SlideShare a Scribd company logo
1 of 26
Download to read offline
PROJECTREPORT
“Footstep power
generation system”
Submitted by
Pankaj m mori(1418BEEE30097)
Sachin k dhakad(1317BEEE30071)
In partial fulfillmentfor the awardof
the degree of
BACHELOR OF ENGINEERING
In
ELECTRICALENGINEERING
LDRP-ITR
Kadi Sarva Vishwavidhyalaya
Gandhinagar
November, 2017
SARVA VIDYALAYA KELAVANI MANDAL
LDRP-ITR, GANDHINAGAR
CERTIFICATE
This is to certify that the Project Report entitled “Footstep power generation system”
submitted by Pankaj m mori & Sachin k dhakad (1418beee30097, 1317beee30071)
towards the partial fulfillment of the requirements for the Bachelor of Engineering in 7th
/8th semester in Electrical Engineering of the KSV University, Gandhinagar, is a bonafide
record of the project work carried out at LDRP-ITR during the academic year 2017-18 is
the record of work carried out by him her under our supervision and guidance. The work
submitted has in our opinion reached a level required for being accepted for examination.
The results embodied in this project work to the best of our knowledge have not been
submitted to any other University or Institution for award of any degree.
Internal Guide Head of Department
ACKNOWLEDGEMENT
We would like to express or gratitude and appreciation to all those who gave us the possibility to
complete this report. A special thanks to our final year project coordinator, Mr. PUSHPAK B.
PATEL, who’s help, stimulating suggestions and encouragement, helped us to coordinate our
project especially in writing this project.
A special thanks goes to our team mate, who help us to assemble the parts and gave suggestions
about the project
Last but not least, many thanks goes to the head of the department Mr. SANJAY VYAS who have
given his full effort in guiding the team in achieving the goal as well as his encouragement to
maintain our progress in track. We would love to appreciate the guidance given by the other
supervisor as well as our project guide Mr. PURVIK C. VANIA especially in our project
presentation that has improved our presentation skill by their comments and tips.
INDEX
1. Abstract
2. Introduction
3. Initiative
4. Essential blockdiagram & methodology
5. Hardware specifications
6. Detailed explanation of components
7. Actual progressive work till the date
8. Expected result & discussion output power
9. Scope of the project
10. Conclusion
11. References
I. ABSTRACT
Everywhere a person goes, some amount of energy is used by them. Since time is immemorial
energy is needed for the well-being and sustenance of our lives. The utilization of waste energy
used in the foot power is very much useful and important for place where there will be a huge
crowd each day. When the flooring is engineered with piezoelectric technology, the electrical
energy produced by the pressure is captured by floor sensor and converted to an electrical by piezo
transducer, then stored and used as a power source. This power source is used in home application,
crowded areas like railway station, street light, school and colleges.
II. INTRODUCTION
The demands of electricity are increasing day by day and its use has become so advanced and
applicable in the present lifeline of a human being. The arising value of new technology each day
demands more power of electricity.as the population of human beings is increasing day by day
and hence the energy demand is increasing linearly. This technology is on simply based on a
principle called the piezoelectric e effect, in which certain materials have the ability to build up
and electric charge from having pressure and strain applied to them. Now, piezoelectricity is
generally referred to as having the ability of some materials to generate an electric potential in
responds to the applied pressure on them. So, the piezoelectric material can converts the exerted
pressure into and electric current. The main component of this project is piezoelectricity, where
the piezoelectric effect is understood as the linear electromechanically interaction between the
mechanical and the electrical state in crystalline materials with no inversion symmetry.
The system generates voltage using footstep force. The system serves as a medium to generate
electricity using non-conventional sources (force) and /store/use it. The project is designed to be
useful at public places like railway stations where a lot of people keep walking through all day.
At such places these systems are to be placed at any entry points where people travel through
entrance or exits and they have to step on this device to get through. These devices may then
generate a voltage on every footstep and when mounted in series they will produce a sizeable
amount of electricity. For this purpose, we here use piezoelectric sensors that use piezoelectric
effect in order to measure acceleration, force, pressure by its conversion into electric signals. We
here attach a voltmeter in order to measure its output and small led lights for demonstration. We
also use a battery and weight measurement unit for better demonstration of the system.
III. INITIATIVE
Our project is all about saving human energy and converting it to electrical energy. Day by day,
the population of the country is increasing and the requirement of the power is also increasing at
the same time the wastage of energy is also increased in many ways. So reforming this energy
back to usable form is the major solution. This project is used to generate voltage using footstep
force. This project is useful in public places like theatres, railways station, shopping malls, temples,
school, college, hospital, etc. so, these systems are placed in public places where people walk and
they have to travel on this system to get through the entrance or exist. Then this system may
generate voltage on each and every step of a foot and for this purpose, piezoelectric sensor is used
in order to measure force, pressure and acceleration by its change into electric signals. This system
uses voltmeter for measuring output, led light, weight measurement system and a battery for better
demonstration of the system.
Working on the idea to harness human locomotion power, MIT (USA) architecture students
James Graham and Thaddeus Jusczyk recently unveiled what they're calling the "Crowd Farm," a
setup that would derive energy from pounding feet in crowded places. This technology is a
proposal to harness human power as a source of sustainable energy. Population of India and
mobility of its masses will turn into boon in generating electricity from its (population’s)
footsteps. Human locomotion in over crowded subway stations, railway stations, bus stands,
airports, temples or rock concerts thus can be converted to electrical energy with the use of this
promising technology. The technology would turn the mechanical energy of people walking or
jumping into a source of electricity. The students' test case, displayed at the Venice Biennale and
in a train station in Torino, Italy, was a prototype stool that exploits the passive act of sitting to
generate power. The weight of the body on the seat causes a flywheel to spin, which powers a
dynamo that, in turn, lights four LEDs. In each case, there would be a sub-flooring system
consisting of independent blocks. When people walk across this surface, the forces they impart
will cause the blocks to slip slightly, and a dynamo would convert the energy in those
movements into electric current. Students say that moving from this Proof-ofconcept device to a
large-scale Crowd Farm would be expensive, but it certainly sounds a great option.
PIEZOELECTRICITY: A MEANS OF ENERGY HARVESTING METHOD
Piezoelectricity has arose as a way to harvest energy. The array of piezoelectric crystals is laid
under the pavements. The voltage produced can be utilized to charge batteries. It is to be noted
that scientist at the Hull University worked on converting motion in to electrical energy. Japan
has installed piezoelectric tiles in Tokyo’s busiest stations. They noted that the footsteps of an
average person whose weight is 60 kg is able to yield 0.1 watt/sec.
It has also been reported that there is a 3×5 feet panel a product of Digital Safari Greenbiz
Company which is capable of producing 17.5 watts/step.
PIEZOELECTRIC PRINCIPLE
When stress is applied to a piezoelectric crystal an electrical energy is produced across the material.
There are two kinds of piezoelectric effect,namely direct effect and indirect piezoelectric effect. When
mechanical stress is applied and electric potential is developed it is termed as the direct piezoelectric
effect on the other hand when due to the application of electrical field there is deformation in the material
it is termed as the indirect piezoelectric effect. when an electric field is applied. The examples of some
piezo materials are Quartz, PZT,PbTiO3, PLZT,PVDF,BaTiO3, PbZrO3,etc.
IV. BLOCK DIAGRAM & METHODOLOGY
Pressure Piezoelectric transducers
Rectifier
CapacitorLoad/Devise
EXPLANATION
According to the literature survey, piezoelectric materials produce ac voltage. When the pressure
is applied on the face of the piezoelectric element then it generates the ac voltage and is sent to
the rectifier. Then the function of the rectifier is to achieve full wave rectification. Thus
transforming the ac voltage to dc voltage. The rectifier is a bridge circuit made by diodes. The dc
voltage is stored in a capacitor in the subsequent stages. The stored energy can be effectively
used for various applications. Sometimes a controller is also attached after the rectifier as it
optimizes the power in input to the capacitor. Super capacitors can also be used in place of
conventional capacitors. The power can be directly applied to the electrical devices or can be a
supplement of main power supply. One can determine the effectiveness of a system by
comparing the input energy to the output results. However, when the amount of output energy
produced versus input energy is high then the level of efficiency is also high.
AMOUNT OF POWER GENERATION DETAILS
It is reported in literature, that when a piezoelectric tile is used for the flooring purposes then
each slab is capable of producing 2.1 watts/hour in a football area if the stepping rate is 4-10
seconds. Based on testing it is found that walking 5 hours will generate enough electricity to
lighting a bus stops continuously for over 12 hours. The energy produced is stored in Lithium
Polymer Batteries. To light a low energy LED, 5% of the energy produced by a footstep is
sufficient. The energy produced by piezoelectric elements is extremely low. The electrical
energy produced by a piezoelectric crystal is about 2-3 volts. To increase the voltage, we can use
a boost converter circuit which enhances it to 12 volts. To feed it further to any device we can
use an inverter circuit. A boost converter or a step-up-converter is a is capable of converting high
DC voltage from low DC voltage in input. It has two modes of operation, namely continuous and
discontinuous mode
CONNECTIONS OF THE PIEZOELECTRICELEMENT
The piezoelectric elements can be connected with each other by two ways. These are by series or
parallel connection. Three piezoelectric elements are connected in series and parallel
combination. The current versus voltage graphs can be drawn for each case and analysed.
According to the literature study, it is observed that the in a series connection the voltage is
good, but the current is poor while it was exactly the opposite in the case of the parallel
connection i.e. the current was good and the voltage is poor. Thus, we can use both the series
connection as well the parallel connection according to our application. . But in the series
connection, the voltage does not increase in linear fashion may be owing to the non-linearity of
the system’s total internal impedance.
When connected in series, then equivalent capacitance of 3 piezoelectric discs is as follows,
1∕Ceq= 1∕C1+1∕C2+1∕C3
Again,
Q= C×V
Veq/Q= V1/Q+V2/Q+V3/Q
Therefore,
Veq= V1+V2+V3
Also,
the following formula is used to calculate the voltage of a piezoelectric material
V= Sv ×P×D
Where V is the piezoelectric generated voltage (in Volts), Sv stands for voltage sensitivity of the
material (Volt ×meters / Newton), P is the pressure (N/m2) and D is the thickness of material (in
meters).
Proposed Circuit To Generate Power From Piezoelectric Transducer Using Rectifier Diodes, Capacitor.
V. HARDWARE SPECIFICATIONS
ʘ Piezo Electric Sensors
ʘ Multimeter
ʘ Breadboard or PCB
ʘ LED’s
ʘ Jumper Wires
ʘ Footstep Body
ʘ Capacitors
ʘ Diodes
ʘ Chargeable battery
VI. DETAILED EXPLAINATION OF COMPONENTS
 PIEZOELECTRIC SENSOR:
A piezoelectric sensor is a device that uses the piezoelectric effect, to measure changes in
pressure, acceleration, temperature, strain, on force by converting them to an electrical charge.
The prefix piezo- is Greek for “press” or “squeeze”. Piezoelectric sensors are versatile tools
for the measurement of various processes. Pierre curie discovered the piezoelectric effect in
1880.
They are used for quality assurance, process control and for research and development in
many different industries it was only in the 1950sthat the piezoelectric effect started to be
used for industrial sensing applications. Since then, this measuring principle has been
increasingly used and can be regarded as a mature technology with an outstanding inherent
reliability. It has been successfully used in various applications, such as in medical, aerospace,
nuclear instrumentation, and as a pressure sensor in the touch pads of mobile phones. In the
automotive industry, piezoelectric elements are used to monitor combustion when developing
internal combustion engines. The sensors are either directly mounted into additional holes
into the cylinder head or the spark/glow plug is equipped with a built in miniature
piezoelectric sensor.
Piezoelectric sensor and voltage measuring, generated through the pressuring on sensor.
The rise of piezoelectric technology is directly related to a set of inherent advantages. The high
modulus of elasticity of many piezoelectric materials is comparable to that of many metals and
goes up to 10e6 N/m²[Even though piezoelectric sensors are electromechanical systems that react
to compression, the sensing elements show almost zero deflection. This is the reason why
piezoelectric sensors are so rugged, have an extremely high natural frequency and an excellent
linearity over a wide amplitude range. Additionally, piezoelectric technology is insensitive to
electromagnetic fields and radiation, enabling measurements under harsh conditions. Some
materials used (especially gallium phosphate or tourmaline) have an extreme stability even at high
temperature, enabling sensors to have a working range of up to 1000°C. Tourmaline shows pyro
electricity in addition to the piezoelectric effect; this is the ability to generate an electrical signal
when the temperature of the crystal changes. This effect is also common to piezo ceramic
materials. One disadvantage of piezoelectric sensors is that they cannot be used for truly static
measurements. A static force will result in a fixed amount of charges on the piezoelectric material.
While working with conventional readout electronics, imperfect insulating materials, and
reduction in internal sensor resistance will result in a constant loss of electrons, and yield a
decreasing signal.
 MULTIMETER:
A multimeter or a multitester, also known as a VOM (volt-ohm-milliammeter), is an electronic
measuring instrument that combines several measurement functions in one unit. A typical
multimeter can measure voltage, current, and resistance. Analog multimeters use a microammeter
with a moving pointer to display readings. Digital multimeters (DMM, DVOM) have a numeric
display, and may also show a graphical bar representing the measured value. Digital multimeters
are now far more common due to their cost and precision, but analog multimeters are still
preferable in some cases, for example when monitoring a rapidly varying value.
A multimeter can be a hand-held device useful for basic fault finding and field service work, or a
bench instrument which can measure to a very high degree of accuracy. They can be used to
troubleshoot electrical problems in a wide array of industrial and household devices such as
electronic equipment, motor controls, domestic appliances, power supplies, and wiring systems.
Digital Multimeter for measuring the voltage
 BREADBOARD OR PCB:
A breadboard is a construction base for prototyping of electronics. Originally it was literally a
bread board, a polished piece of wood used for slicing bread. In the 1970s the solderless breadboard
(AKA plugboard, a terminal array board) became available and nowadays the term "breadboard"
is commonly used to refer to these.
Because the solderless breadboard does not require soldering, it is reusable. This makes it easy to
use for creating temporary prototypes and experimenting with circuit design. For this reason,
solderless breadboards are also extremely popular with students and in technological education.
Older breadboard types did not have this property. A stripboard (Veroboard) and similar
prototyping printed circuit boards, which are used to build semi-permanent soldered prototypes or
one-offs, cannot easily be reused. A variety of electronic systems may be prototyped by using
breadboards, from small analog and digital circuits to complete central processing units (CPUs).
Breadboard & PCB
 LED’s:
A light-emitting diode (LED) is a two-lead semiconductor light source. It is a p–n junction diode
that emits light when activated.[]When a suitable voltage is applied to the leads, electrons are
able to recombine with electron holes within the device, releasing energy in the form of photons.
This effect is called electroluminescence, and the color of the light (corresponding to the energy
of the photon) is determined by the energy band gap of the semiconductor. LEDs are typically
small (less than 1 mm2) and integrated optical components may be used to shape the radiation
pattern.
 CAPACITOR:
A capacitor is a passive two-terminal electrical component that stores electrical energy in an
electric field. The effect of a capacitor is known as capacitance. While capacitance exists
between any two electrical conductors of a circuit in sufficiently close proximity, a capacitor is
specifically designed to provide and enhance this effect for a variety of practical applications by
consideration of size, shape, and positioning of closely spaced conductors, and the intervening
dielectric material. A capacitor was therefore historically first known as an electric condenser.
The physical form and construction of practical capacitors vary widely and many capacitor types
are in common use. Most capacitors contain at least two electrical conductors often in the form
of metallic plates or surfaces separated by a dielectric medium. A conductor may be a foil, thin
film, sintered bead of metal, or an electrolyte. The no conducting dielectric acts to increase the
capacitor's charge capacity. Materials commonly used as dielectrics include glass, ceramic,
plastic film, paper, mica, and oxide layers. Capacitors are widely used as parts of electrical
circuits in many common electrical devices. Capacitors are widely used in electronic circuits for
blocking direct current while allowing alternating current to pass. In analog filter networks, they
smooth the output of power supplies. In resonant circuits they tune radios to particular
frequencies. In electric power transmission systems, they stabilize voltage and power flow. The
property of energy storage in capacitors was exploited as dynamic memory in early digital
computers.esistor, an ideal capacitor does not dissipate energy. Capacitance values of typical
capacitors for use in general electronics range from about 1 pF (10−12 F) to about 1 mF (10−3
F).
A 100 micro-farad 25v capacitor which is used
in circuit.
 DIODE:
In electronics, a diode is a two-terminal electronic component that conducts primarily in one direction
(asymmetric conductance); it has low (ideally zero) resistance to the current in one direction, and high
(ideally infinite) resistance in the other. A semiconductor diode, the most common type today, is a
crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals.[5]
A vacuum tube diode has two electrodes, a plate (anode) and a heated cathode. Semiconductor diodes
were the first semiconductor electronic devices. The discovery of crystals' rectifying abilities was made
by German physicist Ferdinand Braun in 1874. The first semiconductor diodes, called cat's whisker
diodes, developed around 1906, were made of mineral crystals such as galena. Today, most diodes are
The most common function of a diode is to allow an electric current to pass in one direction (called the
diode's forward direction), while blocking current in the opposite direction (the reverse direction). Thus,
the diode can be viewed as an electronic version of a check valve. This unidirectional behavior is called
rectification, and is used to convert alternating current (AC) to direct current (DC),including extraction of
modulation from radio signals in radio receivers—these diodes are forms of rectifiers.made of silicon, but
other semiconductors such as selenium and germanium are sometimes used.
A Rectifier Diodes IN4007 which
are used in circuit.
 RECHARGABLE BATTERY:
A rechargeable battery, Storage battery, secondary cell, or accumulator is a type of electrical
battery which can be charged with the help of small circuit. This battery is very helpful when the
AC power is not there. This battery is used to store the charge which is generated through the
circuit.it stores the voltage in DC forms, which can be used later to charge any low voltage
device.
A 9v Rechargable battery.
VII. ACTUAL PROGRESSIVE WORK TILL THE DATE
As our project is in progress we have done the testing of the below circuit as shown in the
picture. We have used breadboard, a 100uf capacitor, LED, piezoelectric material (piezoelectric
transducer), jumper wires, four IN4007 diode to make a bridge rectifier and digital multimeter to
measure the voltage which is generated by pressing the piezo material through the circuit.
As shown in the circuit, connections on the breadboard are as,
Four IN4007 diodes are connected as a bridge rectifier.
From the left to the right in clockwise direction there are four junctions at the bridge rectifier
Junction1(J1), junction2(J2), junction3(J3) and junction4(J4).
Then capacitor is placed to the right of the bridge rectifier and the positive terminal of the capacitor
is connected to the J2 with the help of the blue jumper wire, and the negative terminal of the
capacitor is connected through the green jumper wire to the J4.
The LED is connected parallel to the capacitor.
Now the positive terminal of the piezoelectric transducer to J1 and the negative terminal of the
transducer to J2.
The principle of the piezo electric transducer is that, when the force is applied on piezoelectric
material, the output is generated.
Hence, the LED glows….
Generated voltage can be measured with the help of multimeter,
VIII. Expected Result & Discussion Output power
if we install this model into the sole of the shoes then expected power output may be as below
Let,
Mass of pedestrian = 65 kg,
Distance travelled by plate = 10 cm
So,
work done on plate by impact
= weight of body * distance
= 65*9.81*0.1 Nm
= 63.765 J
So,
power output =work done/sec
= 63.765/60 Watts
=1.06275 Watts
It is Like we have used only 3 piezo plate in parallel connected at the installed shoe sole and we are getting
likely 1v power output at only 10 cm distance travelled.
So, if we install this system in shoe sole with the chargeable battery, we can get more output power only
through walking.
As we know that our cell phone need 3-5v to charge the battery
Hence,
We can use the charged battery as a power bank to charge the cell phone by simply walking.
As many steps we walks as the battery charges.
Shoe sole with piezo plates connected in parallel
IX. SCOPE OF THE PROJECT
India per capita electricity consumption has been continuously increasing over the years. From
734 kWh in 2008-09, the per capita consumption has reached 1075 kWh in 2015-16, an increase
of 46% in 8 years. The per capita consumption has been increasing at an average of 6% every
year. The per capita consumption crossed 1000 kWh in 2014-15 for the first time. The highest
increase in the per capita consumption during these 8 years has been in 2011-12 where it grew by
almost 8%.
Compared to some of the developed countries of the world, the per capita electricity
consumption in India is very low. India’s per capita consumption is 1/3rd of the world average
and is just 10% of that of Australia. It is just 7.5% that of USA and 6.6% of Canada. The per
capita consumption in UK also is more than 5 times that of India.
The utilization of energy is an indication of the growth of a nation. For example, World average
per capita electricity consumption is 2730 kWh compared to India’s per capita electricity
consumption of 1000 kWh. india has an installed electricity generation capacity of 30,000MW.
One might conclude that to be materially rich and prosperous, a human being needs to consume
more and more energy. India is facing serious energy crisis at this time .India as one of the most
fastest growing or developing country is lot affected by this energy crisis in the world .The major
issue is electric crisis which is known as load shedding India’s small manufacturing markets are
lot affected by the rise of energy prices. By just placing a unit like the “Power Generation
through the footstep”, so much of energy can be tapped. This energy can be used for the lights on
the either sides of the Roads at schools, colleges, temples and at many other busy places like
railway stations and bus stations.
X. CONCLUSION
This paper discusses about the importance of the energy wasted and converted it to renewable
energy. It mainly deals with the voltage produced by the force applied through the piezo
transducer. demands of electricity are increasing day by day and its use has become so advanced
and applicable in the present lifeline of a human being. This method produces electricity with the help
of piezoelectric elements that make use of the energy of human footsteps. The capacitor used in the circuit
stores the charge for future applications. In order to increase the efficiency of the whole system if super
capacitors are used in place of the conventional ones then more charge can be stored than the conventional
ones. The super capacitors store and discharge energy without consuming much energy. Thus, the
requirement of constant increase of power can be met by installing these systems in heavily packed places.
This will undoubtedly not only overcome the energy crises but also build up a healthy surrounding
XI. REFERENCES :
https://www.google.co.in/
www.electrical4u.com
https://en.wikipedia.org/
https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
https://www.comsol.co.in/multiphysics/piezoelectric-effect
http://www.explainthatstuff.com/piezoelectricity.html
http://www.ijraset.com/fileserve.php?FID=3950
https://qph.ec.quoracdn.net/main-qimg-9dd6cb7da9b4cba6ffd9d6f47d0dbce3
https://www.newslaundry.com/2016/05/10/indias-per-capita-electricity-consumption-in-is-13rd-
of-the-world-average

More Related Content

What's hot

Major project synopsis ON FOOT STEP POWER GENERATION
Major project synopsis ON FOOT STEP POWER GENERATIONMajor project synopsis ON FOOT STEP POWER GENERATION
Major project synopsis ON FOOT STEP POWER GENERATION
Sahil arora
 
device generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic materialdevice generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic material
Nihir Agarwal
 
REPORT OF FOOT STEP POWER GENERATION PROJECT
REPORT OF FOOT STEP POWER GENERATION PROJECTREPORT OF FOOT STEP POWER GENERATION PROJECT
REPORT OF FOOT STEP POWER GENERATION PROJECT
Sahil arora
 

What's hot (20)

Major project synopsis ON FOOT STEP POWER GENERATION
Major project synopsis ON FOOT STEP POWER GENERATIONMajor project synopsis ON FOOT STEP POWER GENERATION
Major project synopsis ON FOOT STEP POWER GENERATION
 
Power generating system by footstep
Power generating system by footstepPower generating system by footstep
Power generating system by footstep
 
Footsteppowergenerator 140707114713-phpapp01
Footsteppowergenerator 140707114713-phpapp01Footsteppowergenerator 140707114713-phpapp01
Footsteppowergenerator 140707114713-phpapp01
 
Thesis Of footstep Power Generation
Thesis Of footstep Power Generation Thesis Of footstep Power Generation
Thesis Of footstep Power Generation
 
Foot Step Power Generation Using piezoelectric material
Foot Step Power Generation Using piezoelectric materialFoot Step Power Generation Using piezoelectric material
Foot Step Power Generation Using piezoelectric material
 
Footstep power generation system
Footstep power generation systemFootstep power generation system
Footstep power generation system
 
device generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic materialdevice generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic material
 
foor step power generation ppt
foor step power generation pptfoor step power generation ppt
foor step power generation ppt
 
Seminar report on foot step power generation
Seminar report on foot step power generationSeminar report on foot step power generation
Seminar report on foot step power generation
 
Footstep power generation
Footstep power generationFootstep power generation
Footstep power generation
 
REPORT OF FOOT STEP POWER GENERATION PROJECT
REPORT OF FOOT STEP POWER GENERATION PROJECTREPORT OF FOOT STEP POWER GENERATION PROJECT
REPORT OF FOOT STEP POWER GENERATION PROJECT
 
A project report on Foot Step Power Generation By Indrakumar R Padwani
A project report on Foot Step Power Generation By Indrakumar R PadwaniA project report on Foot Step Power Generation By Indrakumar R Padwani
A project report on Foot Step Power Generation By Indrakumar R Padwani
 
Abstract of footstep power generation
Abstract of footstep power generationAbstract of footstep power generation
Abstract of footstep power generation
 
Charging in electric vehicles(ev)
Charging  in electric vehicles(ev)Charging  in electric vehicles(ev)
Charging in electric vehicles(ev)
 
Piezo Electric Based Harvesting
Piezo Electric Based HarvestingPiezo Electric Based Harvesting
Piezo Electric Based Harvesting
 
Electrical Engineering Final Presentation
Electrical Engineering Final Presentation Electrical Engineering Final Presentation
Electrical Engineering Final Presentation
 
Footstep power generation system
Footstep power generation systemFootstep power generation system
Footstep power generation system
 
Solar Mobile Charger PPT
Solar Mobile Charger PPTSolar Mobile Charger PPT
Solar Mobile Charger PPT
 
seminar on footsteps energy generation
 seminar on footsteps energy generation seminar on footsteps energy generation
seminar on footsteps energy generation
 
Power generation through foot steps
Power generation through foot stepsPower generation through foot steps
Power generation through foot steps
 

Similar to Footstep power generation system Final year be project

System for Generating Power from Footsteps
System for Generating Power from FootstepsSystem for Generating Power from Footsteps
System for Generating Power from Footsteps
ijtsrd
 
Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)
MotichandPatel
 
Gv icrtedc 01
Gv icrtedc 01Gv icrtedc 01
Gv icrtedc 01
IJEEE
 
ISSN(Online) 2319 - 8753 .docx
           ISSN(Online) 2319 - 8753                  .docx           ISSN(Online) 2319 - 8753                  .docx
ISSN(Online) 2319 - 8753 .docx
hallettfaustina
 
Foot energy generation
Foot energy generationFoot energy generation
Foot energy generation
Neel_0003
 
Foot energy generation
Foot energy generationFoot energy generation
Foot energy generation
Neel_0003
 

Similar to Footstep power generation system Final year be project (20)

Footstep power generation system
Footstep power generation systemFootstep power generation system
Footstep power generation system
 
FOOTSTEP%20POWER%20GENERATION.pptx
FOOTSTEP%20POWER%20GENERATION.pptxFOOTSTEP%20POWER%20GENERATION.pptx
FOOTSTEP%20POWER%20GENERATION.pptx
 
System for Generating Power from Footsteps
System for Generating Power from FootstepsSystem for Generating Power from Footsteps
System for Generating Power from Footsteps
 
Foot step-power-generation-using-piezoelectric-material
Foot step-power-generation-using-piezoelectric-materialFoot step-power-generation-using-piezoelectric-material
Foot step-power-generation-using-piezoelectric-material
 
foot step power generation of generatwe electricity.pptx
foot step power generation of generatwe electricity.pptxfoot step power generation of generatwe electricity.pptx
foot step power generation of generatwe electricity.pptx
 
Power Generation Using Piezoelectric Transducer
Power Generation Using Piezoelectric TransducerPower Generation Using Piezoelectric Transducer
Power Generation Using Piezoelectric Transducer
 
Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)
 
Power Generation with StairCase
Power Generation with StairCasePower Generation with StairCase
Power Generation with StairCase
 
final
finalfinal
final
 
Gv icrtedc 01
Gv icrtedc 01Gv icrtedc 01
Gv icrtedc 01
 
Generation of power using Railway track
Generation of power using Railway trackGeneration of power using Railway track
Generation of power using Railway track
 
Power generation in footsteps by Piezoelectric materials
Power generation in footsteps by Piezoelectric materialsPower generation in footsteps by Piezoelectric materials
Power generation in footsteps by Piezoelectric materials
 
ENERGY GENERATION VIA FOOTSTEPS USING PIEZOELECTRIC SENSOR
ENERGY GENERATION VIA FOOTSTEPS USING PIEZOELECTRIC SENSORENERGY GENERATION VIA FOOTSTEPS USING PIEZOELECTRIC SENSOR
ENERGY GENERATION VIA FOOTSTEPS USING PIEZOELECTRIC SENSOR
 
ISSN(Online) 2319 - 8753 .docx
           ISSN(Online) 2319 - 8753                  .docx           ISSN(Online) 2319 - 8753                  .docx
ISSN(Online) 2319 - 8753 .docx
 
Foot energy generation
Foot energy generationFoot energy generation
Foot energy generation
 
Foot energy generation
Foot energy generationFoot energy generation
Foot energy generation
 
final year embedded systems projects in chennai
final year embedded systems projects in chennaifinal year embedded systems projects in chennai
final year embedded systems projects in chennai
 
Hybrid Power Generation Utilizing Solar Panel and Piezoelectric Tangle
Hybrid Power Generation Utilizing Solar Panel and Piezoelectric TangleHybrid Power Generation Utilizing Solar Panel and Piezoelectric Tangle
Hybrid Power Generation Utilizing Solar Panel and Piezoelectric Tangle
 
Project Power Shoe: Piezoelectric Wireless Power Transfer - A Mobile Chargin...
Project Power Shoe: Piezoelectric Wireless Power  Transfer - A Mobile Chargin...Project Power Shoe: Piezoelectric Wireless Power  Transfer - A Mobile Chargin...
Project Power Shoe: Piezoelectric Wireless Power Transfer - A Mobile Chargin...
 
Foot step power generator
Foot step power generatorFoot step power generator
Foot step power generator
 

More from silveroak engineering collage

TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
silveroak engineering collage
 

More from silveroak engineering collage (20)

TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
TECHNICAL IMPROVEMENT IN PICK & PLACE ROBOT ARM MACHINE BY GIVING ALTERNATE T...
 
Duke engine technology (redial engine)
Duke engine technology (redial engine)Duke engine technology (redial engine)
Duke engine technology (redial engine)
 
Automatic bottle filling Machine
Automatic bottle filling Machine  Automatic bottle filling Machine
Automatic bottle filling Machine
 
WELDING DEFECTS
WELDING DEFECTSWELDING DEFECTS
WELDING DEFECTS
 
WHAT IS SPRINGS (classification & details)
 WHAT IS SPRINGS (classification & details) WHAT IS SPRINGS (classification & details)
WHAT IS SPRINGS (classification & details)
 
Diffternt types of Welding Joints
Diffternt types of  Welding Joints Diffternt types of  Welding Joints
Diffternt types of Welding Joints
 
Power hammer project
Power hammer projectPower hammer project
Power hammer project
 
Printed Circuit Board
Printed Circuit BoardPrinted Circuit Board
Printed Circuit Board
 
Cloth Manufacturing process
Cloth Manufacturing processCloth Manufacturing process
Cloth Manufacturing process
 
Gas Welding
Gas WeldingGas Welding
Gas Welding
 
ARC WELDING
ARC WELDINGARC WELDING
ARC WELDING
 
Control systems
Control systemsControl systems
Control systems
 
Auto bottle filler machine
Auto bottle filler machineAuto bottle filler machine
Auto bottle filler machine
 
Report of vartical axis wind turbine
Report of vartical axis wind turbine Report of vartical axis wind turbine
Report of vartical axis wind turbine
 
Importance of tecnology in life
Importance of tecnology in lifeImportance of tecnology in life
Importance of tecnology in life
 
HARD DISK DRIVE ppt
HARD DISK DRIVE pptHARD DISK DRIVE ppt
HARD DISK DRIVE ppt
 
PNEUMATIC SHAPER MACHINE ppt
PNEUMATIC SHAPER MACHINE pptPNEUMATIC SHAPER MACHINE ppt
PNEUMATIC SHAPER MACHINE ppt
 
PNEUMATIC SHAPER MACHINE
PNEUMATIC SHAPER MACHINEPNEUMATIC SHAPER MACHINE
PNEUMATIC SHAPER MACHINE
 
STEAM CONDENSERS ppt 2
STEAM CONDENSERS ppt 2STEAM CONDENSERS ppt 2
STEAM CONDENSERS ppt 2
 
STEAM CONDENSERS ppt
STEAM CONDENSERS pptSTEAM CONDENSERS ppt
STEAM CONDENSERS ppt
 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 

Footstep power generation system Final year be project

  • 1. PROJECTREPORT “Footstep power generation system” Submitted by Pankaj m mori(1418BEEE30097) Sachin k dhakad(1317BEEE30071) In partial fulfillmentfor the awardof the degree of BACHELOR OF ENGINEERING In ELECTRICALENGINEERING LDRP-ITR Kadi Sarva Vishwavidhyalaya Gandhinagar November, 2017
  • 2. SARVA VIDYALAYA KELAVANI MANDAL LDRP-ITR, GANDHINAGAR CERTIFICATE This is to certify that the Project Report entitled “Footstep power generation system” submitted by Pankaj m mori & Sachin k dhakad (1418beee30097, 1317beee30071) towards the partial fulfillment of the requirements for the Bachelor of Engineering in 7th /8th semester in Electrical Engineering of the KSV University, Gandhinagar, is a bonafide record of the project work carried out at LDRP-ITR during the academic year 2017-18 is the record of work carried out by him her under our supervision and guidance. The work submitted has in our opinion reached a level required for being accepted for examination. The results embodied in this project work to the best of our knowledge have not been submitted to any other University or Institution for award of any degree. Internal Guide Head of Department
  • 3. ACKNOWLEDGEMENT We would like to express or gratitude and appreciation to all those who gave us the possibility to complete this report. A special thanks to our final year project coordinator, Mr. PUSHPAK B. PATEL, who’s help, stimulating suggestions and encouragement, helped us to coordinate our project especially in writing this project. A special thanks goes to our team mate, who help us to assemble the parts and gave suggestions about the project Last but not least, many thanks goes to the head of the department Mr. SANJAY VYAS who have given his full effort in guiding the team in achieving the goal as well as his encouragement to maintain our progress in track. We would love to appreciate the guidance given by the other supervisor as well as our project guide Mr. PURVIK C. VANIA especially in our project presentation that has improved our presentation skill by their comments and tips.
  • 4. INDEX 1. Abstract 2. Introduction 3. Initiative 4. Essential blockdiagram & methodology 5. Hardware specifications 6. Detailed explanation of components 7. Actual progressive work till the date 8. Expected result & discussion output power 9. Scope of the project 10. Conclusion 11. References
  • 5. I. ABSTRACT Everywhere a person goes, some amount of energy is used by them. Since time is immemorial energy is needed for the well-being and sustenance of our lives. The utilization of waste energy used in the foot power is very much useful and important for place where there will be a huge crowd each day. When the flooring is engineered with piezoelectric technology, the electrical energy produced by the pressure is captured by floor sensor and converted to an electrical by piezo transducer, then stored and used as a power source. This power source is used in home application, crowded areas like railway station, street light, school and colleges.
  • 6. II. INTRODUCTION The demands of electricity are increasing day by day and its use has become so advanced and applicable in the present lifeline of a human being. The arising value of new technology each day demands more power of electricity.as the population of human beings is increasing day by day and hence the energy demand is increasing linearly. This technology is on simply based on a principle called the piezoelectric e effect, in which certain materials have the ability to build up and electric charge from having pressure and strain applied to them. Now, piezoelectricity is generally referred to as having the ability of some materials to generate an electric potential in responds to the applied pressure on them. So, the piezoelectric material can converts the exerted pressure into and electric current. The main component of this project is piezoelectricity, where the piezoelectric effect is understood as the linear electromechanically interaction between the mechanical and the electrical state in crystalline materials with no inversion symmetry. The system generates voltage using footstep force. The system serves as a medium to generate electricity using non-conventional sources (force) and /store/use it. The project is designed to be useful at public places like railway stations where a lot of people keep walking through all day. At such places these systems are to be placed at any entry points where people travel through entrance or exits and they have to step on this device to get through. These devices may then generate a voltage on every footstep and when mounted in series they will produce a sizeable amount of electricity. For this purpose, we here use piezoelectric sensors that use piezoelectric effect in order to measure acceleration, force, pressure by its conversion into electric signals. We here attach a voltmeter in order to measure its output and small led lights for demonstration. We also use a battery and weight measurement unit for better demonstration of the system.
  • 7. III. INITIATIVE Our project is all about saving human energy and converting it to electrical energy. Day by day, the population of the country is increasing and the requirement of the power is also increasing at the same time the wastage of energy is also increased in many ways. So reforming this energy back to usable form is the major solution. This project is used to generate voltage using footstep force. This project is useful in public places like theatres, railways station, shopping malls, temples, school, college, hospital, etc. so, these systems are placed in public places where people walk and they have to travel on this system to get through the entrance or exist. Then this system may generate voltage on each and every step of a foot and for this purpose, piezoelectric sensor is used in order to measure force, pressure and acceleration by its change into electric signals. This system uses voltmeter for measuring output, led light, weight measurement system and a battery for better demonstration of the system. Working on the idea to harness human locomotion power, MIT (USA) architecture students James Graham and Thaddeus Jusczyk recently unveiled what they're calling the "Crowd Farm," a setup that would derive energy from pounding feet in crowded places. This technology is a proposal to harness human power as a source of sustainable energy. Population of India and mobility of its masses will turn into boon in generating electricity from its (population’s) footsteps. Human locomotion in over crowded subway stations, railway stations, bus stands, airports, temples or rock concerts thus can be converted to electrical energy with the use of this promising technology. The technology would turn the mechanical energy of people walking or jumping into a source of electricity. The students' test case, displayed at the Venice Biennale and in a train station in Torino, Italy, was a prototype stool that exploits the passive act of sitting to generate power. The weight of the body on the seat causes a flywheel to spin, which powers a dynamo that, in turn, lights four LEDs. In each case, there would be a sub-flooring system consisting of independent blocks. When people walk across this surface, the forces they impart will cause the blocks to slip slightly, and a dynamo would convert the energy in those movements into electric current. Students say that moving from this Proof-ofconcept device to a large-scale Crowd Farm would be expensive, but it certainly sounds a great option. PIEZOELECTRICITY: A MEANS OF ENERGY HARVESTING METHOD
  • 8. Piezoelectricity has arose as a way to harvest energy. The array of piezoelectric crystals is laid under the pavements. The voltage produced can be utilized to charge batteries. It is to be noted that scientist at the Hull University worked on converting motion in to electrical energy. Japan has installed piezoelectric tiles in Tokyo’s busiest stations. They noted that the footsteps of an average person whose weight is 60 kg is able to yield 0.1 watt/sec. It has also been reported that there is a 3×5 feet panel a product of Digital Safari Greenbiz Company which is capable of producing 17.5 watts/step. PIEZOELECTRIC PRINCIPLE When stress is applied to a piezoelectric crystal an electrical energy is produced across the material. There are two kinds of piezoelectric effect,namely direct effect and indirect piezoelectric effect. When mechanical stress is applied and electric potential is developed it is termed as the direct piezoelectric effect on the other hand when due to the application of electrical field there is deformation in the material it is termed as the indirect piezoelectric effect. when an electric field is applied. The examples of some piezo materials are Quartz, PZT,PbTiO3, PLZT,PVDF,BaTiO3, PbZrO3,etc.
  • 9. IV. BLOCK DIAGRAM & METHODOLOGY Pressure Piezoelectric transducers Rectifier CapacitorLoad/Devise
  • 10. EXPLANATION According to the literature survey, piezoelectric materials produce ac voltage. When the pressure is applied on the face of the piezoelectric element then it generates the ac voltage and is sent to the rectifier. Then the function of the rectifier is to achieve full wave rectification. Thus transforming the ac voltage to dc voltage. The rectifier is a bridge circuit made by diodes. The dc voltage is stored in a capacitor in the subsequent stages. The stored energy can be effectively used for various applications. Sometimes a controller is also attached after the rectifier as it optimizes the power in input to the capacitor. Super capacitors can also be used in place of conventional capacitors. The power can be directly applied to the electrical devices or can be a supplement of main power supply. One can determine the effectiveness of a system by comparing the input energy to the output results. However, when the amount of output energy produced versus input energy is high then the level of efficiency is also high. AMOUNT OF POWER GENERATION DETAILS It is reported in literature, that when a piezoelectric tile is used for the flooring purposes then each slab is capable of producing 2.1 watts/hour in a football area if the stepping rate is 4-10 seconds. Based on testing it is found that walking 5 hours will generate enough electricity to lighting a bus stops continuously for over 12 hours. The energy produced is stored in Lithium Polymer Batteries. To light a low energy LED, 5% of the energy produced by a footstep is sufficient. The energy produced by piezoelectric elements is extremely low. The electrical energy produced by a piezoelectric crystal is about 2-3 volts. To increase the voltage, we can use a boost converter circuit which enhances it to 12 volts. To feed it further to any device we can use an inverter circuit. A boost converter or a step-up-converter is a is capable of converting high DC voltage from low DC voltage in input. It has two modes of operation, namely continuous and discontinuous mode CONNECTIONS OF THE PIEZOELECTRICELEMENT The piezoelectric elements can be connected with each other by two ways. These are by series or parallel connection. Three piezoelectric elements are connected in series and parallel combination. The current versus voltage graphs can be drawn for each case and analysed. According to the literature study, it is observed that the in a series connection the voltage is good, but the current is poor while it was exactly the opposite in the case of the parallel connection i.e. the current was good and the voltage is poor. Thus, we can use both the series connection as well the parallel connection according to our application. . But in the series connection, the voltage does not increase in linear fashion may be owing to the non-linearity of the system’s total internal impedance.
  • 11. When connected in series, then equivalent capacitance of 3 piezoelectric discs is as follows, 1∕Ceq= 1∕C1+1∕C2+1∕C3 Again, Q= C×V Veq/Q= V1/Q+V2/Q+V3/Q Therefore, Veq= V1+V2+V3 Also, the following formula is used to calculate the voltage of a piezoelectric material V= Sv ×P×D Where V is the piezoelectric generated voltage (in Volts), Sv stands for voltage sensitivity of the material (Volt ×meters / Newton), P is the pressure (N/m2) and D is the thickness of material (in meters). Proposed Circuit To Generate Power From Piezoelectric Transducer Using Rectifier Diodes, Capacitor.
  • 12. V. HARDWARE SPECIFICATIONS ʘ Piezo Electric Sensors ʘ Multimeter ʘ Breadboard or PCB ʘ LED’s ʘ Jumper Wires ʘ Footstep Body ʘ Capacitors ʘ Diodes ʘ Chargeable battery
  • 13. VI. DETAILED EXPLAINATION OF COMPONENTS  PIEZOELECTRIC SENSOR: A piezoelectric sensor is a device that uses the piezoelectric effect, to measure changes in pressure, acceleration, temperature, strain, on force by converting them to an electrical charge. The prefix piezo- is Greek for “press” or “squeeze”. Piezoelectric sensors are versatile tools for the measurement of various processes. Pierre curie discovered the piezoelectric effect in 1880. They are used for quality assurance, process control and for research and development in many different industries it was only in the 1950sthat the piezoelectric effect started to be used for industrial sensing applications. Since then, this measuring principle has been increasingly used and can be regarded as a mature technology with an outstanding inherent reliability. It has been successfully used in various applications, such as in medical, aerospace, nuclear instrumentation, and as a pressure sensor in the touch pads of mobile phones. In the automotive industry, piezoelectric elements are used to monitor combustion when developing internal combustion engines. The sensors are either directly mounted into additional holes into the cylinder head or the spark/glow plug is equipped with a built in miniature piezoelectric sensor. Piezoelectric sensor and voltage measuring, generated through the pressuring on sensor. The rise of piezoelectric technology is directly related to a set of inherent advantages. The high modulus of elasticity of many piezoelectric materials is comparable to that of many metals and goes up to 10e6 N/m²[Even though piezoelectric sensors are electromechanical systems that react
  • 14. to compression, the sensing elements show almost zero deflection. This is the reason why piezoelectric sensors are so rugged, have an extremely high natural frequency and an excellent linearity over a wide amplitude range. Additionally, piezoelectric technology is insensitive to electromagnetic fields and radiation, enabling measurements under harsh conditions. Some materials used (especially gallium phosphate or tourmaline) have an extreme stability even at high temperature, enabling sensors to have a working range of up to 1000°C. Tourmaline shows pyro electricity in addition to the piezoelectric effect; this is the ability to generate an electrical signal when the temperature of the crystal changes. This effect is also common to piezo ceramic materials. One disadvantage of piezoelectric sensors is that they cannot be used for truly static measurements. A static force will result in a fixed amount of charges on the piezoelectric material. While working with conventional readout electronics, imperfect insulating materials, and reduction in internal sensor resistance will result in a constant loss of electrons, and yield a decreasing signal.  MULTIMETER: A multimeter or a multitester, also known as a VOM (volt-ohm-milliammeter), is an electronic measuring instrument that combines several measurement functions in one unit. A typical multimeter can measure voltage, current, and resistance. Analog multimeters use a microammeter with a moving pointer to display readings. Digital multimeters (DMM, DVOM) have a numeric display, and may also show a graphical bar representing the measured value. Digital multimeters are now far more common due to their cost and precision, but analog multimeters are still preferable in some cases, for example when monitoring a rapidly varying value. A multimeter can be a hand-held device useful for basic fault finding and field service work, or a bench instrument which can measure to a very high degree of accuracy. They can be used to troubleshoot electrical problems in a wide array of industrial and household devices such as electronic equipment, motor controls, domestic appliances, power supplies, and wiring systems. Digital Multimeter for measuring the voltage
  • 15.  BREADBOARD OR PCB: A breadboard is a construction base for prototyping of electronics. Originally it was literally a bread board, a polished piece of wood used for slicing bread. In the 1970s the solderless breadboard (AKA plugboard, a terminal array board) became available and nowadays the term "breadboard" is commonly used to refer to these. Because the solderless breadboard does not require soldering, it is reusable. This makes it easy to use for creating temporary prototypes and experimenting with circuit design. For this reason, solderless breadboards are also extremely popular with students and in technological education. Older breadboard types did not have this property. A stripboard (Veroboard) and similar prototyping printed circuit boards, which are used to build semi-permanent soldered prototypes or one-offs, cannot easily be reused. A variety of electronic systems may be prototyped by using breadboards, from small analog and digital circuits to complete central processing units (CPUs). Breadboard & PCB
  • 16.  LED’s: A light-emitting diode (LED) is a two-lead semiconductor light source. It is a p–n junction diode that emits light when activated.[]When a suitable voltage is applied to the leads, electrons are able to recombine with electron holes within the device, releasing energy in the form of photons. This effect is called electroluminescence, and the color of the light (corresponding to the energy of the photon) is determined by the energy band gap of the semiconductor. LEDs are typically small (less than 1 mm2) and integrated optical components may be used to shape the radiation pattern.  CAPACITOR: A capacitor is a passive two-terminal electrical component that stores electrical energy in an electric field. The effect of a capacitor is known as capacitance. While capacitance exists between any two electrical conductors of a circuit in sufficiently close proximity, a capacitor is specifically designed to provide and enhance this effect for a variety of practical applications by consideration of size, shape, and positioning of closely spaced conductors, and the intervening dielectric material. A capacitor was therefore historically first known as an electric condenser. The physical form and construction of practical capacitors vary widely and many capacitor types are in common use. Most capacitors contain at least two electrical conductors often in the form
  • 17. of metallic plates or surfaces separated by a dielectric medium. A conductor may be a foil, thin film, sintered bead of metal, or an electrolyte. The no conducting dielectric acts to increase the capacitor's charge capacity. Materials commonly used as dielectrics include glass, ceramic, plastic film, paper, mica, and oxide layers. Capacitors are widely used as parts of electrical circuits in many common electrical devices. Capacitors are widely used in electronic circuits for blocking direct current while allowing alternating current to pass. In analog filter networks, they smooth the output of power supplies. In resonant circuits they tune radios to particular frequencies. In electric power transmission systems, they stabilize voltage and power flow. The property of energy storage in capacitors was exploited as dynamic memory in early digital computers.esistor, an ideal capacitor does not dissipate energy. Capacitance values of typical capacitors for use in general electronics range from about 1 pF (10−12 F) to about 1 mF (10−3 F). A 100 micro-farad 25v capacitor which is used in circuit.  DIODE: In electronics, a diode is a two-terminal electronic component that conducts primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance to the current in one direction, and high (ideally infinite) resistance in the other. A semiconductor diode, the most common type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals.[5] A vacuum tube diode has two electrodes, a plate (anode) and a heated cathode. Semiconductor diodes were the first semiconductor electronic devices. The discovery of crystals' rectifying abilities was made by German physicist Ferdinand Braun in 1874. The first semiconductor diodes, called cat's whisker
  • 18. diodes, developed around 1906, were made of mineral crystals such as galena. Today, most diodes are The most common function of a diode is to allow an electric current to pass in one direction (called the diode's forward direction), while blocking current in the opposite direction (the reverse direction). Thus, the diode can be viewed as an electronic version of a check valve. This unidirectional behavior is called rectification, and is used to convert alternating current (AC) to direct current (DC),including extraction of modulation from radio signals in radio receivers—these diodes are forms of rectifiers.made of silicon, but other semiconductors such as selenium and germanium are sometimes used. A Rectifier Diodes IN4007 which are used in circuit.
  • 19.  RECHARGABLE BATTERY: A rechargeable battery, Storage battery, secondary cell, or accumulator is a type of electrical battery which can be charged with the help of small circuit. This battery is very helpful when the AC power is not there. This battery is used to store the charge which is generated through the circuit.it stores the voltage in DC forms, which can be used later to charge any low voltage device. A 9v Rechargable battery.
  • 20. VII. ACTUAL PROGRESSIVE WORK TILL THE DATE As our project is in progress we have done the testing of the below circuit as shown in the picture. We have used breadboard, a 100uf capacitor, LED, piezoelectric material (piezoelectric transducer), jumper wires, four IN4007 diode to make a bridge rectifier and digital multimeter to measure the voltage which is generated by pressing the piezo material through the circuit. As shown in the circuit, connections on the breadboard are as, Four IN4007 diodes are connected as a bridge rectifier. From the left to the right in clockwise direction there are four junctions at the bridge rectifier Junction1(J1), junction2(J2), junction3(J3) and junction4(J4). Then capacitor is placed to the right of the bridge rectifier and the positive terminal of the capacitor is connected to the J2 with the help of the blue jumper wire, and the negative terminal of the capacitor is connected through the green jumper wire to the J4. The LED is connected parallel to the capacitor. Now the positive terminal of the piezoelectric transducer to J1 and the negative terminal of the transducer to J2.
  • 21. The principle of the piezo electric transducer is that, when the force is applied on piezoelectric material, the output is generated. Hence, the LED glows…. Generated voltage can be measured with the help of multimeter,
  • 22. VIII. Expected Result & Discussion Output power if we install this model into the sole of the shoes then expected power output may be as below Let, Mass of pedestrian = 65 kg, Distance travelled by plate = 10 cm So, work done on plate by impact = weight of body * distance = 65*9.81*0.1 Nm = 63.765 J So, power output =work done/sec = 63.765/60 Watts =1.06275 Watts It is Like we have used only 3 piezo plate in parallel connected at the installed shoe sole and we are getting likely 1v power output at only 10 cm distance travelled. So, if we install this system in shoe sole with the chargeable battery, we can get more output power only through walking. As we know that our cell phone need 3-5v to charge the battery Hence, We can use the charged battery as a power bank to charge the cell phone by simply walking. As many steps we walks as the battery charges.
  • 23. Shoe sole with piezo plates connected in parallel
  • 24. IX. SCOPE OF THE PROJECT India per capita electricity consumption has been continuously increasing over the years. From 734 kWh in 2008-09, the per capita consumption has reached 1075 kWh in 2015-16, an increase of 46% in 8 years. The per capita consumption has been increasing at an average of 6% every year. The per capita consumption crossed 1000 kWh in 2014-15 for the first time. The highest increase in the per capita consumption during these 8 years has been in 2011-12 where it grew by almost 8%. Compared to some of the developed countries of the world, the per capita electricity consumption in India is very low. India’s per capita consumption is 1/3rd of the world average and is just 10% of that of Australia. It is just 7.5% that of USA and 6.6% of Canada. The per capita consumption in UK also is more than 5 times that of India. The utilization of energy is an indication of the growth of a nation. For example, World average per capita electricity consumption is 2730 kWh compared to India’s per capita electricity consumption of 1000 kWh. india has an installed electricity generation capacity of 30,000MW. One might conclude that to be materially rich and prosperous, a human being needs to consume more and more energy. India is facing serious energy crisis at this time .India as one of the most fastest growing or developing country is lot affected by this energy crisis in the world .The major issue is electric crisis which is known as load shedding India’s small manufacturing markets are lot affected by the rise of energy prices. By just placing a unit like the “Power Generation through the footstep”, so much of energy can be tapped. This energy can be used for the lights on the either sides of the Roads at schools, colleges, temples and at many other busy places like railway stations and bus stations.
  • 25. X. CONCLUSION This paper discusses about the importance of the energy wasted and converted it to renewable energy. It mainly deals with the voltage produced by the force applied through the piezo transducer. demands of electricity are increasing day by day and its use has become so advanced and applicable in the present lifeline of a human being. This method produces electricity with the help of piezoelectric elements that make use of the energy of human footsteps. The capacitor used in the circuit stores the charge for future applications. In order to increase the efficiency of the whole system if super capacitors are used in place of the conventional ones then more charge can be stored than the conventional ones. The super capacitors store and discharge energy without consuming much energy. Thus, the requirement of constant increase of power can be met by installing these systems in heavily packed places. This will undoubtedly not only overcome the energy crises but also build up a healthy surrounding