SlideShare a Scribd company logo
1 of 22
Asymmetric Tri-training
for Unsupervised Domain Adaptation
Kuniaki Saito1, Yoshitaka Ushiku1 and Tatsuya Harada1,2
1: The University of Tokyo, 2:RIKEN
ICML 2017 (8/6~8/11), Sydney
Background: Domain Adaptation (DA)
rucksack
keyboard
bicycle
Source TargetSource Target
• Supervised learning with a lot of samples
– Cost to collect samples in various domain
– Classifiers suffer from the change of domain
• The purpose of DA
– Training a classifier using source domain that works well on target domain
• Unsupervised Domain Adaptation
– Labeled source samples and unlabeled target samples
Related Work
• Applications on computer vision
– Domain transfer + Generative Adversarial Networks
– This paper: a novel approach w/o generative models
• Training CNN for domain adaptation
– Matching hidden features
of different domains
[Long+, ICML 2015][Ganin+, ICML 2014]
Real faces to illusts [Taigman+, ICLR 2017] Artificial images to real images [Bousmalis+, CVPR 2017]
No Adapt AdaptedSource Target
Class A
Class B
Theorem [Ben David+, Machine Learning 2010]
•
– Related work: regard as being sufficiently small
• Distribution matching approaches aim to minimize
• There is no guarantee that is small enough
– Proposed method: minimizes by reducing error on target samples
• absence of labeled samples
→ We propose to give pseudo-labels to target samples
Theoretical Insight
How much features are discriminative
: Divergence between domains
Error on source domainError on target domain
?
p1
p2
pt
S+Tl
Tl
S : source samples
Tl : pseudo-labeled target samples
Input
X
F1
F2
Ft
ŷ : Pseudo-label for target sample
y : Label for source sample
F
S+Tl
F1 ,F2 : Labeling networks
Ft : Target specific network
F : Shared network
Proposed Architecture
p1
p2
pt
S+Tl
Tl
S : source samples
Tl : pseudo-labeled target samples
Input
X
F1
F2
Ft
ŷ : Pseudo-label for target sample
y : Label for source sample
F
S+Tl
F is updated using
gradients from F1,F2,Ft
Proposed Architecture
p1
p2
pt
S
S
S : source samples
Tl : pseudo-labeled target samples
Input
X
F1
F2
Ft
ŷ : Pseudo-label for target sample
y : Label for source sample
F
S
All networks are trained
using only source samples.
1. Initial training
p1
p2
TInput
X
F1
F2
F
T
If F1 and F2 agree on their predictions, and either of their
probability is larger than threshold value, corresponding
labels are given to the target sample.
T: Target samples
2. Labeling target samples
F1, F2 : source and pseudo-labeled
samples
Ft: pseudo-labeled ones
F : learn from all gradients
p1
p2
pt
S+Tl
Tl
S : source samples
Tl : pseudo-labeled target samples
Input
X
F1
F2
Ft
ŷ : Pseudo-label for target sample
y : Label for source sample
F
S+Tl
3. Retraining network using pseudo-labeled target samples
p1
p2
pt
S+Tl
Tl
S : source samples
Tl : pseudo-labeled target samples
Input
X
F1
F2
Ft
ŷ : Pseudo-label for target sample
y : Label for source sample
F
S+Tl
Repeat the 2nd step and 3rd step
until convergence!
3. Retraining network using pseudo-labeled target samples
Overall objective
Overall Objective l1 |WT
1W2 |+L1 +L2 + L3
W1
W2
p1
p2
pt
S+Tl
F1
F2
Ft
F
S+Tl
Tl
L1
L2
L3
CrossEntropy
To force F1 and F2 to learn from different features.
Experiments
• Four adaptation scenarios between digits datasets
– MNIST, SVHN, SYN DIGIT (synthesized digits)
• One adaptation scenario between traffic signs datasets
– GTSRB (real traffic signs), SYN SIGN (synthesized signs)
• Other experiments are omitted due to the time limit…
– Adaptation on Amazon Reviews
GTSRB SYN SIGNS
SYN DIGITSSVHN
MNISTMNIST-M
Accuracy on Target Domain
• Our method outperformed other methods.
– The effect of BN is obvious in some settings.
– The effect of weight constraint is not obvious.
Source MNIST MNIST SVHN SYNDIG SYN NUM
Method Target MN-M SVHN MNIST SVHN GTSRB
Source Only (w/o BN) 59.1 37.2 68.1 84.1 79.2
Source Only (with BN) 57.1 34.9 70.1 85.5 75.7
DANN [Ganin et al., 2014] 81.5 35.7 71.1 90.3 88.7
MMD [Long et al., 2015 ICML] 76.9 - 71.1 88.0 91.1
DSN [Bousmalis et al, 2016 NIPS] 83.2 - 82.7 91.2 93.1
K-NN Labeling [Sener et al., 2016 NIPS] 86.7 40.3 78.8 - -
Ours (w/o BN) 85.3 39.8 79.8 93.1 96.2
Ours (w/o Weight constraint) 94.2 49.7 86.0 92.4 94.0
Ours 94.0 52.8 86.8 92.9 96.2
Summary and Future Work
• Summary
– Problem presentation for domain adaptation
– Proposal of Asymmetric tri-training
– Effectiveness is shown in experiments
• Future work
– Evaluate our method on fine-tuning of pre-trained model
For more details, please refer to…
Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
Asymmetric Tri-training for Unsupervised Domain Adaptation.
International Conference on Machine Learning (ICML), 2017.ICML
Supplemental materials
Relationship with Tri-training
• Tri-training [Zhou et al., 2005]
– Use three classifiers equally
• Use two classifiers to give labels to unlabeled samples
• Train one classifiers by the labeled samples
• Repeat in all combination of classifiers
• Our proposed method
– Use three classifiers asymmetrically
• Use fixed two classifiers to give labels
• Train a fixed one classifier using the pseudo-labeled samples
Accuracy during training
Blue: (correctly labeled samples)/(labeled samples))
Initially, the accuracy is high and gradually decreases.
Red: Accuracy of learned network. It gradually increases.
Green: The number of labeled samples.
A-distance between domains
• A-distance
– Calculated by domain classifier’s error
• Proposed method does not make the divergence small.
– Minimizing the divergence is not a only way to achieve a good
adaptation !!
Analysis by gradient stopping
p1
p2
pt
S+Tl
T
F2
Ft
F
S+Tl
F1
Analysis by gradient stopping
p1
p2
pt
S+Tl
T
F2
Ft
F
S+Tl
F1
Analysis by gradient stopping
p1
p2
pt
S+Tl
T
F2
Ft
F
S+Tl
F1
Analysis by gradient stopping
p1
p2
pt
S+Tl
T
F2
Ft
F
S+Tl
F1

More Related Content

What's hot

cvpr2009: class specific hough forest for object detection
cvpr2009: class specific hough forest for object detectioncvpr2009: class specific hough forest for object detection
cvpr2009: class specific hough forest for object detection
zukun
 
Survey on Frequent Pattern Mining on Graph Data - Slides
Survey on Frequent Pattern Mining on Graph Data - SlidesSurvey on Frequent Pattern Mining on Graph Data - Slides
Survey on Frequent Pattern Mining on Graph Data - Slides
Kasun Gajasinghe
 

What's hot (14)

cvpr2009: class specific hough forest for object detection
cvpr2009: class specific hough forest for object detectioncvpr2009: class specific hough forest for object detection
cvpr2009: class specific hough forest for object detection
 
Text categorization as graph
Text categorization as graphText categorization as graph
Text categorization as graph
 
Unsupervised Learning: Clustering
Unsupervised Learning: Clustering Unsupervised Learning: Clustering
Unsupervised Learning: Clustering
 
Frontiers of Vision and Language: Bridging Images and Texts by Deep Learning
Frontiers of Vision and Language: Bridging Images and Texts by Deep LearningFrontiers of Vision and Language: Bridging Images and Texts by Deep Learning
Frontiers of Vision and Language: Bridging Images and Texts by Deep Learning
 
Exploring Statistical Language Models for Recommender Systems [RecSys '15 DS ...
Exploring Statistical Language Models for Recommender Systems [RecSys '15 DS ...Exploring Statistical Language Models for Recommender Systems [RecSys '15 DS ...
Exploring Statistical Language Models for Recommender Systems [RecSys '15 DS ...
 
HHHHHH
HHHHHHHHHHHH
HHHHHH
 
Methods for meta learning in AutoML
Methods for meta learning in AutoMLMethods for meta learning in AutoML
Methods for meta learning in AutoML
 
Intellectual technologies
Intellectual technologiesIntellectual technologies
Intellectual technologies
 
Strings numbers prints
Strings numbers printsStrings numbers prints
Strings numbers prints
 
Survey on Frequent Pattern Mining on Graph Data - Slides
Survey on Frequent Pattern Mining on Graph Data - SlidesSurvey on Frequent Pattern Mining on Graph Data - Slides
Survey on Frequent Pattern Mining on Graph Data - Slides
 
Ppt shuai
Ppt shuaiPpt shuai
Ppt shuai
 
ppt
pptppt
ppt
 
Raw 2009 -THE ROLE OF LATEST FIXATIONS ON ONGOING VISUAL SEARCH A MODEL TO E...
Raw 2009 -THE ROLE OF LATEST FIXATIONS ON ONGOING VISUAL SEARCH  A MODEL TO E...Raw 2009 -THE ROLE OF LATEST FIXATIONS ON ONGOING VISUAL SEARCH  A MODEL TO E...
Raw 2009 -THE ROLE OF LATEST FIXATIONS ON ONGOING VISUAL SEARCH A MODEL TO E...
 
L06 stemmer and edit distance
L06 stemmer and edit distanceL06 stemmer and edit distance
L06 stemmer and edit distance
 

Similar to Asymmetric Tri-training for Unsupervised Domain Adaptation

EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
Phuc Nguyen
 

Similar to Asymmetric Tri-training for Unsupervised Domain Adaptation (20)

EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
EmbNum: Semantic Labeling for Numerical Values with Deep Metric Learning
 
AppTek-CLimateGPT-EvryWS20240308-v3.pptx
AppTek-CLimateGPT-EvryWS20240308-v3.pptxAppTek-CLimateGPT-EvryWS20240308-v3.pptx
AppTek-CLimateGPT-EvryWS20240308-v3.pptx
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Compet...
Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Compet...Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Compet...
Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Compet...
 
Noura2
Noura2Noura2
Noura2
 
SYNOPSIS on Parse representation and Linear SVM.
SYNOPSIS on Parse representation and Linear SVM.SYNOPSIS on Parse representation and Linear SVM.
SYNOPSIS on Parse representation and Linear SVM.
 
AI-SDV 2022: Accommodating the Deep Learning Revolution by a Development Proc...
AI-SDV 2022: Accommodating the Deep Learning Revolution by a Development Proc...AI-SDV 2022: Accommodating the Deep Learning Revolution by a Development Proc...
AI-SDV 2022: Accommodating the Deep Learning Revolution by a Development Proc...
 
Use CNN for Sequence Modeling
Use CNN for Sequence ModelingUse CNN for Sequence Modeling
Use CNN for Sequence Modeling
 
Conformer-Kernel with Query Term Independence @ TREC 2020 Deep Learning Track
Conformer-Kernel with Query Term Independence @ TREC 2020 Deep Learning TrackConformer-Kernel with Query Term Independence @ TREC 2020 Deep Learning Track
Conformer-Kernel with Query Term Independence @ TREC 2020 Deep Learning Track
 
Building and deploying analytics
Building and deploying analyticsBuilding and deploying analytics
Building and deploying analytics
 
Geotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling ApproachGeotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling Approach
 
Geotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling ApproachGeotagging Social Media Content with a Refined Language Modelling Approach
Geotagging Social Media Content with a Refined Language Modelling Approach
 
Siguccs20101026
Siguccs20101026Siguccs20101026
Siguccs20101026
 
Agile performance engineering with cloud 2016
Agile performance engineering with cloud   2016Agile performance engineering with cloud   2016
Agile performance engineering with cloud 2016
 
An Empirical Study on the Adequacy of Testing in Open Source Projects
An Empirical Study on the Adequacy of Testing in Open Source ProjectsAn Empirical Study on the Adequacy of Testing in Open Source Projects
An Empirical Study on the Adequacy of Testing in Open Source Projects
 
Matsunaga crowdsourcing IEEE e-science 2014
Matsunaga crowdsourcing IEEE e-science 2014Matsunaga crowdsourcing IEEE e-science 2014
Matsunaga crowdsourcing IEEE e-science 2014
 
2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...
2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...
2019 dynamically composing_domain-data_selection_with_clean-data_selection_by...
 
Analysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approachAnalysis of Educational Robotics activities using a machine learning approach
Analysis of Educational Robotics activities using a machine learning approach
 
Visualizing UML’s Sequence and Class Diagrams Using Graph-Based Clusters
Visualizing UML’s Sequence and   Class Diagrams Using Graph-Based Clusters  Visualizing UML’s Sequence and   Class Diagrams Using Graph-Based Clusters
Visualizing UML’s Sequence and Class Diagrams Using Graph-Based Clusters
 
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
 

More from Yoshitaka Ushiku

More from Yoshitaka Ushiku (20)

機械学習を民主化する取り組み
機械学習を民主化する取り組み機械学習を民主化する取り組み
機械学習を民主化する取り組み
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
 
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
 
これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由
 
視覚と対話の融合研究
視覚と対話の融合研究視覚と対話の融合研究
視覚と対話の融合研究
 
Women Also Snowboard: Overcoming Bias in Captioning Models(関東CV勉強会 ECCV 2018 ...
Women Also Snowboard: Overcoming Bias in Captioning Models(関東CV勉強会 ECCV 2018 ...Women Also Snowboard: Overcoming Bias in Captioning Models(関東CV勉強会 ECCV 2018 ...
Women Also Snowboard: Overcoming Bias in Captioning Models(関東CV勉強会 ECCV 2018 ...
 
Vision-and-Language Navigation: Interpreting visually-grounded navigation ins...
Vision-and-Language Navigation: Interpreting visually-grounded navigation ins...Vision-and-Language Navigation: Interpreting visually-grounded navigation ins...
Vision-and-Language Navigation: Interpreting visually-grounded navigation ins...
 
Sequence Level Training with Recurrent Neural Networks (関東CV勉強会 強化学習論文読み会)
Sequence Level Training with Recurrent Neural Networks (関東CV勉強会 強化学習論文読み会)Sequence Level Training with Recurrent Neural Networks (関東CV勉強会 強化学習論文読み会)
Sequence Level Training with Recurrent Neural Networks (関東CV勉強会 強化学習論文読み会)
 
Learning Cooperative Visual Dialog with Deep Reinforcement Learning(関東CV勉強会 I...
Learning Cooperative Visual Dialog with Deep Reinforcement Learning(関東CV勉強会 I...Learning Cooperative Visual Dialog with Deep Reinforcement Learning(関東CV勉強会 I...
Learning Cooperative Visual Dialog with Deep Reinforcement Learning(関東CV勉強会 I...
 
今後のPRMU研究会を考える
今後のPRMU研究会を考える今後のPRMU研究会を考える
今後のPRMU研究会を考える
 
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
 
Recognize, Describe, and Generate: Introduction of Recent Work at MIL
Recognize, Describe, and Generate: Introduction of Recent Work at MILRecognize, Describe, and Generate: Introduction of Recent Work at MIL
Recognize, Describe, and Generate: Introduction of Recent Work at MIL
 
Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線Deep Learning による視覚×言語融合の最前線
Deep Learning による視覚×言語融合の最前線
 
Leveraging Visual Question Answering for Image-Caption Ranking (関東CV勉強会 ECCV ...
Leveraging Visual Question Answeringfor Image-Caption Ranking (関東CV勉強会 ECCV ...Leveraging Visual Question Answeringfor Image-Caption Ranking (関東CV勉強会 ECCV ...
Leveraging Visual Question Answering for Image-Caption Ranking (関東CV勉強会 ECCV ...
 
We Are Humor Beings: Understanding and Predicting Visual Humor (関東CV勉強会 CVPR ...
We Are Humor Beings: Understanding and Predicting Visual Humor (関東CV勉強会 CVPR ...We Are Humor Beings: Understanding and Predicting Visual Humor (関東CV勉強会 CVPR ...
We Are Humor Beings: Understanding and Predicting Visual Humor (関東CV勉強会 CVPR ...
 
ごあいさつ 或いはMATLAB教徒がPythonistaに改宗した話 (関東CV勉強会)
ごあいさつ 或いはMATLAB教徒がPythonistaに改宗した話 (関東CV勉強会)ごあいさつ 或いはMATLAB教徒がPythonistaに改宗した話 (関東CV勉強会)
ごあいさつ 或いはMATLAB教徒がPythonistaに改宗した話 (関東CV勉強会)
 
Generating Notifications for Missing Actions: Don’t forget to turn the lights...
Generating Notifications for Missing Actions:Don’t forget to turn the lights...Generating Notifications for Missing Actions:Don’t forget to turn the lights...
Generating Notifications for Missing Actions: Don’t forget to turn the lights...
 
画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成
 
Unsupervised Object Discovery and Localization in the Wild: Part-Based Match...
Unsupervised Object Discovery and Localization in the Wild:Part-Based Match...Unsupervised Object Discovery and Localization in the Wild:Part-Based Match...
Unsupervised Object Discovery and Localization in the Wild: Part-Based Match...
 
CVPR 2015 論文紹介(NTT研究所内勉強会用資料)
CVPR 2015 論文紹介(NTT研究所内勉強会用資料)CVPR 2015 論文紹介(NTT研究所内勉強会用資料)
CVPR 2015 論文紹介(NTT研究所内勉強会用資料)
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Recently uploaded (20)

Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 

Asymmetric Tri-training for Unsupervised Domain Adaptation

  • 1. Asymmetric Tri-training for Unsupervised Domain Adaptation Kuniaki Saito1, Yoshitaka Ushiku1 and Tatsuya Harada1,2 1: The University of Tokyo, 2:RIKEN ICML 2017 (8/6~8/11), Sydney
  • 2. Background: Domain Adaptation (DA) rucksack keyboard bicycle Source TargetSource Target • Supervised learning with a lot of samples – Cost to collect samples in various domain – Classifiers suffer from the change of domain • The purpose of DA – Training a classifier using source domain that works well on target domain • Unsupervised Domain Adaptation – Labeled source samples and unlabeled target samples
  • 3. Related Work • Applications on computer vision – Domain transfer + Generative Adversarial Networks – This paper: a novel approach w/o generative models • Training CNN for domain adaptation – Matching hidden features of different domains [Long+, ICML 2015][Ganin+, ICML 2014] Real faces to illusts [Taigman+, ICLR 2017] Artificial images to real images [Bousmalis+, CVPR 2017] No Adapt AdaptedSource Target Class A Class B
  • 4. Theorem [Ben David+, Machine Learning 2010] • – Related work: regard as being sufficiently small • Distribution matching approaches aim to minimize • There is no guarantee that is small enough – Proposed method: minimizes by reducing error on target samples • absence of labeled samples → We propose to give pseudo-labels to target samples Theoretical Insight How much features are discriminative : Divergence between domains Error on source domainError on target domain ?
  • 5. p1 p2 pt S+Tl Tl S : source samples Tl : pseudo-labeled target samples Input X F1 F2 Ft ŷ : Pseudo-label for target sample y : Label for source sample F S+Tl F1 ,F2 : Labeling networks Ft : Target specific network F : Shared network Proposed Architecture
  • 6. p1 p2 pt S+Tl Tl S : source samples Tl : pseudo-labeled target samples Input X F1 F2 Ft ŷ : Pseudo-label for target sample y : Label for source sample F S+Tl F is updated using gradients from F1,F2,Ft Proposed Architecture
  • 7. p1 p2 pt S S S : source samples Tl : pseudo-labeled target samples Input X F1 F2 Ft ŷ : Pseudo-label for target sample y : Label for source sample F S All networks are trained using only source samples. 1. Initial training
  • 8. p1 p2 TInput X F1 F2 F T If F1 and F2 agree on their predictions, and either of their probability is larger than threshold value, corresponding labels are given to the target sample. T: Target samples 2. Labeling target samples
  • 9. F1, F2 : source and pseudo-labeled samples Ft: pseudo-labeled ones F : learn from all gradients p1 p2 pt S+Tl Tl S : source samples Tl : pseudo-labeled target samples Input X F1 F2 Ft ŷ : Pseudo-label for target sample y : Label for source sample F S+Tl 3. Retraining network using pseudo-labeled target samples
  • 10. p1 p2 pt S+Tl Tl S : source samples Tl : pseudo-labeled target samples Input X F1 F2 Ft ŷ : Pseudo-label for target sample y : Label for source sample F S+Tl Repeat the 2nd step and 3rd step until convergence! 3. Retraining network using pseudo-labeled target samples
  • 11. Overall objective Overall Objective l1 |WT 1W2 |+L1 +L2 + L3 W1 W2 p1 p2 pt S+Tl F1 F2 Ft F S+Tl Tl L1 L2 L3 CrossEntropy To force F1 and F2 to learn from different features.
  • 12. Experiments • Four adaptation scenarios between digits datasets – MNIST, SVHN, SYN DIGIT (synthesized digits) • One adaptation scenario between traffic signs datasets – GTSRB (real traffic signs), SYN SIGN (synthesized signs) • Other experiments are omitted due to the time limit… – Adaptation on Amazon Reviews GTSRB SYN SIGNS SYN DIGITSSVHN MNISTMNIST-M
  • 13. Accuracy on Target Domain • Our method outperformed other methods. – The effect of BN is obvious in some settings. – The effect of weight constraint is not obvious. Source MNIST MNIST SVHN SYNDIG SYN NUM Method Target MN-M SVHN MNIST SVHN GTSRB Source Only (w/o BN) 59.1 37.2 68.1 84.1 79.2 Source Only (with BN) 57.1 34.9 70.1 85.5 75.7 DANN [Ganin et al., 2014] 81.5 35.7 71.1 90.3 88.7 MMD [Long et al., 2015 ICML] 76.9 - 71.1 88.0 91.1 DSN [Bousmalis et al, 2016 NIPS] 83.2 - 82.7 91.2 93.1 K-NN Labeling [Sener et al., 2016 NIPS] 86.7 40.3 78.8 - - Ours (w/o BN) 85.3 39.8 79.8 93.1 96.2 Ours (w/o Weight constraint) 94.2 49.7 86.0 92.4 94.0 Ours 94.0 52.8 86.8 92.9 96.2
  • 14. Summary and Future Work • Summary – Problem presentation for domain adaptation – Proposal of Asymmetric tri-training – Effectiveness is shown in experiments • Future work – Evaluate our method on fine-tuning of pre-trained model For more details, please refer to… Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric Tri-training for Unsupervised Domain Adaptation. International Conference on Machine Learning (ICML), 2017.ICML
  • 16. Relationship with Tri-training • Tri-training [Zhou et al., 2005] – Use three classifiers equally • Use two classifiers to give labels to unlabeled samples • Train one classifiers by the labeled samples • Repeat in all combination of classifiers • Our proposed method – Use three classifiers asymmetrically • Use fixed two classifiers to give labels • Train a fixed one classifier using the pseudo-labeled samples
  • 17. Accuracy during training Blue: (correctly labeled samples)/(labeled samples)) Initially, the accuracy is high and gradually decreases. Red: Accuracy of learned network. It gradually increases. Green: The number of labeled samples.
  • 18. A-distance between domains • A-distance – Calculated by domain classifier’s error • Proposed method does not make the divergence small. – Minimizing the divergence is not a only way to achieve a good adaptation !!
  • 19. Analysis by gradient stopping p1 p2 pt S+Tl T F2 Ft F S+Tl F1
  • 20. Analysis by gradient stopping p1 p2 pt S+Tl T F2 Ft F S+Tl F1
  • 21. Analysis by gradient stopping p1 p2 pt S+Tl T F2 Ft F S+Tl F1
  • 22. Analysis by gradient stopping p1 p2 pt S+Tl T F2 Ft F S+Tl F1

Editor's Notes

  1. (1つ前のスライドから)そのような問題に取り組んでいるのが、ドメイン適合。ドメイン適合では、Sourceと言われるドメインから、Targetと言われるドメインへの知識の転移を目指す。Sourceというのが、知識の元になるドメインということ。このドメインにおける、サンプルとラベル情報を利用する。そして、Targetという、識別の対象となるドメインで、精度高く働く識別器の獲得を目指す。Targetドメインにおいて、全くラベルが供給されない、Unsupervised Domain Adaptationが、最もチャレンジングで、実用的な課題といえる。本研究でも、Unsupervised Domain Adaptationに取り組む。
  2. 盛んにDomain adaptationに対する研究が行われている。特に目を引いているのが、GANを使って、画像のドメインをSourceからTargetに変化させるような研究。右下の研究は、Googleの研究で、CVPR2017のオーラル。もちろん、GANを使わないアプローチも盛んに研究が行われていて、本研究もその一つ。
  3. 分布を一致させるアプローチの元になっているのが、この定理。 分布の距離にあたる、2番目の項を1番目の、sourceにおけるエラーとともに、最小化するというアプローチになる。 三番目の項は、ターゲットにサンプルがどれだけ識別的になっているのかを示唆する。先行研究は、この項は十分に小さいと仮定していた。
  4. 学習に使うネットワーク。先述のように、2つのネットワーク(青いネットワーク)をラベルづけにつかう。 1つのネットワーク(オレンジ)は、擬似ラベルのついたターゲットからしか学習しない。
  5. 共有されているネットワーク(緑)は、3つのネットワーク、すべての勾配から学習する。次のスライドから、実際の学習プロセス。
  6. 最初は、擬似ラベルがないので、ソースのみを用いて、全体のネットワークを学習させる。
  7. 次に、ターゲットサンプルを、ラベルづけする。二つの識別器のクラス出力が一致する、なおかつ、どちらかの確率が、thresholdより大きいという条件を満たしたサンプルにのみ、対応する擬似ラベルを付与する。この条件を課すことで、より正確な擬似ラベルが得られると期待する。
  8. 擬似ラベルを用いて、ネットワークを再学習。 青いネットワークは、ソースと、ターゲット両方から学習する。具体的には、ミニバッチをソース、ターゲットの半分づつから構成する。 オレンジのネットワークは、ターゲットのみから学習する。オレンジのネットワークからの勾配が緑のネットワークに、ターゲットに対する識別性をもたらすように。 ラベルづけ、再学習を何度も繰り返す。(ラベルづけ対象のサンプルは徐々に増やす。また、過学習を防ぐために、毎回、一度ラベルづけされたサンプルも、ラベルをクリアする。)
  9. 擬似ラベルを用いて、ネットワークを再学習。 青いネットワークは、ソースと、ターゲット両方から学習する。具体的には、ミニバッチをソース、ターゲットの半分づつから構成する。 オレンジのネットワークは、ターゲットのみから学習する。オレンジのネットワークからの勾配が緑のネットワークに、ターゲットに対する識別性をもたらすように。 ラベルづけ、再学習を何度も繰り返す。(ラベルづけ対象のサンプルは徐々に増やす。また、過学習を防ぐために、毎回、一度ラベルづけされたサンプルも、ラベルをクリアする。)
  10. 擬似ラベルをハードなラベルとみなして、ネットワークを学習させる。普通のクロスエントロピー。 2つの青いネットワークは、できるだけ、異なる性質をもつ識別器になってほしい。ということで、重みに制約を加える。 この制約によって、2つの青いネットワークが、異なる特徴から学習するようになると期待される。効果は、実験で確認することにする。
  11. 数字画像、標識画像での精度評価。
  12. 精度は、良い。 BNをネットワークに挿入した場合とそうでない場合に、データセットによっては大きく性能に差があった。 また、重みの対する制約は、ハッキリとした効果は認められなかった。これは、ラベルづけネットワークが、異なる初期値で重みを初期化することによると考えられる。そのため、制約を与えずとも、二つのネットワークが、異なる識別器として学習される。
  13. Tri-trainingは、3つの識別器を等価に扱う手法。 我々の手法は、役割を分担させている。ということで、Asymmetric tri-training
  14. ラベルづけの精度は最初はいいが、下がっていく。これは、擬似ラベルを付与すると、必ず間違ったラベルづけが含まれるので、それに起因する。また、ラベルづけされるサンプル(2つの識別器が予測を一致させる、かつthresholdを越す)ようなサンプル内で、間違いが増強されていくことが要因と考えられる。 しかし、全体の精度は、どんどん向上していく。
  15. ドメイン間の距離を測ったのが、A-distance. CNNの中間特徴から、ドメインを識別するようなSVMを学習させ、その識別器のErrorによって、図る。 提案手法は、ほとんどドメイン間の距離を小さくしていない。しかし、精度は大きく向上している。これは、ドメイン距離を小さくさせることが、adaptationの唯一の方法ではないということを示唆している。
  16. あとのスライドは、時間があったらでいいと思います。