SlideShare a Scribd company logo
1 of 40
Fourier Transform
Content
Introduction
Fourier

Integral
Fourier Transform
Properties of Fourier Transform
Convolution
Parseval’s Theorem
Continuous-Time
Fourier Transform
Introduction
The Topic
Periodic

Discrete
Time

Fourier
Fourier
Series
Series

Discrete
Discrete
Fourier
Fourier
Transform
Transform

Aperiodic

Continuous
Time

Continuous
Continuous
Fourier
Fourier
Transform
Transform

Fourier
Fourier
Transform
Transform
Review of Fourier Series
 Deal

with continuous-time periodic signals.
 Discrete frequency spectra.
A Periodic Signal
A Periodic Signal

f(t)
t
T

2T

3T
Two Forms for Fourier Series
Sinusoidal
a0 ∞
2πnt ∞
2πnt
f (t ) = + ∑ an cos
+ ∑ bn sin
Form
2 n =1
T
T
n =1
2 T /2
a0 = ∫
f (t )dt
−T / 2
T

Complex
Form:

f (t ) =

∞

∑ cn e

n = −∞

jnω0t

2 T /2
an = ∫
f (t ) cos nω0tdt
T −T / 2
2 T /2
bn = ∫
f (t ) sin nω0tdt
T −T / 2

1
cn =
T

∫

T /2

−T / 2

f (t )e − jnω0t dt
How to Deal with Aperiodic Signal?
A Periodic Signal
A Periodic Signal

f(t)
t
T

If T→∞, what happens?
Continuous-Time
Fourier Transform
Fourier Integral
Fourier Integral
fT (t ) =

∞

∑c e

n = −∞

n

jnω0t

1
cn =
T

∫

T /2

−T / 2

fT (t )e − jnω0t dt

∞

 1 T /2

=∑ ∫
fT (τ)e − jnω0 τ dτ e jnω0t
−T / 2

n = −∞  T
1 ∞  T /2
=
fT (τ)e − jnω0 τ dτ ω0 e jnω0t
∑


2π n = −∞  ∫−T / 2
1 ∞  T /2
=
fT (τ)e − jnω0 τ dτ e jnω0t ∆ω
∑


2π n = −∞  ∫−T / 2
1 ∞ ∞
=
fT (τ)e − jωτ dτ e jωt dω



2π ∫−∞  ∫−∞

ω0 =

2π
T

1 ω0
=
T 2π

Let ∆ω = ω0 =

2π
T

T → ∞ ⇒ dω = ∆ω ≈ 0
Fourier Integral
1 ∞ ∞
− jωτ
 e jωt dω
f (t ) =
∫−∞ ∫−∞ f (τ)e dτ

2π 
F(jω )

1 ∞
jω t
f (t ) =
∫−∞ F ( jω)e dω
2π
∞

F ( jω) = ∫ f (t )e
−∞

− jω t

dt

Synthesis
Analysis
Fourier Series vs. Fourier Integral
Fourier
Series:

f (t ) =

cn e jnω0t
∑

Period Function

n = −∞

1
cn =
T

Fourier
Integral:

∞

∫

T /2

−T / 2

Discrete Spectra

fT (t )e − jnω0t dt

1 ∞
f (t ) =
F ( jω)e jωt dω
2π ∫−∞
∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

Non-Period
Function

Continuous Spectra
Continuous-Time
Fourier Transform
Fourier Transform
Fourier Transform Pair
Inverse Fourier Transform:

1 ∞
f (t ) =
F ( jω)e jωt dω
2π ∫−∞

Synthesis

Fourier Transform:
∞

F ( jω) = ∫ f (t )e
−∞

− jωt

dt

Analysis
Existence of the Fourier Transform

Sufficient Condition:
f(t) is absolutely integrable, i.e.,

∫

∞

−∞

| f (t ) |dt < ∞
Continuous Spectra
∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

F ( jω) = FR ( jω) + jFI ( jω)

=| F ( jω) | e
Magnitude

jφ ( ω )
Phase

FI(jω)

|
ω)
j
|F(
φ(ω)

FR(jω)
Example
1

-1

f(t)
t

1

1 − jωt
F ( jω) = ∫ f (t )e dt = ∫ e dt =
e
−∞
−1
− jω
j − jω
2 sin ω
jω
= (e − e ) =
ω
ω
∞

− jω t

1

1

− jωt

−1
Example

F(ω
F(ω) )

33
22
11
00

-1

1

-1
f(t)

-10
-10

-5
-5

00

55

33
22

t

|F(ω
|F(ω)|)|

-1

10
10

11 1
00
-10
-10
1
44

− jω t

arg[F(ω
arg[F(ω)])]

1 − jωt
F ( jω) = ∫ f (t )e dt = ∫ e dt =
e
−∞
−1
− jω
22
j − jω
2 sin ω
jω
00
= (e − e ) = -10 -5-5 00 55 10
-10
10
ω
ω
∞

-5
-5

− jωt

00

55

10
10

1

−1
Example
f(t)

e−αt
t
∞

F ( jω) = ∫ f (t )e

− jω t

−∞
∞

=∫ e
0

− ( α + jω ) t

∞

dt = ∫ e −αt e − jωt dt
0

1
dt =
α + jω
Example
f(t)

1
1
|F(jω)|
|F(jω)|

=2
αα =2

0.5
0.5

0
0
2
2

∞

−∞
∞

=∫ e
0

arg[F(jω)]
arg[F(jω)]

F ( jω) = ∫ f (t )e

-10
-10

− jω t

0
0

-2
-2

− ( α + jω ) t

e−αt

-5
-5

0
0

5
5

t 10
10

∞

dt = ∫ e −αt e − jωt dt
0

1
dt =
α + jω
-10
-10

-5
-5

0
0

5
5

10
10
Continuous-Time
Fourier Transform
Properties of
Fourier Transform
Notation
F [ f (t )] = F ( jω)

F [ F ( jω)] = f (t )
-1

f (t ) ←
→ F ( jω)
F
Linearity
a1 f1 (t ) + a2 f 2 (t ) ←
→ a1 F1 ( jω) + a2 F2 ( jω)
F

orrk !!
Wo k
H om e W
!!Home
Time Scaling
1  ω
f (at ) ←
→
F j 
|a|  a
F

orrk !!
Wo k
H om e W
!!Home
Time Reversal
f ( −t ) ←
→ F ( − jω)
F

Pf) F [ f (−t )] = ∞ f (−t )e − jωt dt = t =∞ f (−t )e − jωt dt
∫−∞
∫t =−∞
=∫

− t =∞

−t = −∞

= −∫

=∫
f (t )e jωt d ( −t )
f (t )e d ( −t )
−t = −∞

t = −∞

t =∞

∞

− t =∞

j ωt

f (t )e dt = ∫
j ωt

t =∞

t = −∞

f (t )e jωt dt

= ∫ f (t )e jωt dt = F (− jω)
−∞
Time Shifting
f (t − t0 ) ←
→ F ( jω) e
F

− jωt 0

Pf) F [ f (t − t )] = ∞ f (t − t )e − jωt dt = t =∞ f (t − t )e − jωt dt
0
0
0
∫−∞
∫t =−∞
=∫

t +t0 =∞

=e

− j ωt 0

=e

− j ωt 0

t + t 0 = −∞

f (t )e − jω(t +t0 ) d (t + t0 )

∫

t =∞

∫

∞

t = −∞

−∞

f (t )e − jωt dt

− jω t
f (t )e − jωt dt = F ( jω)e 0
Frequency Shifting (Modulation)
f (t )e
Pf)

jω0t

¬  F [ j (ω − ω0 ) ]
→

F [ f (t )e

F

jω 0 t

∞

] = ∫ f (t )e jω0t e − jωt dt
−∞
∞

= ∫ f (t )e − j ( ω−ω0 )t dt
−∞

= F [ j (ω − ω0 )]
Symmetry Property
F [ F ( jt )] = 2πf (−ω)
Proof

∞

2πf (t ) = ∫ F ( jω)e jωt dω
−∞

∞

2πf (−t ) = ∫ F ( jω)e − jωt dω
−∞

Interchange symbols ω and t
∞

2πf (−ω) = ∫ F ( jt )e − jωt dt = F [ F ( jt )]
−∞
Fourier Transform for
Real Functions
If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω)
F(−jω) = F*(jω)

∞

F ( jω) = ∫ f (t )e

− jωt

−∞
∞

dt

F * ( jω) = ∫ f (t )e dt = F (− jω)
−∞

jωt
Fourier Transform for
Real Functions
If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω)
F(−jω) = F*(jω)
FR(jω) is even, and FI(jω) is odd.
F R jω ) = F R F (− jω ) = − F (jω )
(−
(jω ) I
I
Magnitude spectrum |F(jω)| is even, and
phase spectrum φ(ω) is odd.
Fourier Transform for
Real Functions
If f(t) is real and even
F(jω) is real
Pf)
Even

If f(t) is real and odd

√

f (t ) = f (−t )

F(jω) is pure imaginary
Pf)
Odd

F ( jω) = F (− jω)

Real

F (− jω) = F * ( jω)
F ( jω) = F * ( jω)

√

f (t ) = − f (−t )
F ( jω) = − F (− jω)

Real

F (− jω) = F * ( jω)
F ( jω) = − F * ( jω)
Example:
F [ f (t )] = F ( jω)
Sol)

F [ f (t ) cos ω0t ] = ?

1
f (t ) cos ω0t = f (t )(e jω0t + e − jω0t )
2
1
1
jω 0 t
F [ f (t ) cos ω0t ] = F [ f (t )e ] + F [ f (t )e − jω0t ]
2
2
1
1
= F [ j (ω − ω0 )] + F [ j (ω + ω0 )]
2
2
Example:
1

−d/2

f(t)=wd(t)cosω0t

wd(t)
t

d/2

−d/2

d/2

t

2  ωd 
Wd ( jω) = F [ wd (t )] = ∫ e dt = sin 

−d / 2
ω  2 
d
d
sin (ω − ω0 ) sin (ω + ω0 )
2
2
=
+
F ( jω) = F [ wd (t ) cos ω0t ]
ω − ω0
ω + ω0
d /2

− jωt
1.5
1.5
d=2
d=2
ω0=5ππ
ω =5

1
1

0

F(jω)
F(jω)

Example:

0.5
0.5
0
0

-0.5
-0.5 -60
-60

1

−d/2

-40
-40

-20
-20

0
0

20
20

40
40

ω
ω

60
60

f(t)=wd(t)cosω0t

wd(t)
t

d/2

−d/2

d/2

t

2  ωd 
Wd ( jω) = F [ wd (t )] = ∫ e dt = sin 

−d / 2
ω  2 
d
d
sin (ω − ω0 ) sin (ω + ω0 )
2
2
=
+
F ( jω) = F [ wd (t ) cos ω0t ]
ω − ω0
ω + ω0
d /2

− jωt
1

Example:
sin at
f (t ) =
πt
Sol)

wd(t)
t

−d/2

d/2

F ( jω) = ?

2  ωd 
Answer is
Wd ( jω) = sin 

just
ω  2 
opposite to
as expected
 2  td  
F [Wd ( jt )] = F  sin    = 2πwd (−ω)
 2 
t
0 ω <| a |
 sin at 
F [ f (t )] = F 
 = w2 a (−ω) = 1 ω >| a |
 πt 

Fourier Transform of f’(t)
f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ' (t ) ←F jωF ( jω)
→
Pf) F [ f ' (t )] = ∞ f ' (t )e − jωt dt
∫−∞
= f (t )e

− j ωt ∞
−∞

= jωF ( jω)

∞

+ jω∫ f (t )e − jωt dt
−∞
Fourier Transform of f (t)
(n)

f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ( n ) (t ) ←F ( jω) n F ( jω)
→

orrk !!
Wo k
H om e W
!!Home
Fourier Transform of f (t)
(n)

f (t ) ←
→ F ( jω) and lim f (t ) = 0
F

t → ±∞

f ( n ) (t ) ←F ( jω) n F ( jω)
→

orrk !!
Wo k
H om e W
!!Home
Fourier Transform of Integral
f (t ) ←
→ F ( jω) and
F

∫

∞

−∞

f (t )dt = F ( 0 ) = 0

 t f ( x)dx  = 1 F ( jω)
F ∫
 −∞
 jω


Let φ(t ) =

∫

t

−∞

f ( x)dx

lim φ(t ) = 0
t →∞

F [φ' (t )] = F [ f (t )] = F ( jω) = jωΦ ( jω)
1
Φ ( jω) =
F ( jω)
jω
The Derivative of Fourier Transform
dF ( jω)
F [− jtf (t )] ←
→
dω
F

Pf)

∞

F ( jω) = ∫ f (t )e − jωt dt
−∞

∞
dF ( jω) d ∞
∂ − j ωt
− j ωt
=
∫−∞ f (t )e dt = ∫−∞ f (t ) ∂ω e dt
dω
dω
∞

= ∫ [− jtf (t )]e − jωt dt = F [− jtf (t )]
−∞
You!!
nk You
!!Tha nk
Tha

More Related Content

What's hot

Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemAttaporn Ninsuwan
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace TransformsKetaki_Pattani
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transformKrishna Jangid
 
EC8562 DSP Viva Questions
EC8562 DSP Viva Questions EC8562 DSP Viva Questions
EC8562 DSP Viva Questions ssuser2797e4
 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformsIffat Anjum
 
Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)Bin Biny Bino
 
Chapter 2 laplace transform
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transformLenchoDuguma
 
Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5HIMANSHU DIWAKAR
 
3.Frequency Domain Representation of Signals and Systems
3.Frequency Domain Representation of Signals and Systems3.Frequency Domain Representation of Signals and Systems
3.Frequency Domain Representation of Signals and SystemsINDIAN NAVY
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformationWasim Shah
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformskalung0313
 

What's hot (20)

Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant System
 
Applications Of Laplace Transforms
Applications Of Laplace TransformsApplications Of Laplace Transforms
Applications Of Laplace Transforms
 
Fourier series and applications of fourier transform
Fourier series and applications of fourier transformFourier series and applications of fourier transform
Fourier series and applications of fourier transform
 
EC8562 DSP Viva Questions
EC8562 DSP Viva Questions EC8562 DSP Viva Questions
EC8562 DSP Viva Questions
 
Z transform ROC eng.Math
Z transform ROC eng.MathZ transform ROC eng.Math
Z transform ROC eng.Math
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)
 
Fourier integral
Fourier integralFourier integral
Fourier integral
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Properties of laplace transform
Properties of laplace transformProperties of laplace transform
Properties of laplace transform
 
Chapter 2 laplace transform
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transform
 
Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5
 
3.Frequency Domain Representation of Signals and Systems
3.Frequency Domain Representation of Signals and Systems3.Frequency Domain Representation of Signals and Systems
3.Frequency Domain Representation of Signals and Systems
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
 
filters
filtersfilters
filters
 
Windowing (signal processing)
Windowing (signal processing)Windowing (signal processing)
Windowing (signal processing)
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformation
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 

Similar to fourier transforms

Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering MathematicsPrasenjitRathore
 
DEMO-TF-escalon.pdf
DEMO-TF-escalon.pdfDEMO-TF-escalon.pdf
DEMO-TF-escalon.pdfAngelSb3
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulasHoopeer Hoopeer
 
free Video lecture
free Video lecturefree Video lecture
free Video lectureEdhole.com
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripioomardavid01
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace TransformAditi523129
 
Admission in India
Admission in IndiaAdmission in India
Admission in IndiaEdhole.com
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdfNeema85
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfShreyaLathiya
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 

Similar to fourier transforms (20)

Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering Mathematics
 
4. cft
4. cft4. cft
4. cft
 
DEMO-TF-escalon.pdf
DEMO-TF-escalon.pdfDEMO-TF-escalon.pdf
DEMO-TF-escalon.pdf
 
Tables
TablesTables
Tables
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
Laplace1
Laplace1Laplace1
Laplace1
 
free Video lecture
free Video lecturefree Video lecture
free Video lecture
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
corripio
corripio corripio
corripio
 
Laplace
LaplaceLaplace
Laplace
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
laplace.pdf
laplace.pdflaplace.pdf
laplace.pdf
 
Segundo teorema
Segundo teoremaSegundo teorema
Segundo teorema
 
Analog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdfAnalog Communication Chap 3-pages-2-41.pdf
Analog Communication Chap 3-pages-2-41.pdf
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Lect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdfLect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdf
 

More from Umang Gupta

23 network security threats pkg
23 network security threats pkg23 network security threats pkg
23 network security threats pkgUmang Gupta
 
Chapter8 27 nov_2010
Chapter8 27 nov_2010Chapter8 27 nov_2010
Chapter8 27 nov_2010Umang Gupta
 
Lecture43 network security
Lecture43 network securityLecture43 network security
Lecture43 network securityUmang Gupta
 
11. transaction sql
11. transaction sql11. transaction sql
11. transaction sqlUmang Gupta
 
Advanced data structures and implementation
Advanced data structures and implementationAdvanced data structures and implementation
Advanced data structures and implementationUmang Gupta
 
Graph theory narsingh deo
Graph theory narsingh deoGraph theory narsingh deo
Graph theory narsingh deoUmang Gupta
 
Computer organiztion6
Computer organiztion6Computer organiztion6
Computer organiztion6Umang Gupta
 
Computer organiztion4
Computer organiztion4Computer organiztion4
Computer organiztion4Umang Gupta
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3Umang Gupta
 
Computer organiztion2
Computer organiztion2Computer organiztion2
Computer organiztion2Umang Gupta
 
Computer organiztion1
Computer organiztion1Computer organiztion1
Computer organiztion1Umang Gupta
 
Computer organiztion5
Computer organiztion5Computer organiztion5
Computer organiztion5Umang Gupta
 
Angle modulation
Angle modulationAngle modulation
Angle modulationUmang Gupta
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier seriesUmang Gupta
 
Communication systems
Communication systemsCommunication systems
Communication systemsUmang Gupta
 

More from Umang Gupta (17)

23 network security threats pkg
23 network security threats pkg23 network security threats pkg
23 network security threats pkg
 
Lect13 security
Lect13   securityLect13   security
Lect13 security
 
Chapter8 27 nov_2010
Chapter8 27 nov_2010Chapter8 27 nov_2010
Chapter8 27 nov_2010
 
Lecture43 network security
Lecture43 network securityLecture43 network security
Lecture43 network security
 
11. transaction sql
11. transaction sql11. transaction sql
11. transaction sql
 
Advanced data structures and implementation
Advanced data structures and implementationAdvanced data structures and implementation
Advanced data structures and implementation
 
Graph theory narsingh deo
Graph theory narsingh deoGraph theory narsingh deo
Graph theory narsingh deo
 
Computer organiztion6
Computer organiztion6Computer organiztion6
Computer organiztion6
 
Computer organiztion4
Computer organiztion4Computer organiztion4
Computer organiztion4
 
Computer organiztion3
Computer organiztion3Computer organiztion3
Computer organiztion3
 
Computer organiztion2
Computer organiztion2Computer organiztion2
Computer organiztion2
 
Computer organiztion1
Computer organiztion1Computer organiztion1
Computer organiztion1
 
Computer organiztion5
Computer organiztion5Computer organiztion5
Computer organiztion5
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
 
Basic antenas
Basic antenasBasic antenas
Basic antenas
 
Communication systems
Communication systemsCommunication systems
Communication systems
 

Recently uploaded

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 

Recently uploaded (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 

fourier transforms

  • 2. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval’s Theorem
  • 5. Review of Fourier Series  Deal with continuous-time periodic signals.  Discrete frequency spectra. A Periodic Signal A Periodic Signal f(t) t T 2T 3T
  • 6. Two Forms for Fourier Series Sinusoidal a0 ∞ 2πnt ∞ 2πnt f (t ) = + ∑ an cos + ∑ bn sin Form 2 n =1 T T n =1 2 T /2 a0 = ∫ f (t )dt −T / 2 T Complex Form: f (t ) = ∞ ∑ cn e n = −∞ jnω0t 2 T /2 an = ∫ f (t ) cos nω0tdt T −T / 2 2 T /2 bn = ∫ f (t ) sin nω0tdt T −T / 2 1 cn = T ∫ T /2 −T / 2 f (t )e − jnω0t dt
  • 7. How to Deal with Aperiodic Signal? A Periodic Signal A Periodic Signal f(t) t T If T→∞, what happens?
  • 9. Fourier Integral fT (t ) = ∞ ∑c e n = −∞ n jnω0t 1 cn = T ∫ T /2 −T / 2 fT (t )e − jnω0t dt ∞  1 T /2  =∑ ∫ fT (τ)e − jnω0 τ dτ e jnω0t −T / 2  n = −∞  T 1 ∞  T /2 = fT (τ)e − jnω0 τ dτ ω0 e jnω0t ∑   2π n = −∞  ∫−T / 2 1 ∞  T /2 = fT (τ)e − jnω0 τ dτ e jnω0t ∆ω ∑   2π n = −∞  ∫−T / 2 1 ∞ ∞ = fT (τ)e − jωτ dτ e jωt dω    2π ∫−∞  ∫−∞ ω0 = 2π T 1 ω0 = T 2π Let ∆ω = ω0 = 2π T T → ∞ ⇒ dω = ∆ω ≈ 0
  • 10. Fourier Integral 1 ∞ ∞ − jωτ  e jωt dω f (t ) = ∫−∞ ∫−∞ f (τ)e dτ  2π  F(jω ) 1 ∞ jω t f (t ) = ∫−∞ F ( jω)e dω 2π ∞ F ( jω) = ∫ f (t )e −∞ − jω t dt Synthesis Analysis
  • 11. Fourier Series vs. Fourier Integral Fourier Series: f (t ) = cn e jnω0t ∑ Period Function n = −∞ 1 cn = T Fourier Integral: ∞ ∫ T /2 −T / 2 Discrete Spectra fT (t )e − jnω0t dt 1 ∞ f (t ) = F ( jω)e jωt dω 2π ∫−∞ ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ Non-Period Function Continuous Spectra
  • 13. Fourier Transform Pair Inverse Fourier Transform: 1 ∞ f (t ) = F ( jω)e jωt dω 2π ∫−∞ Synthesis Fourier Transform: ∞ F ( jω) = ∫ f (t )e −∞ − jωt dt Analysis
  • 14. Existence of the Fourier Transform Sufficient Condition: f(t) is absolutely integrable, i.e., ∫ ∞ −∞ | f (t ) |dt < ∞
  • 15. Continuous Spectra ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ F ( jω) = FR ( jω) + jFI ( jω) =| F ( jω) | e Magnitude jφ ( ω ) Phase FI(jω) | ω) j |F( φ(ω) FR(jω)
  • 16. Example 1 -1 f(t) t 1 1 − jωt F ( jω) = ∫ f (t )e dt = ∫ e dt = e −∞ −1 − jω j − jω 2 sin ω jω = (e − e ) = ω ω ∞ − jω t 1 1 − jωt −1
  • 17. Example F(ω F(ω) ) 33 22 11 00 -1 1 -1 f(t) -10 -10 -5 -5 00 55 33 22 t |F(ω |F(ω)|)| -1 10 10 11 1 00 -10 -10 1 44 − jω t arg[F(ω arg[F(ω)])] 1 − jωt F ( jω) = ∫ f (t )e dt = ∫ e dt = e −∞ −1 − jω 22 j − jω 2 sin ω jω 00 = (e − e ) = -10 -5-5 00 55 10 -10 10 ω ω ∞ -5 -5 − jωt 00 55 10 10 1 −1
  • 18. Example f(t) e−αt t ∞ F ( jω) = ∫ f (t )e − jω t −∞ ∞ =∫ e 0 − ( α + jω ) t ∞ dt = ∫ e −αt e − jωt dt 0 1 dt = α + jω
  • 19. Example f(t) 1 1 |F(jω)| |F(jω)| =2 αα =2 0.5 0.5 0 0 2 2 ∞ −∞ ∞ =∫ e 0 arg[F(jω)] arg[F(jω)] F ( jω) = ∫ f (t )e -10 -10 − jω t 0 0 -2 -2 − ( α + jω ) t e−αt -5 -5 0 0 5 5 t 10 10 ∞ dt = ∫ e −αt e − jωt dt 0 1 dt = α + jω -10 -10 -5 -5 0 0 5 5 10 10
  • 21. Notation F [ f (t )] = F ( jω) F [ F ( jω)] = f (t ) -1 f (t ) ← → F ( jω) F
  • 22. Linearity a1 f1 (t ) + a2 f 2 (t ) ← → a1 F1 ( jω) + a2 F2 ( jω) F orrk !! Wo k H om e W !!Home
  • 23. Time Scaling 1  ω f (at ) ← → F j  |a|  a F orrk !! Wo k H om e W !!Home
  • 24. Time Reversal f ( −t ) ← → F ( − jω) F Pf) F [ f (−t )] = ∞ f (−t )e − jωt dt = t =∞ f (−t )e − jωt dt ∫−∞ ∫t =−∞ =∫ − t =∞ −t = −∞ = −∫ =∫ f (t )e jωt d ( −t ) f (t )e d ( −t ) −t = −∞ t = −∞ t =∞ ∞ − t =∞ j ωt f (t )e dt = ∫ j ωt t =∞ t = −∞ f (t )e jωt dt = ∫ f (t )e jωt dt = F (− jω) −∞
  • 25. Time Shifting f (t − t0 ) ← → F ( jω) e F − jωt 0 Pf) F [ f (t − t )] = ∞ f (t − t )e − jωt dt = t =∞ f (t − t )e − jωt dt 0 0 0 ∫−∞ ∫t =−∞ =∫ t +t0 =∞ =e − j ωt 0 =e − j ωt 0 t + t 0 = −∞ f (t )e − jω(t +t0 ) d (t + t0 ) ∫ t =∞ ∫ ∞ t = −∞ −∞ f (t )e − jωt dt − jω t f (t )e − jωt dt = F ( jω)e 0
  • 26. Frequency Shifting (Modulation) f (t )e Pf) jω0t ¬  F [ j (ω − ω0 ) ] → F [ f (t )e F jω 0 t ∞ ] = ∫ f (t )e jω0t e − jωt dt −∞ ∞ = ∫ f (t )e − j ( ω−ω0 )t dt −∞ = F [ j (ω − ω0 )]
  • 27. Symmetry Property F [ F ( jt )] = 2πf (−ω) Proof ∞ 2πf (t ) = ∫ F ( jω)e jωt dω −∞ ∞ 2πf (−t ) = ∫ F ( jω)e − jωt dω −∞ Interchange symbols ω and t ∞ 2πf (−ω) = ∫ F ( jt )e − jωt dt = F [ F ( jt )] −∞
  • 28. Fourier Transform for Real Functions If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω) F(−jω) = F*(jω) ∞ F ( jω) = ∫ f (t )e − jωt −∞ ∞ dt F * ( jω) = ∫ f (t )e dt = F (− jω) −∞ jωt
  • 29. Fourier Transform for Real Functions If f(t) is a real function, and F(jω) = FR(jω) + jFI(jω) F(−jω) = F*(jω) FR(jω) is even, and FI(jω) is odd. F R jω ) = F R F (− jω ) = − F (jω ) (− (jω ) I I Magnitude spectrum |F(jω)| is even, and phase spectrum φ(ω) is odd.
  • 30. Fourier Transform for Real Functions If f(t) is real and even F(jω) is real Pf) Even If f(t) is real and odd √ f (t ) = f (−t ) F(jω) is pure imaginary Pf) Odd F ( jω) = F (− jω) Real F (− jω) = F * ( jω) F ( jω) = F * ( jω) √ f (t ) = − f (−t ) F ( jω) = − F (− jω) Real F (− jω) = F * ( jω) F ( jω) = − F * ( jω)
  • 31. Example: F [ f (t )] = F ( jω) Sol) F [ f (t ) cos ω0t ] = ? 1 f (t ) cos ω0t = f (t )(e jω0t + e − jω0t ) 2 1 1 jω 0 t F [ f (t ) cos ω0t ] = F [ f (t )e ] + F [ f (t )e − jω0t ] 2 2 1 1 = F [ j (ω − ω0 )] + F [ j (ω + ω0 )] 2 2
  • 32. Example: 1 −d/2 f(t)=wd(t)cosω0t wd(t) t d/2 −d/2 d/2 t 2  ωd  Wd ( jω) = F [ wd (t )] = ∫ e dt = sin   −d / 2 ω  2  d d sin (ω − ω0 ) sin (ω + ω0 ) 2 2 = + F ( jω) = F [ wd (t ) cos ω0t ] ω − ω0 ω + ω0 d /2 − jωt
  • 33. 1.5 1.5 d=2 d=2 ω0=5ππ ω =5 1 1 0 F(jω) F(jω) Example: 0.5 0.5 0 0 -0.5 -0.5 -60 -60 1 −d/2 -40 -40 -20 -20 0 0 20 20 40 40 ω ω 60 60 f(t)=wd(t)cosω0t wd(t) t d/2 −d/2 d/2 t 2  ωd  Wd ( jω) = F [ wd (t )] = ∫ e dt = sin   −d / 2 ω  2  d d sin (ω − ω0 ) sin (ω + ω0 ) 2 2 = + F ( jω) = F [ wd (t ) cos ω0t ] ω − ω0 ω + ω0 d /2 − jωt
  • 34. 1 Example: sin at f (t ) = πt Sol) wd(t) t −d/2 d/2 F ( jω) = ? 2  ωd  Answer is Wd ( jω) = sin   just ω  2  opposite to as expected  2  td   F [Wd ( jt )] = F  sin    = 2πwd (−ω)  2  t 0 ω <| a |  sin at  F [ f (t )] = F   = w2 a (−ω) = 1 ω >| a |  πt  
  • 35. Fourier Transform of f’(t) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ' (t ) ←F jωF ( jω) → Pf) F [ f ' (t )] = ∞ f ' (t )e − jωt dt ∫−∞ = f (t )e − j ωt ∞ −∞ = jωF ( jω) ∞ + jω∫ f (t )e − jωt dt −∞
  • 36. Fourier Transform of f (t) (n) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ( n ) (t ) ←F ( jω) n F ( jω) → orrk !! Wo k H om e W !!Home
  • 37. Fourier Transform of f (t) (n) f (t ) ← → F ( jω) and lim f (t ) = 0 F t → ±∞ f ( n ) (t ) ←F ( jω) n F ( jω) → orrk !! Wo k H om e W !!Home
  • 38. Fourier Transform of Integral f (t ) ← → F ( jω) and F ∫ ∞ −∞ f (t )dt = F ( 0 ) = 0  t f ( x)dx  = 1 F ( jω) F ∫  −∞  jω   Let φ(t ) = ∫ t −∞ f ( x)dx lim φ(t ) = 0 t →∞ F [φ' (t )] = F [ f (t )] = F ( jω) = jωΦ ( jω) 1 Φ ( jω) = F ( jω) jω
  • 39. The Derivative of Fourier Transform dF ( jω) F [− jtf (t )] ← → dω F Pf) ∞ F ( jω) = ∫ f (t )e − jωt dt −∞ ∞ dF ( jω) d ∞ ∂ − j ωt − j ωt = ∫−∞ f (t )e dt = ∫−∞ f (t ) ∂ω e dt dω dω ∞ = ∫ [− jtf (t )]e − jωt dt = F [− jtf (t )] −∞