SlideShare a Scribd company logo
1 of 71
Download to read offline
April 4, 2017
IPT – Intellectual
Products & Technologies
@ DEV.BG
Reactive Java
Robotics & IoT
with Spring Reactor
Trayan Iliev
tiliev@iproduct.org
http://iproduct.org
Copyright © 2003-2017 IPT - Intellectual
Products & Technologies
2
Trademarks
Oracle®, Java™ and JavaScript™ are trademarks or registered
trademarks of Oracle and/or its affiliates.
LEGO® is a registered trademark of LEGO® Group. Programs are not
affiliated, sponsored or endorsed by LEGO® Education or LEGO®
Group.
Raspberry Pi™ is a trademark of Raspberry Pi Foundation.
Other names may be trademarks of their respective owners.
3
Disclaimer
All information presented in this document and all supplementary
materials and programming code represent only my personal opinion
and current understanding and has not received any endorsement or
approval by IPT - Intellectual Products and Technologies or any third
party. It should not be taken as any kind of advice, and should not be
used for making any kind of decisions with potential commercial impact.
The information and code presented may be incorrect or incomplete. It is
provided "as is", without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose and non-infringement. In no event shall the author or
copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or
in connection with the information, materials or code presented or the
use or other dealings with this information or programming code.
Tales of JAVA Robotics
4
There are several tales to share:
Tale of Robotics, IoT and Complexity
Tale of Common Sense: DDD
Tale of two cities - Imperative and Reactive
 Tale of two brave robots: LeJaRo and IPTPI
 And some real reactive Java + TypeScript / Angular 2 /
Reactive WebSocket code 
5
High Performnce Reactive JAVA
 Reactive programming. Reactor & Proactor design
patterns. Reactive Streams (java.util.concurrent.Flow)
 High performance non-blocking asynchronous apps
on JVM using Reactor project & RxJava
 Disruptor (RingBuffer), Flux & Mono, Processors
 End-to-end reactive web applications and services:
Reactor IO (REST, WebSocket) + RxJS + Angular 2
 Demo - reactive hot event streams processing on
Raspberry Pi 2 (ARM v7) based robot IPTPI.
 RxJava (not Zen only :) coans for self assessment
IPT - Intellectual Products & Technologies
IT Education Evolved
6
Since 2003 we provide trainings and share tech knowledge
in Java SE/ EE/ Web/ JS/ ES/ TypeScript/ Node/ Express/
Socket.IO/ NoSQL/ Angular 2/ React / REST SOA:
Java EE6/7, Spring, JSF, Portals/Portlets: Liferay, GateIn
Reactive IoT with Reactor / RxJava / RxJS
Node.js + Express/ hapi + React.js + Redux + GraphQL
Angular 2 + TypeScript + Redux (ngrx)
SOA & Distributed Hypermedia APIs (REST)
Domain Driven Design & Reactive Microservices
Where to Find the Demo Code?
7
IPTPI Reactive Demo is available @ GitHub:
https://github.com/iproduct/course-social-robotics
https://github.com/iproduct/jprime-demo
Robots Can Be Complex
8
… Even More Complex
9
Cross-section of many
disciplines:
 mechanical engineering
 electrical engineering
 computer science
 artificial intelligence (AI)
 human-computer interaction
 sociology & psychology
Picture by Hugo Elias of the Shadow Robot Company -
http://www.shadowrobot.com/media/pictures.shtml, CC BY-SA 3.0
Engineering, Science & Art
10
Source: https://commons.wikimedia.org/w/index.php?curid=551256, CC BY-SA 3.0
and How Can We Forget
11
Source: https://commons.wikimedia.org/
w/index.php?curid=234900, CC BY-SA 3.0
Source: Korea Institute of Industrial Technology,
http://news.naver.com/main/read.nhn?
mode=LSD&mid=sec&sid1=102&oid=020&aid=0000371339
Robots: The Most Intelligent Things
12
CC BY 2.0, Source:
https://www.flickr.com/photos/wilgengebroed/8249565455/
Radar, GPS, lidar for navigation and obstacle
avoidance ( 2007 DARPA Urban Challenge )
The Internet of Things has the potential to change the
world, just as the Internet did. Maybe even more so.
 Nearly 50 petabytes of data are captured and created
by human beings
 People have limited time, attention and accuracy
 Capturing data about things in the real world in real time
 Track and count everything, reduce waste, loss & cost.
 Know when things need replacing, repairing or recalling
— Kevin Ashton, 'That 'Internet of Things' Thing', RFID Journal,
2009
Internet of Things (IoT)
 There will be nearly 26 billion devices on the Internet of
Things by 2020.
[Gartner]
 More than 30 billion devices will be wirelessly
connected to the Internet of Things by 2020
[ABI Research]
 It's expected to be a 19 Trillion USD market
[John Chambers, Cisco CEO]
IoT Perspectives
"Basket of remotes" problem – we'll have hundreds of
applications to interface with hundreds of devices that
don't share protocols for speaking with one another
[Jean-Louis Gassée, Apple initial team, and BeOS co-founder]
Only IPv6 addresses are not enough – IoT devices
should be also easily and directly accessible for users
and [their] agents
In read/write mode
Preferably using a standard web browser
Even behind firewalls
IoT - Need for Standards
IoT Services Architecture
16
Devices: Hardware + Embedded Software + Firmware
UART/ I2C/ 2G/ 3G/ LTE/ ZigBee/ 6LowPan/ BLE
Aggregation/ Bus: ESB, Message Broker
Device Gateway: Local Coordination and Event Aggregation
M2M: HTTP(/2) / WS / MQTT / CoAP
Management: TR-069 / OMA-DM / OMA LWM2M
HTTP, AMQP
Cloud (Micro)Service Mng.
Docker, Kubernetes/
Apache Brooklyn
Web/ Mobile
Portal
PaaSDashboard
PaaS API: Event Processing Services, Analytics
Tracking Complexity
17
We need tools to cope with all that complexity inherent in
robotics and IoT domains.
Simple solutions are needed – cope with problems through
divide and concur on different levels of abstraction:
Domain Driven Design (DDD) – back to basics:
domain objects, data and logic.
Described by Eric Evans in his book:
Domain Driven Design: Tackling Complexity in the Heart of
Software, 2004
Common Sense: DDD
18
Main concepts:
 Entities, value objects and modules
 Aggregates and Aggregate Roots [Haywood]:
value < entity < aggregate < module < BC
 Repositories, Factories and Services:
application services <-> domain services
 Separating interface from implementation
Imperative and Reactive
19
We live in a Connected Universe
... there is hypothesis that all
the things in the Universe are
intimately connected, and you
can not change a bit without
changing all.
Action – Reaction principle is
the essence of how Universe
behaves.
Imperative and Reactive
 Reactive Programming: using static or dynamic data
flows and propagation of change
Example: a := b + c
 Functional Programming: evaluation of mathematical
functions,
➢ Avoids changing-state and mutable data, declarative
programming
➢ Side effects free => much easier to understand and
predict the program behavior.
Example: books.stream().filter(book -> book.getYear() > 2010)
.forEach( System.out::println )
Functional Reactive (FRP)
21
According to Connal Elliot's (ground-breaking paper @
Conference on Functional Programming, 1997), FRP is:
(a) Denotative
(b) Temporally continuous
Reactive Manifesto
22
[http://www.reactivemanifesto.org]
Reactive Programming
23
 Microsoft®
opens source polyglot project ReactiveX
(Reactive Extensions) [http://reactivex.io]:
Rx = Observables + LINQ + Schedulers :)
Java: RxJava, JavaScript: RxJS, C#: Rx.NET, Scala: RxScala,
Clojure: RxClojure, C++: RxCpp, Ruby: Rx.rb, Python: RxPY,
Groovy: RxGroovy, JRuby: RxJRuby, Kotlin: RxKotlin ...
 Reactive Streams Specification
[http://www.reactive-streams.org/] used by:
 (Spring) Project Reactor [http://projectreactor.io/]
 Actor Model – Akka (Java, Scala) [http://akka.io/]
Trayan Iliev
IPT – Intellectual Products & Technologies
Ltd.
Multi-Agent
Systems & Social
Robotics
15/01/2015 Slide 24Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights
reserved.
Подход на интелигентните агенти при
моделиране на знания и системи
Reactive Streams Spec.
25
 Reactive Streams – provides standard for
asynchronous stream processing with non-blocking
back pressure.
 Minimal set of interfaces, methods and protocols for
asynchronous data streams
 April 30, 2015: has been released version 1.0.0 of
Reactive Streams for the JVM (Java API,
Specification, TCK and implementation examples)
 Java 9: java.util.concurrent.Flow
Reactive Streams Spec.
26
 Publisher – provider of potentially unbounded number
of sequenced elements, according to Subscriber(s)
demand.
Publisher.subscribe(Subscriber) => onSubscribe onNext*
(onError | onComplete)?
 Subscriber – calls Subscription.request(long) to
receive notifications
 Subscription – one-to-one Subscriber ↔ Publisher,
request data and cancel demand (allow cleanup).
 Processor = Subscriber + Publisher
FRP = Async Data Streams
27
 FRP is asynchronous data-flow programming using the
building blocks of functional programming (e.g. map,
reduce, filter) and explicitly modeling time
 Used for GUIs, robotics, and music. Example (RxJava):
Observable.from(
new String[]{"Reactive", "Extensions", "Java"})
.take(2).map(s -> s + " : on " + new Date())
.subscribe(s -> System.out.println(s));
Result:
Reactive : on Wed Jun 17 21:54:02 GMT+02:00 2015
Extensions : on Wed Jun 17 21:54:02 GMT+02:00 2015
28
 Performance is about 2 things (Martin Thompson –
http://www.infoq.com/articles/low-latency-vp ):
– Throughput – units per second, and
– Latency – response time
 Real-time – time constraint from input to response
regardless of system load.
 Hard real-time system if this constraint is not honored then
a total system failure can occur.
 Soft real-time system – low latency response with little
deviation in response time
 100 nano-seconds to 100 milli-seconds. [Peter Lawrey]
What About High Performance?
32
 Low garbage by reusing existing objects + infrequent GC
when application not busy – can improve app 2 - 5x
 JVM generational GC startegy – ideal for objects living very
shortly (garbage collected next minor sweep) or be immortal
 Non-blocking, lockless coding or CAS
 Critical data structures – direct memory access using
DirectByteBuffers or Unsafe => predictable memory layout
and cache misses avoidance
 Busy waiting – giving the CPU to OS kernel slows program
2-5x => avoid context switches
 Amortize the effect of expensive IO - blocking
Low Latency: Things to Remember
33
 Non-blocking (synchronous) implementation is 2 orders of
magnitude better then synchronized
 We should try to avoid blocking and especially contended
blocking if want to achieve low latency
 If blocking is a must we have to prefer CAS and optimistic
concurrency over blocking (but have in mind it always
depends on concurrent problem at hand and how much
contention do we experience – test early, test often,
microbenchmarks are unreliable and highly platform dependent
– test real application with typical load patterns)
 The real question is: HOW is is possible to build concurrency
without blocking?
Mutex Comparison => Conclusions
34
 Message Driven – asynchronous message-passing allows
to establish a boundary between components that ensures
loose coupling, isolation, location transparency, and
provides the means to delegate errors as messages
[Reactive Manifesto].
 The main idea is to separate concurrent producer and
consumer workers by using message queues.
 Message queues can be unbounded or bounded (limited
max number of messages)
 Unbounded message queues can present memory
allocation problem in case the producers outrun the
consumers for a long period → OutOfMemoryError
Scalable, Massively Concurrent
35
 Queues typically use either linked-lists or arrays for the
underlying storage of elements. Linked lists are not
„mechanically sympathetic” – there is no predictable
caching “stride” (should be less than 2048 bytes in each
direction).
 Bounded queues often experience write contention on
head, tail, and size variables. Even if head and tail
separated using CAS, they usually are in the same cache-
line.
 Queues produce much garbage.
 Typical queues conflate a number of different concerns –
producer and consumer synchronization and data storage
Queues Disadvantages
[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]
36
 LMAX Disruptor design pattern separates different
concerns in a “mechanically sympathetic” way:
- Storage of items being exchanged
- Producer coordination – claiming the next sequence
- Consumers coordination – notified new item is available
 Single Writer principle is employed when writing data in
the Ring Buffer from single producer thread only (no
contention),
 When multiple producers → CAS
 Memory pre-allocated – predictable stride, no garbage
LMAX Disruptor (RingBuffer)
[http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]
37
LMAX Disruptor (RingBuffer) High Performance
[http://lmax-exchange.github.com/disruptor/files/Disruptor-
1.0.pdf]
Source: LMAX Disruptor github wiki - https://raw.githubusercontent.com/wiki/LMAX-
Exchange/disruptor/images/Models.png
LMAX-Exchange Disruptor License @ GitHub: Apache License Version 2.0, January 2004 -
http://www.apache.org/licenses/
38
LMAX Disruptor (RingBuffer) High Performance
[http://lmax-exchange.github.com/disruptor/files/Disruptor-
1.0.pdf]
Source: LMAX Disruptor @ GitHub - https://github.com/LMAX-
Exchange/disruptor/blob/master/docs/Disruptor.docx
LMAX-Exchange Disruptor License @ GitHub: Apache License Version 2.0, January 2004 -
http://www.apache.org/licenses/
Project Reactor
39
 Reactor project allows building high-performance (low
latency high throughput) non-blocking asynchronous
applications on JVM.
 Reactor is designed to be extraordinarily fast and can
sustain throughput rates on order of 10's of millions of
operations per second.
 Reactor has powerful API for declaring data
transformations and functional composition.
 Makes use of the concept of Mechanical Sympathy
built on top of Disruptor / RingBuffer.
Project Reactor
40
 Pre-allocation at startup-time
 Message-passing structures are bounded
 Using Reactive and Event-Driven Architecture patterns
=> non-blocking end-to-end flows, replies
 Implement Reactive Streams Specification – efficient
bounded structures requesting no more than capacity
 Applies above features to IPC and provides non-
blocking IO drivers that are flow-control aware
 Expose a Functional API – organize their code in a
side-effect free way, which helps you determine you are
thread-safe and fault-tolerant
Reactor Projects
41
https://github.com/reactor/reactor, Apache Software License 2.0
IPC – Netty, Kafka, Aeron
Reactor Projects
42
Reactor Flux
43
https://github.com/reactor/reactor-core, Apache Software License 2.0
Reactor Mono
44
https://github.com/reactor/reactor-core, Apache Software License 2.0
Example: Flux.combineLatest()
45
https://projectreactor.io/core/docs/api/, Apache Software License 2.0
Reactor: Hello World
46
public static void main(String... args) throws
InterruptedException {
EmitterProcessor<String> emitter =
EmitterProcessor.create();
BlockingSink<String> sink = emitter.connectSink();
emitter.publishOn(Schedulers.single())
.map(String::toUpperCase)
.filter(s → s.startsWith("HELLO"))
.delayMillis(1000).subscribe(System.out::println);
sink.submit("Hello World!"); // emit - non blocking
sink.submit("Goodbye World!");
sink.submit("Hello Trayan!");
Thread.sleep(3000);
}
Reactor: Flux Example
47
Flux.fromIterable(getSomeLongList())
.mergeWith(Flux.interval(100))
.doOnNext(serviceA::someObserver)
.map(d -> d * 2)
.take(3)
.onErrorResumeWith(errorHandler::fallback)
.doAfterTerminate(serviceM::incrementTerminate)
.subscribe(System.out::println);
https://github.com/reactor/reactor-core, Apache Software License 2.0
Reactor Bus: IPTPI Java Robot
48
Disruptor (Ring Buffer) used in Reactor
49
Reactor provides 3 major types of Processors:
 EmitterProcessor – using 0 threads (on same thread)
 TopicProcessor using – N threads concurrently
processing the messages (AND operation)
 WorkQueueProcessor – N threads alternatively
processing the messages (XOR operation – messages
are processed exactly by one thread – load ballancing
and work distribution)
50
Meet IPTPI :)
51
Ups...
IPTPI: RPi2 + Ardunio Robot
52
 Raspberry Pi 2 (quad-core ARMv7
@ 900MHz) + Arduino Leonardo
cloneA-Star 32U4 Micro
 Optical encoders (custom), IR
optical array, 3D accelerometers,
gyros, and compass MinIMU-9 v2
 IPTPI is programmed in Java
using Pi4J, Reactor, RxJava, Akka
 More information about IPTPI:
http://robolearn.org/iptpi-robot/
IPTPI: RPi2 + Ardunio Robot
53
3D accelerometers, gyros,
and compass MinIMU-9 v2
Pololu DRV8835
Dual Motor Driver
for Raspberry Pi
Arduino Leonardo clone
A-Star 32U4 Micro
USB Stereo
Speakers - 5V
LiPo Powebank
15000 mAh
IPTPI: RPi2 + Ardunio Robot
54
Raspberry Pi 2 (quad-core
ARMv7 @ 900MHz)
IR Optical Sensor QRD1114
Array (Line Following)
Adafruit 2.8" PiTFT -
Capacitive Touch Screen
55
LeJaRo: Lego®
Java Robot
56
 Modular – 3 motors (with encoders) – one driving each
track, and third for robot clamp.
 Three sensors: touch sensor (obstacle avoidance), light
color sensor (follow line), IR sensor (remote).
 LeJaRo is programmed in Java using LeJOS library.
 More information about LeJaRo:
http://robolearn.org/lejaro/
 Programming examples available @GitHub:
https://github.com/iproduct/course-social-robotics/tre
e/master/motors_demo
LEGO® is a registered trademark of LEGO® Group. Programs of IPT are not
affiliated, sponsored or endorsed by LEGO® Education or LEGO® Group.
Tale of Simplicity: DDD
57
IPTPI Reactive Streams
58
Encoder
Readings
ArduinoData
Flux
Arduino
SerialData
Position
Flux
Robot
Positions
Command
Movement
Subscriber
RobotWSService
(using Reactor)
Angular 2 /
TypeScript
MovementCommands
IPTPI: IPTPIDemo I
59
public class IPTPIVDemo {
...
public IPTPIDemo() {
//receive Arduino data readings
ArduinoData =
ArduinoFactory.getInstance().createArduinoData();
//calculate robot positions
PositionsFlux = PositionFactory.createPositionFlux(
arduinoData.getEncoderReadingsFlux());
resentationViews.add(
PositionFactory.createPositionPanel(positionsFlux));
//enable sending commands to Arduino
ArduinoCommandsSub = ArduinoFactory.getInstance()
.createArduinoCommandSubscriber();
/
IPTPI: IPTPIDemo II
60
//Audio player - added @jPrime 2016 Hackergarten
audio = AudioFactory.createAudioPlayer();
//wire robot main controller with services
movementSub =MovementFactory.createMovementCommandSubscriber(
positionsFlux, arduinoData.getLineReadingsFlux());
controller = new RobotController(this::tearDown, movementSub,
arduinoCommandsSub, audio);
//create view with controller and delegate material views
from query services
view = new RobotView("IPTPI Reactive Robotics Demo",
controller, presentationViews);
IPTPI: IPTPIDemo III
61
//expose as WS service
movementSub2 =MovementFactory.createMovementCommandSubscriber(
positionsFlux, arduinoData.getLineReadingsFlux());
positionsService = new RobotWSService(
positionsFlux, movementSub2);
}
public static void main(String[] args) {
// initialize wiringPi library
Gpio.wiringPiSetupGpio();
try {
IPTPIDemo demo = new IPTPIDemo();
} catch (IOException e) {
e.printStackTrace();
}
}
IPTPI: ArduinoData I
62
positionsFlux = EmitterProcessor.create();
positionsSink = positionsFlux.connectSink();
lineFlux = EmitterProcessor.create();
lineSink = lineFlux.connectSink();
final Serial serial = SerialFactory.createInstance();
serial.addListener(new SerialDataEventListener() {
private ByteBuffer buffer = ByteBuffer.allocate(1024);
public void dataReceived(SerialDataEvent event) {
try {
ByteBuffer newBuffer = event.getByteBuffer();
buffer.put(newBuffer); buffer.flip();
...
buffer.get();
long timestamp = buffer.getInt(); //get timestamp
int encoderL = -buffer.getInt(); //motors mirrored
int encoderR = buffer.getInt();
IPTPI: ArduinoData II
63
EncoderReadings readings =
new EncoderReadings(encoderR, encoderL, timestamp);
emitter.submit(readings);
...
buffer.compact();
} catch (Exception e) {
e.printStackTrace();
}
}
});
try {
serial.open(PORT, 38400);
} catch(SerialPortException | IOException ex) {
System.out.println(“SERIAL SETUP FAILED:"+ex.getMessage());
}
IPTPI: PositionFlux I
64
Redux
Pattern!
public PositionsFlux(
Flux<EncoderReadings> readingsFlux) {
this.encoderReadings = readingsFlux;
Flux<EncoderReadings> skip1 = readingsFlux.skip(1);
positionsFlux = Flux.zip(readingsFlux, skip1)
.map(tupple ->
.scan(new Position(0, 0, 0), (last, tupple) -> {
EncoderReadings prev = tupple.getT1();
EncoderReadings curr = tupple.getT2();
int prevL = prev.getEncoderL();
int prevR = prev.getEncoderR();
int currL = curr.getEncoderL();
int currR = curr.getEncoderR();
int sL = currL - prevL;
int sR = currR - prevR;
double alpha0 = last.getHeading();
IPTPI: PositionFlux II
65
double alpha0 = last.getHeading();
if(sR == sL) {
return new Position((float)(last.getX() + sL *
ENCODER_STEP_LENGTH * cos(alpha0)),
(float)(last.getY()+ sL * ENCODER_STEP_LENGTH *
sin(alpha0)), alpha0, curr.getTimestamp());
} else {
…
}
})
);
}
CommandMovementSubscriber I
66
public class CommandMovementSubscriber extends
ConsumerSubscriber<Command<Movement>> {
private PositionFluxion positions;
public CommandMovementSubscriber(PositionFluxion positions){
this.positions = positions;
Gpio.wiringPiSetupGpio(); // initialize wiringPi library
Gpio.pinMode(5, Gpio.OUTPUT); // Motor direction pins
Gpio.pinMode(6, Gpio.OUTPUT);
Gpio.pinMode(12, Gpio.PWM_OUTPUT); // Motor speed pins
Gpio.pinMode(13, Gpio.PWM_OUTPUT);
Gpio.pwmSetMode(Gpio.PWM_MODE_MS);
Gpio.pwmSetRange(MAX_SPEED);
Gpio.pwmSetClock(CLOCK_DIVISOR);
}
@Override
public void doNext(Command<Movement> command) { ... }
}
CommandMovementSubscriber II
67
private void runMotors(MotorsCommand mc) {
//setting motor directions
Gpio.digitalWrite(5, mc.getDirR() > 0 ? 1 : 0);
Gpio.digitalWrite(6, mc.getDirL() > 0 ? 1 : 0);
//setting speed
if(mc.getVelocityR()>=0 && mc.getVelocityR() <=MAX_SPEED)
Gpio.pwmWrite(12, mc.getVelocityR()); // set speed
if(mc.getVelocityL()>=0 && mc.getVelocityL() <=MAX_SPEED)
Gpio.pwmWrite(13, mc.getVelocityL());
}
}
Reactor IO – NetStreams API
68
http://projectreactor.io/io/docs/reference/, Apache License 2.0
Takeaways: Why Go Reactive?
69
Benefits using Reactive Programming + DDD:
 DDD helps to manage complexity in IoT and Robotics -
many subsystems = sub-domains
 Reactive Streams (Fluxes, Monos) = uni-directional data
flows, CQRS, event sourcing, microservices
 Reactive Streams can be non-blocking and highly
efficient, or can utilize blocking if needed
 Naturally implement state management patterns like
Redux, allow time travel, replay and data analytics
 Clear, declarative data transforms that scale (Map-
Reduce, BigData, PaaS)
Takeaways: Why Maybe Not?
70
Cons using Reactive Programming + DDD:
 DDD requires additional efforts to clearly separate
different (sub) domains – DSL translators, factories...
 Reactive Streams utilize functional composition and
require entirely different mindset then imperative – feels
like learning foreign language
 Pure functions and Redux provide much benefits,
but there's always temptation to “do it the old way” :)
 Tool support for functional programming in Java is still
not perfect (in Eclipse at least :)
Where to Find the Demo Code?
71
IPTPI Reactive Demo is available @ GitHub:
https://github.com/iproduct/course-social-robotics
https://github.com/iproduct/jprime-demo
72
Resources: RxMarbles & Rx Coans
RxMarbles:
http://rxmarbles.com/
Lite Rx API Hands-On with Reactor Core 3:
https://github.com/reactor/lite-rx-api-hands-on/
RxJava Koans – Let's try to solve them at:
https://github.com/mutexkid/rxjava-koans
RxJS Koans – for those who prefer JavaScript :)
https://github.com/Reactive-Extensions/RxJSKoans
Tale of Simplicity: DDD
73
http://robolearn.org/ Let's move!
http://iproduct.org/
Thank’s for Your Attention!
74
Trayan Iliev
CEO of IPT – Intellectual Products
& Technologies
http://iproduct.org/
http://robolearn.org/
https://github.com/iproduct
https://twitter.com/trayaniliev
https://www.facebook.com/IPT.EACAD
https://plus.google.com/+IproductOrg

More Related Content

What's hot

Azure Digital Twins 2.0
Azure Digital Twins 2.0Azure Digital Twins 2.0
Azure Digital Twins 2.0Marco Parenzan
 
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...Kai Wähner
 
IoT Architecture - are traditional architectures good enough or do we need n...
 IoT Architecture - are traditional architectures good enough or do we need n... IoT Architecture - are traditional architectures good enough or do we need n...
IoT Architecture - are traditional architectures good enough or do we need n...Guido Schmutz
 
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...Kai Wähner
 
Streaming Analytics - Comparison of Open Source Frameworks and Products
Streaming Analytics - Comparison of Open Source Frameworks and ProductsStreaming Analytics - Comparison of Open Source Frameworks and Products
Streaming Analytics - Comparison of Open Source Frameworks and ProductsKai Wähner
 
Comparison of Open Source Frameworks for Integrating the Internet of Things
Comparison of Open Source Frameworks for Integrating the Internet of ThingsComparison of Open Source Frameworks for Integrating the Internet of Things
Comparison of Open Source Frameworks for Integrating the Internet of ThingsKai Wähner
 
IPT High Performance Reactive Programming with JAVA 8 and JavaScript
IPT High Performance Reactive Programming with JAVA 8 and JavaScriptIPT High Performance Reactive Programming with JAVA 8 and JavaScript
IPT High Performance Reactive Programming with JAVA 8 and JavaScriptTrayan Iliev
 
Internet of Things propositie - Enterprise IOT - AMIS - Conclusion
Internet of Things propositie - Enterprise IOT - AMIS - ConclusionInternet of Things propositie - Enterprise IOT - AMIS - Conclusion
Internet of Things propositie - Enterprise IOT - AMIS - ConclusionRobbrecht van Amerongen
 
Effective IoT System on Openstack
Effective IoT System on OpenstackEffective IoT System on Openstack
Effective IoT System on OpenstackTakashi Kajinami
 
Iot cloud service v2.0
Iot cloud service v2.0Iot cloud service v2.0
Iot cloud service v2.0Vinod Wilson
 
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...Eclipse IoT
 
On making standards organizations & open source communities work hand in hand
On making standards organizations & open source communities work hand in handOn making standards organizations & open source communities work hand in hand
On making standards organizations & open source communities work hand in handBenjamin Cabé
 
2018.11 eclipse overview (japan meeting)
2018.11 eclipse overview (japan meeting)2018.11 eclipse overview (japan meeting)
2018.11 eclipse overview (japan meeting)Mike Milinkovich
 
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...DevDay.org
 
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native Middleware
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native MiddlewareTrends at JavaOne 2016: Microservices, Docker and Cloud-Native Middleware
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native MiddlewareKai Wähner
 
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]Ian Skerrett
 
Eclipse Kura Shoot a-pi
Eclipse Kura Shoot a-piEclipse Kura Shoot a-pi
Eclipse Kura Shoot a-piEclipse Kura
 
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoT
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoTIRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoT
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoTIRJET Journal
 
Blockchain - The Next Big Thing for Middleware
Blockchain - The Next Big Thing for MiddlewareBlockchain - The Next Big Thing for Middleware
Blockchain - The Next Big Thing for MiddlewareKai Wähner
 
Using open source for IoT
Using open source for IoTUsing open source for IoT
Using open source for IoTIan Skerrett
 

What's hot (20)

Azure Digital Twins 2.0
Azure Digital Twins 2.0Azure Digital Twins 2.0
Azure Digital Twins 2.0
 
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...
Cloud Native Middleware Microservices - Lessons Learned with Docker, Kubernet...
 
IoT Architecture - are traditional architectures good enough or do we need n...
 IoT Architecture - are traditional architectures good enough or do we need n... IoT Architecture - are traditional architectures good enough or do we need n...
IoT Architecture - are traditional architectures good enough or do we need n...
 
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...
Machine Learning Applied to Real Time Scoring in Manufacturing and Energy Uti...
 
Streaming Analytics - Comparison of Open Source Frameworks and Products
Streaming Analytics - Comparison of Open Source Frameworks and ProductsStreaming Analytics - Comparison of Open Source Frameworks and Products
Streaming Analytics - Comparison of Open Source Frameworks and Products
 
Comparison of Open Source Frameworks for Integrating the Internet of Things
Comparison of Open Source Frameworks for Integrating the Internet of ThingsComparison of Open Source Frameworks for Integrating the Internet of Things
Comparison of Open Source Frameworks for Integrating the Internet of Things
 
IPT High Performance Reactive Programming with JAVA 8 and JavaScript
IPT High Performance Reactive Programming with JAVA 8 and JavaScriptIPT High Performance Reactive Programming with JAVA 8 and JavaScript
IPT High Performance Reactive Programming with JAVA 8 and JavaScript
 
Internet of Things propositie - Enterprise IOT - AMIS - Conclusion
Internet of Things propositie - Enterprise IOT - AMIS - ConclusionInternet of Things propositie - Enterprise IOT - AMIS - Conclusion
Internet of Things propositie - Enterprise IOT - AMIS - Conclusion
 
Effective IoT System on Openstack
Effective IoT System on OpenstackEffective IoT System on Openstack
Effective IoT System on Openstack
 
Iot cloud service v2.0
Iot cloud service v2.0Iot cloud service v2.0
Iot cloud service v2.0
 
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...
Developing IoT Applications Using Intel® System Studio | Eclipse IoT Day Sant...
 
On making standards organizations & open source communities work hand in hand
On making standards organizations & open source communities work hand in handOn making standards organizations & open source communities work hand in hand
On making standards organizations & open source communities work hand in hand
 
2018.11 eclipse overview (japan meeting)
2018.11 eclipse overview (japan meeting)2018.11 eclipse overview (japan meeting)
2018.11 eclipse overview (japan meeting)
 
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
[DevDay2019] Hands-on Machine Learning on Google Cloud Platform - By Thanh Le...
 
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native Middleware
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native MiddlewareTrends at JavaOne 2016: Microservices, Docker and Cloud-Native Middleware
Trends at JavaOne 2016: Microservices, Docker and Cloud-Native Middleware
 
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]
Leveraging the Open IoT Ecosystem to Accelerate Innovation [BizofIoT]
 
Eclipse Kura Shoot a-pi
Eclipse Kura Shoot a-piEclipse Kura Shoot a-pi
Eclipse Kura Shoot a-pi
 
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoT
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoTIRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoT
IRJET- A Survey on Real Time Object Detection using Voice Activated Smart IoT
 
Blockchain - The Next Big Thing for Middleware
Blockchain - The Next Big Thing for MiddlewareBlockchain - The Next Big Thing for Middleware
Blockchain - The Next Big Thing for Middleware
 
Using open source for IoT
Using open source for IoTUsing open source for IoT
Using open source for IoT
 

Similar to Reactive Java Robotics & IoT with Spring Reactor

Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionals
Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionalsJava & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionals
Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionalsTrayan Iliev
 
Reactive Java Robotics and IoT 2016
Reactive Java Robotics and IoT 2016Reactive Java Robotics and IoT 2016
Reactive Java Robotics and IoT 2016ilievt
 
Reactive robotics io_t_2017
Reactive robotics io_t_2017Reactive robotics io_t_2017
Reactive robotics io_t_2017Trayan Iliev
 
Reactive Microservices with Spring 5: WebFlux
Reactive Microservices with Spring 5: WebFlux Reactive Microservices with Spring 5: WebFlux
Reactive Microservices with Spring 5: WebFlux Trayan Iliev
 
IPT High Performance Reactive Java BGOUG 2016
IPT High Performance Reactive Java BGOUG 2016IPT High Performance Reactive Java BGOUG 2016
IPT High Performance Reactive Java BGOUG 2016Trayan Iliev
 
Reactive Java Robotics IoT - jPrime 2016
Reactive Java Robotics IoT - jPrime 2016Reactive Java Robotics IoT - jPrime 2016
Reactive Java Robotics IoT - jPrime 2016Trayan Iliev
 
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016Trayan Iliev
 
Microservices with Spring 5 Webflux - jProfessionals
Microservices  with Spring 5 Webflux - jProfessionalsMicroservices  with Spring 5 Webflux - jProfessionals
Microservices with Spring 5 Webflux - jProfessionalsTrayan Iliev
 
Spring 5 Webflux - Advances in Java 2018
Spring 5 Webflux - Advances in Java 2018Spring 5 Webflux - Advances in Java 2018
Spring 5 Webflux - Advances in Java 2018Trayan Iliev
 
Stream Processing with CompletableFuture and Flow in Java 9
Stream Processing with CompletableFuture and Flow in Java 9Stream Processing with CompletableFuture and Flow in Java 9
Stream Processing with CompletableFuture and Flow in Java 9Trayan Iliev
 
Making Machine Learning Easy with H2O and WebFlux
Making Machine Learning Easy with H2O and WebFluxMaking Machine Learning Easy with H2O and WebFlux
Making Machine Learning Easy with H2O and WebFluxTrayan Iliev
 
NGRX Apps in Depth
NGRX Apps in DepthNGRX Apps in Depth
NGRX Apps in DepthTrayan Iliev
 
Cytoscape CI Chapter 2
Cytoscape CI Chapter 2Cytoscape CI Chapter 2
Cytoscape CI Chapter 2bdemchak
 
Cytoscape: Now and Future
Cytoscape: Now and FutureCytoscape: Now and Future
Cytoscape: Now and FutureKeiichiro Ono
 
What's New in Cytoscape
What's New in CytoscapeWhat's New in Cytoscape
What's New in CytoscapeKeiichiro Ono
 
React Native e IoT - Un progetto complesso
React Native e IoT - Un progetto complessoReact Native e IoT - Un progetto complesso
React Native e IoT - Un progetto complessoCommit University
 
Reactive Programming on Android - RxAndroid - RxJava
Reactive Programming on Android - RxAndroid - RxJavaReactive Programming on Android - RxAndroid - RxJava
Reactive Programming on Android - RxAndroid - RxJavaAli Muzaffar
 
Fog Computing - DEV.BG 2018
Fog Computing - DEV.BG 2018Fog Computing - DEV.BG 2018
Fog Computing - DEV.BG 2018Trayan Iliev
 

Similar to Reactive Java Robotics & IoT with Spring Reactor (20)

Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionals
Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionalsJava & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionals
Java & JavaScipt Reactive Robotics and IoT 2016 @ jProfessionals
 
Reactive Java Robotics and IoT 2016
Reactive Java Robotics and IoT 2016Reactive Java Robotics and IoT 2016
Reactive Java Robotics and IoT 2016
 
Reactive robotics io_t_2017
Reactive robotics io_t_2017Reactive robotics io_t_2017
Reactive robotics io_t_2017
 
Reactive Microservices with Spring 5: WebFlux
Reactive Microservices with Spring 5: WebFlux Reactive Microservices with Spring 5: WebFlux
Reactive Microservices with Spring 5: WebFlux
 
IPT High Performance Reactive Java BGOUG 2016
IPT High Performance Reactive Java BGOUG 2016IPT High Performance Reactive Java BGOUG 2016
IPT High Performance Reactive Java BGOUG 2016
 
Reactive Java Robotics IoT - jPrime 2016
Reactive Java Robotics IoT - jPrime 2016Reactive Java Robotics IoT - jPrime 2016
Reactive Java Robotics IoT - jPrime 2016
 
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016
Reactive Java Robotics and IoT - IPT Presentation @ Voxxed Days 2016
 
Microservices with Spring 5 Webflux - jProfessionals
Microservices  with Spring 5 Webflux - jProfessionalsMicroservices  with Spring 5 Webflux - jProfessionals
Microservices with Spring 5 Webflux - jProfessionals
 
Spring 5 Webflux - Advances in Java 2018
Spring 5 Webflux - Advances in Java 2018Spring 5 Webflux - Advances in Java 2018
Spring 5 Webflux - Advances in Java 2018
 
Stream Processing with CompletableFuture and Flow in Java 9
Stream Processing with CompletableFuture and Flow in Java 9Stream Processing with CompletableFuture and Flow in Java 9
Stream Processing with CompletableFuture and Flow in Java 9
 
Making Machine Learning Easy with H2O and WebFlux
Making Machine Learning Easy with H2O and WebFluxMaking Machine Learning Easy with H2O and WebFlux
Making Machine Learning Easy with H2O and WebFlux
 
NGRX Apps in Depth
NGRX Apps in DepthNGRX Apps in Depth
NGRX Apps in Depth
 
Cytoscape CI Chapter 2
Cytoscape CI Chapter 2Cytoscape CI Chapter 2
Cytoscape CI Chapter 2
 
Cytoscape: Now and Future
Cytoscape: Now and FutureCytoscape: Now and Future
Cytoscape: Now and Future
 
What's New in Cytoscape
What's New in CytoscapeWhat's New in Cytoscape
What's New in Cytoscape
 
React Native e IoT - Un progetto complesso
React Native e IoT - Un progetto complessoReact Native e IoT - Un progetto complesso
React Native e IoT - Un progetto complesso
 
Reactive Programming on Android - RxAndroid - RxJava
Reactive Programming on Android - RxAndroid - RxJavaReactive Programming on Android - RxAndroid - RxJava
Reactive Programming on Android - RxAndroid - RxJava
 
Fog Computing - DEV.BG 2018
Fog Computing - DEV.BG 2018Fog Computing - DEV.BG 2018
Fog Computing - DEV.BG 2018
 
Java-J2ee_Resume
Java-J2ee_ResumeJava-J2ee_Resume
Java-J2ee_Resume
 
AF-2599-P.docx
AF-2599-P.docxAF-2599-P.docx
AF-2599-P.docx
 

More from Trayan Iliev

Rapid Web API development with Kotlin and Ktor
Rapid Web API development with Kotlin and KtorRapid Web API development with Kotlin and Ktor
Rapid Web API development with Kotlin and KtorTrayan Iliev
 
IPT Reactive Java IoT Demo - BGOUG 2018
IPT Reactive Java IoT Demo - BGOUG 2018IPT Reactive Java IoT Demo - BGOUG 2018
IPT Reactive Java IoT Demo - BGOUG 2018Trayan Iliev
 
Learning Programming Using Robots - Sofia University Conference 2018
Learning Programming Using Robots - Sofia University Conference 2018 Learning Programming Using Robots - Sofia University Conference 2018
Learning Programming Using Robots - Sofia University Conference 2018 Trayan Iliev
 
Active Learning Using Connected Things - 2018 (in Bulgarian)
Active Learning Using Connected Things - 2018 (in Bulgarian)Active Learning Using Connected Things - 2018 (in Bulgarian)
Active Learning Using Connected Things - 2018 (in Bulgarian)Trayan Iliev
 
What's new in java 9?
What's new in java 9?What's new in java 9?
What's new in java 9?Trayan Iliev
 
React HOCs, Context and Observables
React HOCs, Context and ObservablesReact HOCs, Context and Observables
React HOCs, Context and ObservablesTrayan Iliev
 
Hackathon: “IPTPI and LeJaRo Meet The Real World”
Hackathon: “IPTPI and LeJaRo Meet The Real World”Hackathon: “IPTPI and LeJaRo Meet The Real World”
Hackathon: “IPTPI and LeJaRo Meet The Real World”Trayan Iliev
 
IPT angular2 typescript SPA 2016
IPT angular2 typescript SPA 2016IPT angular2 typescript SPA 2016
IPT angular2 typescript SPA 2016Trayan Iliev
 
New MVC 1.0 JavaEE 8 API
New MVC 1.0 JavaEE 8 APINew MVC 1.0 JavaEE 8 API
New MVC 1.0 JavaEE 8 APITrayan Iliev
 
IPT Workshops on Java Robotics and IoT
IPT Workshops on Java Robotics and IoTIPT Workshops on Java Robotics and IoT
IPT Workshops on Java Robotics and IoTTrayan Iliev
 
IPT – Java Robotics and IoT
IPT – Java Robotics and IoTIPT – Java Robotics and IoT
IPT – Java Robotics and IoTTrayan Iliev
 
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...Trayan Iliev
 

More from Trayan Iliev (12)

Rapid Web API development with Kotlin and Ktor
Rapid Web API development with Kotlin and KtorRapid Web API development with Kotlin and Ktor
Rapid Web API development with Kotlin and Ktor
 
IPT Reactive Java IoT Demo - BGOUG 2018
IPT Reactive Java IoT Demo - BGOUG 2018IPT Reactive Java IoT Demo - BGOUG 2018
IPT Reactive Java IoT Demo - BGOUG 2018
 
Learning Programming Using Robots - Sofia University Conference 2018
Learning Programming Using Robots - Sofia University Conference 2018 Learning Programming Using Robots - Sofia University Conference 2018
Learning Programming Using Robots - Sofia University Conference 2018
 
Active Learning Using Connected Things - 2018 (in Bulgarian)
Active Learning Using Connected Things - 2018 (in Bulgarian)Active Learning Using Connected Things - 2018 (in Bulgarian)
Active Learning Using Connected Things - 2018 (in Bulgarian)
 
What's new in java 9?
What's new in java 9?What's new in java 9?
What's new in java 9?
 
React HOCs, Context and Observables
React HOCs, Context and ObservablesReact HOCs, Context and Observables
React HOCs, Context and Observables
 
Hackathon: “IPTPI and LeJaRo Meet The Real World”
Hackathon: “IPTPI and LeJaRo Meet The Real World”Hackathon: “IPTPI and LeJaRo Meet The Real World”
Hackathon: “IPTPI and LeJaRo Meet The Real World”
 
IPT angular2 typescript SPA 2016
IPT angular2 typescript SPA 2016IPT angular2 typescript SPA 2016
IPT angular2 typescript SPA 2016
 
New MVC 1.0 JavaEE 8 API
New MVC 1.0 JavaEE 8 APINew MVC 1.0 JavaEE 8 API
New MVC 1.0 JavaEE 8 API
 
IPT Workshops on Java Robotics and IoT
IPT Workshops on Java Robotics and IoTIPT Workshops on Java Robotics and IoT
IPT Workshops on Java Robotics and IoT
 
IPT – Java Robotics and IoT
IPT – Java Robotics and IoTIPT – Java Robotics and IoT
IPT – Java Robotics and IoT
 
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...
Novelties in Java EE 7: JAX-RS 2.0 + IPT REST HATEOAS Polling Demo @ BGOUG Co...
 

Recently uploaded

办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样umasea
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptrcbcrtm
 
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company OdishaBalasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odishasmiwainfosol
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Hr365.us smith
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...Technogeeks
 
Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Velvetech LLC
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaHanief Utama
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Developmentvyaparkranti
 
SensoDat: Simulation-based Sensor Dataset of Self-driving Cars
SensoDat: Simulation-based Sensor Dataset of Self-driving CarsSensoDat: Simulation-based Sensor Dataset of Self-driving Cars
SensoDat: Simulation-based Sensor Dataset of Self-driving CarsChristian Birchler
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfAlina Yurenko
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...confluent
 
Ahmed Motair CV April 2024 (Senior SW Developer)
Ahmed Motair CV April 2024 (Senior SW Developer)Ahmed Motair CV April 2024 (Senior SW Developer)
Ahmed Motair CV April 2024 (Senior SW Developer)Ahmed Mater
 
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...Natan Silnitsky
 
Unveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesUnveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesŁukasz Chruściel
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEEVICTOR MAESTRE RAMIREZ
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceBrainSell Technologies
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxTier1 app
 
Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Andreas Granig
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Matt Ray
 
SpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at RuntimeSpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at Runtimeandrehoraa
 

Recently uploaded (20)

办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
办理学位证(UQ文凭证书)昆士兰大学毕业证成绩单原版一模一样
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.ppt
 
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company OdishaBalasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
Balasore Best It Company|| Top 10 IT Company || Balasore Software company Odisha
 
Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)Recruitment Management Software Benefits (Infographic)
Recruitment Management Software Benefits (Infographic)
 
What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...What is Advanced Excel and what are some best practices for designing and cre...
What is Advanced Excel and what are some best practices for designing and cre...
 
Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief Utama
 
VK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web DevelopmentVK Business Profile - provides IT solutions and Web Development
VK Business Profile - provides IT solutions and Web Development
 
SensoDat: Simulation-based Sensor Dataset of Self-driving Cars
SensoDat: Simulation-based Sensor Dataset of Self-driving CarsSensoDat: Simulation-based Sensor Dataset of Self-driving Cars
SensoDat: Simulation-based Sensor Dataset of Self-driving Cars
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
 
Ahmed Motair CV April 2024 (Senior SW Developer)
Ahmed Motair CV April 2024 (Senior SW Developer)Ahmed Motair CV April 2024 (Senior SW Developer)
Ahmed Motair CV April 2024 (Senior SW Developer)
 
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...
Taming Distributed Systems: Key Insights from Wix's Large-Scale Experience - ...
 
Unveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New FeaturesUnveiling the Future: Sylius 2.0 New Features
Unveiling the Future: Sylius 2.0 New Features
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEE
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. Salesforce
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
 
Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024
 
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
Open Source Summit NA 2024: Open Source Cloud Costs - OpenCost's Impact on En...
 
SpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at RuntimeSpotFlow: Tracking Method Calls and States at Runtime
SpotFlow: Tracking Method Calls and States at Runtime
 

Reactive Java Robotics & IoT with Spring Reactor

  • 1. April 4, 2017 IPT – Intellectual Products & Technologies @ DEV.BG Reactive Java Robotics & IoT with Spring Reactor Trayan Iliev tiliev@iproduct.org http://iproduct.org Copyright © 2003-2017 IPT - Intellectual Products & Technologies
  • 2. 2 Trademarks Oracle®, Java™ and JavaScript™ are trademarks or registered trademarks of Oracle and/or its affiliates. LEGO® is a registered trademark of LEGO® Group. Programs are not affiliated, sponsored or endorsed by LEGO® Education or LEGO® Group. Raspberry Pi™ is a trademark of Raspberry Pi Foundation. Other names may be trademarks of their respective owners.
  • 3. 3 Disclaimer All information presented in this document and all supplementary materials and programming code represent only my personal opinion and current understanding and has not received any endorsement or approval by IPT - Intellectual Products and Technologies or any third party. It should not be taken as any kind of advice, and should not be used for making any kind of decisions with potential commercial impact. The information and code presented may be incorrect or incomplete. It is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and non-infringement. In no event shall the author or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the information, materials or code presented or the use or other dealings with this information or programming code.
  • 4. Tales of JAVA Robotics 4 There are several tales to share: Tale of Robotics, IoT and Complexity Tale of Common Sense: DDD Tale of two cities - Imperative and Reactive  Tale of two brave robots: LeJaRo and IPTPI  And some real reactive Java + TypeScript / Angular 2 / Reactive WebSocket code 
  • 5. 5 High Performnce Reactive JAVA  Reactive programming. Reactor & Proactor design patterns. Reactive Streams (java.util.concurrent.Flow)  High performance non-blocking asynchronous apps on JVM using Reactor project & RxJava  Disruptor (RingBuffer), Flux & Mono, Processors  End-to-end reactive web applications and services: Reactor IO (REST, WebSocket) + RxJS + Angular 2  Demo - reactive hot event streams processing on Raspberry Pi 2 (ARM v7) based robot IPTPI.  RxJava (not Zen only :) coans for self assessment
  • 6. IPT - Intellectual Products & Technologies IT Education Evolved 6 Since 2003 we provide trainings and share tech knowledge in Java SE/ EE/ Web/ JS/ ES/ TypeScript/ Node/ Express/ Socket.IO/ NoSQL/ Angular 2/ React / REST SOA: Java EE6/7, Spring, JSF, Portals/Portlets: Liferay, GateIn Reactive IoT with Reactor / RxJava / RxJS Node.js + Express/ hapi + React.js + Redux + GraphQL Angular 2 + TypeScript + Redux (ngrx) SOA & Distributed Hypermedia APIs (REST) Domain Driven Design & Reactive Microservices
  • 7. Where to Find the Demo Code? 7 IPTPI Reactive Demo is available @ GitHub: https://github.com/iproduct/course-social-robotics https://github.com/iproduct/jprime-demo
  • 8. Robots Can Be Complex 8
  • 9. … Even More Complex 9 Cross-section of many disciplines:  mechanical engineering  electrical engineering  computer science  artificial intelligence (AI)  human-computer interaction  sociology & psychology Picture by Hugo Elias of the Shadow Robot Company - http://www.shadowrobot.com/media/pictures.shtml, CC BY-SA 3.0
  • 10. Engineering, Science & Art 10 Source: https://commons.wikimedia.org/w/index.php?curid=551256, CC BY-SA 3.0
  • 11. and How Can We Forget 11 Source: https://commons.wikimedia.org/ w/index.php?curid=234900, CC BY-SA 3.0 Source: Korea Institute of Industrial Technology, http://news.naver.com/main/read.nhn? mode=LSD&mid=sec&sid1=102&oid=020&aid=0000371339
  • 12. Robots: The Most Intelligent Things 12 CC BY 2.0, Source: https://www.flickr.com/photos/wilgengebroed/8249565455/ Radar, GPS, lidar for navigation and obstacle avoidance ( 2007 DARPA Urban Challenge )
  • 13. The Internet of Things has the potential to change the world, just as the Internet did. Maybe even more so.  Nearly 50 petabytes of data are captured and created by human beings  People have limited time, attention and accuracy  Capturing data about things in the real world in real time  Track and count everything, reduce waste, loss & cost.  Know when things need replacing, repairing or recalling — Kevin Ashton, 'That 'Internet of Things' Thing', RFID Journal, 2009 Internet of Things (IoT)
  • 14.  There will be nearly 26 billion devices on the Internet of Things by 2020. [Gartner]  More than 30 billion devices will be wirelessly connected to the Internet of Things by 2020 [ABI Research]  It's expected to be a 19 Trillion USD market [John Chambers, Cisco CEO] IoT Perspectives
  • 15. "Basket of remotes" problem – we'll have hundreds of applications to interface with hundreds of devices that don't share protocols for speaking with one another [Jean-Louis Gassée, Apple initial team, and BeOS co-founder] Only IPv6 addresses are not enough – IoT devices should be also easily and directly accessible for users and [their] agents In read/write mode Preferably using a standard web browser Even behind firewalls IoT - Need for Standards
  • 16. IoT Services Architecture 16 Devices: Hardware + Embedded Software + Firmware UART/ I2C/ 2G/ 3G/ LTE/ ZigBee/ 6LowPan/ BLE Aggregation/ Bus: ESB, Message Broker Device Gateway: Local Coordination and Event Aggregation M2M: HTTP(/2) / WS / MQTT / CoAP Management: TR-069 / OMA-DM / OMA LWM2M HTTP, AMQP Cloud (Micro)Service Mng. Docker, Kubernetes/ Apache Brooklyn Web/ Mobile Portal PaaSDashboard PaaS API: Event Processing Services, Analytics
  • 17. Tracking Complexity 17 We need tools to cope with all that complexity inherent in robotics and IoT domains. Simple solutions are needed – cope with problems through divide and concur on different levels of abstraction: Domain Driven Design (DDD) – back to basics: domain objects, data and logic. Described by Eric Evans in his book: Domain Driven Design: Tackling Complexity in the Heart of Software, 2004
  • 18. Common Sense: DDD 18 Main concepts:  Entities, value objects and modules  Aggregates and Aggregate Roots [Haywood]: value < entity < aggregate < module < BC  Repositories, Factories and Services: application services <-> domain services  Separating interface from implementation
  • 19. Imperative and Reactive 19 We live in a Connected Universe ... there is hypothesis that all the things in the Universe are intimately connected, and you can not change a bit without changing all. Action – Reaction principle is the essence of how Universe behaves.
  • 20. Imperative and Reactive  Reactive Programming: using static or dynamic data flows and propagation of change Example: a := b + c  Functional Programming: evaluation of mathematical functions, ➢ Avoids changing-state and mutable data, declarative programming ➢ Side effects free => much easier to understand and predict the program behavior. Example: books.stream().filter(book -> book.getYear() > 2010) .forEach( System.out::println )
  • 21. Functional Reactive (FRP) 21 According to Connal Elliot's (ground-breaking paper @ Conference on Functional Programming, 1997), FRP is: (a) Denotative (b) Temporally continuous
  • 23. Reactive Programming 23  Microsoft® opens source polyglot project ReactiveX (Reactive Extensions) [http://reactivex.io]: Rx = Observables + LINQ + Schedulers :) Java: RxJava, JavaScript: RxJS, C#: Rx.NET, Scala: RxScala, Clojure: RxClojure, C++: RxCpp, Ruby: Rx.rb, Python: RxPY, Groovy: RxGroovy, JRuby: RxJRuby, Kotlin: RxKotlin ...  Reactive Streams Specification [http://www.reactive-streams.org/] used by:  (Spring) Project Reactor [http://projectreactor.io/]  Actor Model – Akka (Java, Scala) [http://akka.io/]
  • 24. Trayan Iliev IPT – Intellectual Products & Technologies Ltd. Multi-Agent Systems & Social Robotics 15/01/2015 Slide 24Copyright © 2003-2015 IPT – Intellectual Products & Technologies Ltd. All rights reserved. Подход на интелигентните агенти при моделиране на знания и системи
  • 25. Reactive Streams Spec. 25  Reactive Streams – provides standard for asynchronous stream processing with non-blocking back pressure.  Minimal set of interfaces, methods and protocols for asynchronous data streams  April 30, 2015: has been released version 1.0.0 of Reactive Streams for the JVM (Java API, Specification, TCK and implementation examples)  Java 9: java.util.concurrent.Flow
  • 26. Reactive Streams Spec. 26  Publisher – provider of potentially unbounded number of sequenced elements, according to Subscriber(s) demand. Publisher.subscribe(Subscriber) => onSubscribe onNext* (onError | onComplete)?  Subscriber – calls Subscription.request(long) to receive notifications  Subscription – one-to-one Subscriber ↔ Publisher, request data and cancel demand (allow cleanup).  Processor = Subscriber + Publisher
  • 27. FRP = Async Data Streams 27  FRP is asynchronous data-flow programming using the building blocks of functional programming (e.g. map, reduce, filter) and explicitly modeling time  Used for GUIs, robotics, and music. Example (RxJava): Observable.from( new String[]{"Reactive", "Extensions", "Java"}) .take(2).map(s -> s + " : on " + new Date()) .subscribe(s -> System.out.println(s)); Result: Reactive : on Wed Jun 17 21:54:02 GMT+02:00 2015 Extensions : on Wed Jun 17 21:54:02 GMT+02:00 2015
  • 28. 28  Performance is about 2 things (Martin Thompson – http://www.infoq.com/articles/low-latency-vp ): – Throughput – units per second, and – Latency – response time  Real-time – time constraint from input to response regardless of system load.  Hard real-time system if this constraint is not honored then a total system failure can occur.  Soft real-time system – low latency response with little deviation in response time  100 nano-seconds to 100 milli-seconds. [Peter Lawrey] What About High Performance?
  • 29. 32  Low garbage by reusing existing objects + infrequent GC when application not busy – can improve app 2 - 5x  JVM generational GC startegy – ideal for objects living very shortly (garbage collected next minor sweep) or be immortal  Non-blocking, lockless coding or CAS  Critical data structures – direct memory access using DirectByteBuffers or Unsafe => predictable memory layout and cache misses avoidance  Busy waiting – giving the CPU to OS kernel slows program 2-5x => avoid context switches  Amortize the effect of expensive IO - blocking Low Latency: Things to Remember
  • 30. 33  Non-blocking (synchronous) implementation is 2 orders of magnitude better then synchronized  We should try to avoid blocking and especially contended blocking if want to achieve low latency  If blocking is a must we have to prefer CAS and optimistic concurrency over blocking (but have in mind it always depends on concurrent problem at hand and how much contention do we experience – test early, test often, microbenchmarks are unreliable and highly platform dependent – test real application with typical load patterns)  The real question is: HOW is is possible to build concurrency without blocking? Mutex Comparison => Conclusions
  • 31. 34  Message Driven – asynchronous message-passing allows to establish a boundary between components that ensures loose coupling, isolation, location transparency, and provides the means to delegate errors as messages [Reactive Manifesto].  The main idea is to separate concurrent producer and consumer workers by using message queues.  Message queues can be unbounded or bounded (limited max number of messages)  Unbounded message queues can present memory allocation problem in case the producers outrun the consumers for a long period → OutOfMemoryError Scalable, Massively Concurrent
  • 32. 35  Queues typically use either linked-lists or arrays for the underlying storage of elements. Linked lists are not „mechanically sympathetic” – there is no predictable caching “stride” (should be less than 2048 bytes in each direction).  Bounded queues often experience write contention on head, tail, and size variables. Even if head and tail separated using CAS, they usually are in the same cache- line.  Queues produce much garbage.  Typical queues conflate a number of different concerns – producer and consumer synchronization and data storage Queues Disadvantages [http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]
  • 33. 36  LMAX Disruptor design pattern separates different concerns in a “mechanically sympathetic” way: - Storage of items being exchanged - Producer coordination – claiming the next sequence - Consumers coordination – notified new item is available  Single Writer principle is employed when writing data in the Ring Buffer from single producer thread only (no contention),  When multiple producers → CAS  Memory pre-allocated – predictable stride, no garbage LMAX Disruptor (RingBuffer) [http://lmax-exchange.github.com/disruptor/files/Disruptor-1.0.pdf]
  • 34. 37 LMAX Disruptor (RingBuffer) High Performance [http://lmax-exchange.github.com/disruptor/files/Disruptor- 1.0.pdf] Source: LMAX Disruptor github wiki - https://raw.githubusercontent.com/wiki/LMAX- Exchange/disruptor/images/Models.png LMAX-Exchange Disruptor License @ GitHub: Apache License Version 2.0, January 2004 - http://www.apache.org/licenses/
  • 35. 38 LMAX Disruptor (RingBuffer) High Performance [http://lmax-exchange.github.com/disruptor/files/Disruptor- 1.0.pdf] Source: LMAX Disruptor @ GitHub - https://github.com/LMAX- Exchange/disruptor/blob/master/docs/Disruptor.docx LMAX-Exchange Disruptor License @ GitHub: Apache License Version 2.0, January 2004 - http://www.apache.org/licenses/
  • 36. Project Reactor 39  Reactor project allows building high-performance (low latency high throughput) non-blocking asynchronous applications on JVM.  Reactor is designed to be extraordinarily fast and can sustain throughput rates on order of 10's of millions of operations per second.  Reactor has powerful API for declaring data transformations and functional composition.  Makes use of the concept of Mechanical Sympathy built on top of Disruptor / RingBuffer.
  • 37. Project Reactor 40  Pre-allocation at startup-time  Message-passing structures are bounded  Using Reactive and Event-Driven Architecture patterns => non-blocking end-to-end flows, replies  Implement Reactive Streams Specification – efficient bounded structures requesting no more than capacity  Applies above features to IPC and provides non- blocking IO drivers that are flow-control aware  Expose a Functional API – organize their code in a side-effect free way, which helps you determine you are thread-safe and fault-tolerant
  • 38. Reactor Projects 41 https://github.com/reactor/reactor, Apache Software License 2.0 IPC – Netty, Kafka, Aeron
  • 43. Reactor: Hello World 46 public static void main(String... args) throws InterruptedException { EmitterProcessor<String> emitter = EmitterProcessor.create(); BlockingSink<String> sink = emitter.connectSink(); emitter.publishOn(Schedulers.single()) .map(String::toUpperCase) .filter(s → s.startsWith("HELLO")) .delayMillis(1000).subscribe(System.out::println); sink.submit("Hello World!"); // emit - non blocking sink.submit("Goodbye World!"); sink.submit("Hello Trayan!"); Thread.sleep(3000); }
  • 44. Reactor: Flux Example 47 Flux.fromIterable(getSomeLongList()) .mergeWith(Flux.interval(100)) .doOnNext(serviceA::someObserver) .map(d -> d * 2) .take(3) .onErrorResumeWith(errorHandler::fallback) .doAfterTerminate(serviceM::incrementTerminate) .subscribe(System.out::println); https://github.com/reactor/reactor-core, Apache Software License 2.0
  • 45. Reactor Bus: IPTPI Java Robot 48
  • 46. Disruptor (Ring Buffer) used in Reactor 49 Reactor provides 3 major types of Processors:  EmitterProcessor – using 0 threads (on same thread)  TopicProcessor using – N threads concurrently processing the messages (AND operation)  WorkQueueProcessor – N threads alternatively processing the messages (XOR operation – messages are processed exactly by one thread – load ballancing and work distribution)
  • 49. IPTPI: RPi2 + Ardunio Robot 52  Raspberry Pi 2 (quad-core ARMv7 @ 900MHz) + Arduino Leonardo cloneA-Star 32U4 Micro  Optical encoders (custom), IR optical array, 3D accelerometers, gyros, and compass MinIMU-9 v2  IPTPI is programmed in Java using Pi4J, Reactor, RxJava, Akka  More information about IPTPI: http://robolearn.org/iptpi-robot/
  • 50. IPTPI: RPi2 + Ardunio Robot 53 3D accelerometers, gyros, and compass MinIMU-9 v2 Pololu DRV8835 Dual Motor Driver for Raspberry Pi Arduino Leonardo clone A-Star 32U4 Micro USB Stereo Speakers - 5V LiPo Powebank 15000 mAh
  • 51. IPTPI: RPi2 + Ardunio Robot 54 Raspberry Pi 2 (quad-core ARMv7 @ 900MHz) IR Optical Sensor QRD1114 Array (Line Following) Adafruit 2.8" PiTFT - Capacitive Touch Screen
  • 52. 55
  • 53. LeJaRo: Lego® Java Robot 56  Modular – 3 motors (with encoders) – one driving each track, and third for robot clamp.  Three sensors: touch sensor (obstacle avoidance), light color sensor (follow line), IR sensor (remote).  LeJaRo is programmed in Java using LeJOS library.  More information about LeJaRo: http://robolearn.org/lejaro/  Programming examples available @GitHub: https://github.com/iproduct/course-social-robotics/tre e/master/motors_demo LEGO® is a registered trademark of LEGO® Group. Programs of IPT are not affiliated, sponsored or endorsed by LEGO® Education or LEGO® Group.
  • 56. IPTPI: IPTPIDemo I 59 public class IPTPIVDemo { ... public IPTPIDemo() { //receive Arduino data readings ArduinoData = ArduinoFactory.getInstance().createArduinoData(); //calculate robot positions PositionsFlux = PositionFactory.createPositionFlux( arduinoData.getEncoderReadingsFlux()); resentationViews.add( PositionFactory.createPositionPanel(positionsFlux)); //enable sending commands to Arduino ArduinoCommandsSub = ArduinoFactory.getInstance() .createArduinoCommandSubscriber(); /
  • 57. IPTPI: IPTPIDemo II 60 //Audio player - added @jPrime 2016 Hackergarten audio = AudioFactory.createAudioPlayer(); //wire robot main controller with services movementSub =MovementFactory.createMovementCommandSubscriber( positionsFlux, arduinoData.getLineReadingsFlux()); controller = new RobotController(this::tearDown, movementSub, arduinoCommandsSub, audio); //create view with controller and delegate material views from query services view = new RobotView("IPTPI Reactive Robotics Demo", controller, presentationViews);
  • 58. IPTPI: IPTPIDemo III 61 //expose as WS service movementSub2 =MovementFactory.createMovementCommandSubscriber( positionsFlux, arduinoData.getLineReadingsFlux()); positionsService = new RobotWSService( positionsFlux, movementSub2); } public static void main(String[] args) { // initialize wiringPi library Gpio.wiringPiSetupGpio(); try { IPTPIDemo demo = new IPTPIDemo(); } catch (IOException e) { e.printStackTrace(); } }
  • 59. IPTPI: ArduinoData I 62 positionsFlux = EmitterProcessor.create(); positionsSink = positionsFlux.connectSink(); lineFlux = EmitterProcessor.create(); lineSink = lineFlux.connectSink(); final Serial serial = SerialFactory.createInstance(); serial.addListener(new SerialDataEventListener() { private ByteBuffer buffer = ByteBuffer.allocate(1024); public void dataReceived(SerialDataEvent event) { try { ByteBuffer newBuffer = event.getByteBuffer(); buffer.put(newBuffer); buffer.flip(); ... buffer.get(); long timestamp = buffer.getInt(); //get timestamp int encoderL = -buffer.getInt(); //motors mirrored int encoderR = buffer.getInt();
  • 60. IPTPI: ArduinoData II 63 EncoderReadings readings = new EncoderReadings(encoderR, encoderL, timestamp); emitter.submit(readings); ... buffer.compact(); } catch (Exception e) { e.printStackTrace(); } } }); try { serial.open(PORT, 38400); } catch(SerialPortException | IOException ex) { System.out.println(“SERIAL SETUP FAILED:"+ex.getMessage()); }
  • 61. IPTPI: PositionFlux I 64 Redux Pattern! public PositionsFlux( Flux<EncoderReadings> readingsFlux) { this.encoderReadings = readingsFlux; Flux<EncoderReadings> skip1 = readingsFlux.skip(1); positionsFlux = Flux.zip(readingsFlux, skip1) .map(tupple -> .scan(new Position(0, 0, 0), (last, tupple) -> { EncoderReadings prev = tupple.getT1(); EncoderReadings curr = tupple.getT2(); int prevL = prev.getEncoderL(); int prevR = prev.getEncoderR(); int currL = curr.getEncoderL(); int currR = curr.getEncoderR(); int sL = currL - prevL; int sR = currR - prevR; double alpha0 = last.getHeading();
  • 62. IPTPI: PositionFlux II 65 double alpha0 = last.getHeading(); if(sR == sL) { return new Position((float)(last.getX() + sL * ENCODER_STEP_LENGTH * cos(alpha0)), (float)(last.getY()+ sL * ENCODER_STEP_LENGTH * sin(alpha0)), alpha0, curr.getTimestamp()); } else { … } }) ); }
  • 63. CommandMovementSubscriber I 66 public class CommandMovementSubscriber extends ConsumerSubscriber<Command<Movement>> { private PositionFluxion positions; public CommandMovementSubscriber(PositionFluxion positions){ this.positions = positions; Gpio.wiringPiSetupGpio(); // initialize wiringPi library Gpio.pinMode(5, Gpio.OUTPUT); // Motor direction pins Gpio.pinMode(6, Gpio.OUTPUT); Gpio.pinMode(12, Gpio.PWM_OUTPUT); // Motor speed pins Gpio.pinMode(13, Gpio.PWM_OUTPUT); Gpio.pwmSetMode(Gpio.PWM_MODE_MS); Gpio.pwmSetRange(MAX_SPEED); Gpio.pwmSetClock(CLOCK_DIVISOR); } @Override public void doNext(Command<Movement> command) { ... } }
  • 64. CommandMovementSubscriber II 67 private void runMotors(MotorsCommand mc) { //setting motor directions Gpio.digitalWrite(5, mc.getDirR() > 0 ? 1 : 0); Gpio.digitalWrite(6, mc.getDirL() > 0 ? 1 : 0); //setting speed if(mc.getVelocityR()>=0 && mc.getVelocityR() <=MAX_SPEED) Gpio.pwmWrite(12, mc.getVelocityR()); // set speed if(mc.getVelocityL()>=0 && mc.getVelocityL() <=MAX_SPEED) Gpio.pwmWrite(13, mc.getVelocityL()); } }
  • 65. Reactor IO – NetStreams API 68 http://projectreactor.io/io/docs/reference/, Apache License 2.0
  • 66. Takeaways: Why Go Reactive? 69 Benefits using Reactive Programming + DDD:  DDD helps to manage complexity in IoT and Robotics - many subsystems = sub-domains  Reactive Streams (Fluxes, Monos) = uni-directional data flows, CQRS, event sourcing, microservices  Reactive Streams can be non-blocking and highly efficient, or can utilize blocking if needed  Naturally implement state management patterns like Redux, allow time travel, replay and data analytics  Clear, declarative data transforms that scale (Map- Reduce, BigData, PaaS)
  • 67. Takeaways: Why Maybe Not? 70 Cons using Reactive Programming + DDD:  DDD requires additional efforts to clearly separate different (sub) domains – DSL translators, factories...  Reactive Streams utilize functional composition and require entirely different mindset then imperative – feels like learning foreign language  Pure functions and Redux provide much benefits, but there's always temptation to “do it the old way” :)  Tool support for functional programming in Java is still not perfect (in Eclipse at least :)
  • 68. Where to Find the Demo Code? 71 IPTPI Reactive Demo is available @ GitHub: https://github.com/iproduct/course-social-robotics https://github.com/iproduct/jprime-demo
  • 69. 72 Resources: RxMarbles & Rx Coans RxMarbles: http://rxmarbles.com/ Lite Rx API Hands-On with Reactor Core 3: https://github.com/reactor/lite-rx-api-hands-on/ RxJava Koans – Let's try to solve them at: https://github.com/mutexkid/rxjava-koans RxJS Koans – for those who prefer JavaScript :) https://github.com/Reactive-Extensions/RxJSKoans
  • 70. Tale of Simplicity: DDD 73 http://robolearn.org/ Let's move! http://iproduct.org/
  • 71. Thank’s for Your Attention! 74 Trayan Iliev CEO of IPT – Intellectual Products & Technologies http://iproduct.org/ http://robolearn.org/ https://github.com/iproduct https://twitter.com/trayaniliev https://www.facebook.com/IPT.EACAD https://plus.google.com/+IproductOrg