in nerve damage and may lead to lung, skin, or liver cancer. • Once inhaled, arsine gas combines with hemoglobin severe hemolysis and anemia.
  • 65. Proposed MOA for arsenic and examples of biochemical effects that result from this action. Hughes M F et al. Toxicol. Sci. 2011;123:305-332 Published by Oxford University Press on behalf of the Society of Toxicology 2011.
  • 66. 1. It is cheap 2. Easily obtained 3. Colorless 4. No smell 5. No taste 6. Small quantity is required to cause death. 7. Can be easily administered with food or drink. 8. Symptoms simulate those of Cholera. Arsenic is a Homicidal poison
  • 67. SIGNS AND SYMPTOMS 1.The Fulminant type 2.The Gastroenteric Type
  • 68. THE FULMINANT TYPE • Massive doses of arsenic when rapidly absorbed cause death in one to three hours from shock and peripheral vascular failure. • All the capillaries are markedly dilated, especially in the splanchnic area with a marked fall of blood pressure.
  • 69. THE GASTROENTERIC TYPE • This is the common form of acute poisoning and resembles bacterial food poisoning. • Symptoms usually appear half to one hour after ingestion, but may be delayed many hours especially when arsenic is taken with food. • Burning and colicky pain in the esophagus, stomach and bowel occur. • Intense thirst and severe vomiting which may be projectile are the common symptoms. 69 Telugu Doctors.co.in
  • 70. SIGNS AND SYMPTOMS • Acute severe arsenic poisoning • Vital signs - Tachycardia and hypotension, even shock • CNS - Altered mental status, delirium, coma, and seizures (acute encephalopathy) • Frequently, patients exposed to arsenic have a garlic smell to their breath and tissue fluids. 70 Telugu Doctors.co.in
  • 71. SIGNS AND SYMPTOMS • Acute exposures generally manifest with the cholera- like gastrointestinal symptoms of • vomiting (often times bloody) and • severe diarrhea (which may be rice-watery in character and often bloody); • these patients will experience acute distress, dehydration (often), and hypovolemic shock.
  • 72. SIGNS AND SYMPTOMS • Arsine gas exposure manifests with an acute hemolytic anemia and striking chills. • Hemoglobinuria causes the urine to appear black, and the patient becomes rapidly obtunded and shocky. • Shaking chills are often described in these patients. Frequently, patients exposed to arsenic have a garlic smell to their breath and tissue fluids.
  • 73. CHRONIC TOXICITY • Peripheral Neuropathy: it affects sensory part more than the motor one, often present with the complaint of painful paresthesias. • Black Foot Disease: peripheral vascular disease due to peripheral vascular obliteration appearing with acrocyanosis, Raynaud’s phenomenon. • Dermatologic Effects: alopecia, hypo- or hyperpigmentation, palmoplantar keratosis. • Mee’s lines: transverse white lines in the nails appear several weeks after mercury exposure.
  • 74.
  • 75. Chronic toxicity is more insidious and may manifest as a classical dermatitis (hyperkeratosis with a classical "dew drops on a dusty road" appearance) 75 Telugu Doctors.co.in
  • 76. whitish lines (Mees lines) that look much like traumatic injuries are found on the fingernails. Contact dermatitis may also be induced in occupational arsenic poisoning. Arsenic dust coming into contact with the skin produces four main types of reactions: 1. Toxic 2. Eczematous 3. Combined toxic and eczematous and 4. Reactions characterized by follicular lesions. 76 Telugu Doctors.co.in
  • 77. INVESTIGATIONS • Blood and urine arsenic levels • Normal blood arsenic level is < 7 µg/dl • Ideal urine test is 24-hour urine collection • Hair & Nails • Arsenic is normally found in higher concentrations in human hair and nails than in other parts of the body. This has been explained by the high content of keratin in these tissues .
  • 78. TREATMENT • BAL (British Antilewisite) •Lewisite is arsenic- containing vesicant gas • DMSA (Succimer)
  • 79. POSTMORTEM APPEARANCE 1. Pigmentation of skin 2. Mees lines in finger nails 3. Garlic odor of gastric contents 4. Subendocardial hemorrhage 5. Fatty degeneration of liver

Editor's Notes

  1. 17 Lead as a colorant or to add weight to food, folk medicines, herbal remedies, illicit drugs and cosmetics: these uses of lead are probably banned in most jurisdictions, yet examples abound because poverty has not been eradicated and lead is the cheapest pigment or weight that can be added, as it is so easily retrieved.
  2. Proposed MOA for arsenic and examples of biochemical effects that result from this action.